Lecture Notes 3: Data summarization

Size: px
Start display at page:

Download "Lecture Notes 3: Data summarization"

Transcription

1 Lecture Notes 3: Data summarization Highlights: Average Median Quartiles 5-number summary (and relation to boxplots) Outliers Range & IQR Variance and standard deviation Determining shape using mean & median 1

2 Some important characteristics of a data set Location: Where is the data set located along a number line? Where is its center? Spread: How dispersed (i.e. spread out) is the data? Outliers: set? Are there any unusual values in the data Shape: What is the shape of the distribution of values in the data set? 2

3 Location Statistics Mean, Median & Quartiles In these notes, we will look at some common descriptive statistics that are useful for summarizing a data set. Recall that a statistic is any number calculated from a set of data. The most succinct way to describe the location of a data set is to identify its center. There are two statistics used to describe center: with the mean and with the median. 3

4 Sample average The sample average (a.k.a. mean) is the sum of the data divided by the sample size. We denote the mean using, or x bar The sample size is the number of observations in the sample, and is denoted n. The sum of all the observations in a sample is denoted by. x So, our formula for the sample mean is x i x x i = n 4

5 Sample Average Example Suppose we are interested in the average undulation rate (in Hz) of a paradise tree snake, which undulates after jumping from a tree in order to glide away. We take a sample of n = 8 snakes and somehow measure the rates at which they undulate as they propel themselves from a source. The eight observed rates are 0.9, 1.4, 1.2, 1.2, 1.3, 2.0, 1.4, 1.6 5

6 Sample Average Example So, for this sample, we can compute: x x = i = = n 6

7 Median If you put data in order from the smallest to the largest values, the number in the middle is called the median. The median separates the bottom 50% of the data from the top 50% of the data. If the sample size is odd, the median will be a value in your sample. If the sample size is even, the median will be between the middle two numbers in your sample. 7

8 Computing the median 1) Order the data set, smallest to largest. 2) Compute the rank of the median using Rank = (n + 1)/2. The rank tells you which observation will be the median. ordered 3) If Rank is an integer value go right to it in the sorted data set. Otherwise compute the average of the two surrounding observations. For instance, if rank = 5, then the median is the 5 th ordered observation. If rank = 5.5, then the median is the average of the 5 th and 6 th ordered observations. 8

9 Computing the Median The data set to the right is already ordered. There are 19 observations. Find the rank of the median using (n+1)/2: Now go to this observation by counting from the start of the data set to the rank of the median. You can verify that this is the median by making sure that there are the same number of observations above it as there are below it. 9

10 Computing the Median The data set to the right is already ranked. There are 20 observations. Find the rank of the median using (n+1)/2: In this case, the rank is between two integers, so the median will be the average of these two ordered observations. 10

11 Location Statistics: Quartiles The median breaks the data set into two halves Quartiles break the data set into 4 quarters The lower quartile, Q1, is the median of all the data below the overall median. The upper quartile, Q3, is the median of all the data above the overall median. 11

12 Computing Quartiles Here, there are 10 observations below the median. We can find their median, Q1, in the usual manner: Q1 separates the lower 25% from the upper 75% of the data

13 Computing Quartiles Likewise, there are 10 observations above the median. We can use the same rank we used to find Q1, but start counting from the first observation above the overall median: Q3 separates the lower 75% from the top 25% of the data. 13

14 Computing Quartiles A brief aside: when sample size is odd, it will not be the case that *exactly* 50% of the data is below the median or that *exactly* 50% is above it This is because the median itself is not counted as being in either the upper or lower half of the data set. For reasonably large data sets, we may say things like 50% of the data is above the median and 25% of the data is below Q1, even though in some cases these are approximations. 14

15 Computing Quartiles Note that for relatively small datasets, you may be able to eyeball the data to find the median, Q1, and Q3, rather than using rank. For instance, it is not challenging to find the median and quartiles for the snake undulation rate data set of size n=8 from before. Simply order the numbers 0.9, 1.4, 1.2, 1.2, 1.3, 2.0, 1.4, 1.6 from smallest to largest, and you can quickly see where the median and quartiles lie: 15

16 Location Statistics: Extremes We are also often interested in the extremes of a data set. These extreme values are referred to as the minimum and the maximum. Extreme in this context doesn t necessarily mean really big or really small. It just means the biggest or the smallest. 16

17 The 5-number summary The 5-number summary can be used to summarize a data set. This group consists of the: minimum, maximum, Q1, median, and Q3 These are all measures of location 17

18 Boxplots and the 5-number summary Boxplots graphically illustrate the 5 values in a 5-number summary Sometimes boxplots are called box and whisker plots boxplot of height (female) 18

19 Boxplots and the 5-number summary Boxplots can be displayed horizontally or vertically. The dark line inside the box is the median The edges of the box are Q1 and Q3 The whiskers extend to either the min and max, or to the furthest non-outliers. 19

20 Boxplots and the 5-number summary Outliers are represented as dots on a boxplot. Note: 50% of the data is inside the box, 25% is below the box, and 25% is above the box. 20

21 Outliers Outliers are data points that are located far away from where the majority of the data lie. There is not universal agreement on what the standard should be for classifying an observation as an outlier. It is to some extent subjective. Data analysis software packages will have internal standards by which they decide which values should be considered outlying. 21

22 Outliers It s usually a good idea to look more closely at an outlier to see if it is real or if it is a mistake. The outlier might be an improperly entered data value. Data entry is a tedious process and sometimes people make mistakes. The outlier might be in different units than the rest of the data. For instance, in the questionnaires from the first day of class, a few students gave their heights in centimeters rather than inches. If these heights had not been converted, then our class dataset would have shown students over 12 feet tall. 22

23 Outliers Outliers are often real, accurate pieces of data that are simply unusual. For instance, most people work hours per week. However a very small number work hours a week. It is sometimes tempting to remove outliers from a data set, but we must find out first whether or not the outlier is a legitimate observation or a mistake. 23

24 Dispersion (Spread) Here is a good piece of advice: Do not cross a river if it is, on average, 4 feet deep -Nassim Taleb, The Black Swan Why is this good advice? What additional information would we need before we decide if crossing the river is a good idea? 24

25 Dispersion (Spread) Information about location (average or median) is not enough to adequately summarize a data set. Sometimes the average doesn t exist. For example, the average human being has one ovary and one testicle. Information about how your data is dispersed is also useful, and is essential in inferential statistics. We don t just want to know where the center of our data lies; we also want to know how spread out the data is! 25

26 The Range The range is the easiest measure of dispersion to compute. It is the difference between the maximum value and the minimum value. One problem with using the range is that it doesn t tell you whether most of the data is spread out through the whole range, or if the maximum and minimum values are outliers. 26

27 The IQR The inter-quartile range (Q3 Q1) is not affected by extreme values since it is calculated using values that lie close to the center of the data set We will not use either the range or the IQR when we move on to inferential statistics. But they are still useful as descriptive statistics. 27

28 Variance The variance is another measure of dispersion. It is closely related to the standard deviation, which we will consider shortly. Unlike the range or IQR, the variance statistic is computed using all of the data values in a data set. It is sensitive to outliers, but the effects of extreme values are diluted if there are a large number of observations. 28

29 Sum of Squared Deviations To compute the variance of a data set we first need a statistic called the sum of squared deviations This is often abbreviated as SS, for sum of squares To get the squared deviation for a single observation, subtract the mean from this observation, and then square the result. Do this for all observations and sum the results. This gives us the sum of squared deviations. Mathematically, = 2 S S ( x x i 29

30 Sum of Squared Deviations Example: find the sum of squared deviations (SS) for our TV watching dataset: S = S x x= 2 ( ) i 30

31 Sample Variance The sample variance is denoted by the symbol s 2 Mathematically, s 2 x x i = = n 1 n 1 ( 2 S S The English interpretation of a variance is: The average squared distance that a group of n points lies from the mean of the group. This is not a very intuitive concept, though it is very often used in mathematical computations. 31

32 Sample Standard Deviation The sample standard deviation is simply the square root of the sample variance. It is denoted by the letter s Continuing with our example, we have: S S = = = 1 2 s s n 32

33 Interpret the Standard Deviation The standard deviation can be thought of roughly as an average distance that a group of points lies from the group mean. A large standard deviation tells you that your data is highly dispersed, or spread out. In inferential statistics, a large standard deviation signifies high levels of uncertainty regarding statistical inferences. Note that what counts as large or small depends on the magnitude of the data itself. 33

34 Shapes of Distributions You don t need a histogram to determine the shape of a distribution. In fact, all you need are the values for the mean and the median of your data set. Frequency Median= 92 Mean= Grades

35 Shapes of Distributions What is the shape of this distribution to the right? Median= 92 Mean= 86 Note that the mean is 86, and the median is

36 Shapes of Distributions Median =.6 What is the shape of this distribution to the right? 10 Note that the mean is 2.6, and the median is mean =

37 Shapes of Distributions What is the shape of this distribution to the right? Mean=102 Median= Note that the mean is 102, and the median 0 is

38 Mean, Median, & Shape If the mean is greater than the median then the distribution is skewed to the right If the mean is less than the median then the distribution is skewed to the left If the mean and median are (approximately) equal then the distribution is (approximately) symmetric 38

39 Conclusion A statistic is any number calculated from a set of data. Descriptive statistics are numbers that are used to describe important features of a data set. The mean and median are very commonly used statistics which refer to location The standard deviation is a very commonly used statistic which refers to dispersion. In the next set of notes, we will look at probability and the normal distribution, which will lay the groundwork for understanding inferential statistics. 39

STA Module 2B Organizing Data and Comparing Distributions (Part II)

STA Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II)

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

+ Statistical Methods in

+ Statistical Methods in 9/4/013 Statistical Methods in Practice STA/MTH 379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Discovering Statistics

More information

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years.

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years. 3: Summary Statistics Notation Consider these 10 ages (in years): 1 4 5 11 30 50 8 7 4 5 The symbol n represents the sample size (n = 10). The capital letter X denotes the variable. x i represents the

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency lowest value + highest value midrange The word average: is very ambiguous and can actually refer to the mean,

More information

MATH& 146 Lesson 8. Section 1.6 Averages and Variation

MATH& 146 Lesson 8. Section 1.6 Averages and Variation MATH& 146 Lesson 8 Section 1.6 Averages and Variation 1 Summarizing Data The distribution of a variable is the overall pattern of how often the possible values occur. For numerical variables, three summary

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things.

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. + What is Data? Data is a collection of facts. Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. In most cases, data needs to be interpreted and

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion 6-3 I Will... Find measures of dispersion of sets of data. Find standard deviation and analyze normal distribution. Day 1: Dispersion Vocabulary Measures of Variation (Dispersion

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

Table of Contents (As covered from textbook)

Table of Contents (As covered from textbook) Table of Contents (As covered from textbook) Ch 1 Data and Decisions Ch 2 Displaying and Describing Categorical Data Ch 3 Displaying and Describing Quantitative Data Ch 4 Correlation and Linear Regression

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

Chapter 2 Describing, Exploring, and Comparing Data

Chapter 2 Describing, Exploring, and Comparing Data Slide 1 Chapter 2 Describing, Exploring, and Comparing Data Slide 2 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data 2-4 Measures of Center 2-5 Measures of Variation 2-6 Measures of Relative

More information

Measures of Central Tendency

Measures of Central Tendency Page of 6 Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean The sum of all data values divided by the number of

More information

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots Math 167 Pre-Statistics Chapter 4 Summarizing Data Numerically Section 3 Boxplots Objectives 1. Find quartiles of some data. 2. Find the interquartile range of some data. 3. Construct a boxplot to describe

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES STP 6 ELEMENTARY STATISTICS NOTES PART - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES Chapter covered organizing data into tables, and summarizing data with graphical displays. We will now use

More information

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data Chapter 2 Descriptive Statistics: Organizing, Displaying and Summarizing Data Objectives Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

More information

Chapter 3 Analyzing Normal Quantitative Data

Chapter 3 Analyzing Normal Quantitative Data Chapter 3 Analyzing Normal Quantitative Data Introduction: In chapters 1 and 2, we focused on analyzing categorical data and exploring relationships between categorical data sets. We will now be doing

More information

No. of blue jelly beans No. of bags

No. of blue jelly beans No. of bags Math 167 Ch5 Review 1 (c) Janice Epstein CHAPTER 5 EXPLORING DATA DISTRIBUTIONS A sample of jelly bean bags is chosen and the number of blue jelly beans in each bag is counted. The results are shown in

More information

STA 570 Spring Lecture 5 Tuesday, Feb 1

STA 570 Spring Lecture 5 Tuesday, Feb 1 STA 570 Spring 2011 Lecture 5 Tuesday, Feb 1 Descriptive Statistics Summarizing Univariate Data o Standard Deviation, Empirical Rule, IQR o Boxplots Summarizing Bivariate Data o Contingency Tables o Row

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

Univariate Statistics Summary

Univariate Statistics Summary Further Maths Univariate Statistics Summary Types of Data Data can be classified as categorical or numerical. Categorical data are observations or records that are arranged according to category. For example:

More information

Measures of Central Tendency. A measure of central tendency is a value used to represent the typical or average value in a data set.

Measures of Central Tendency. A measure of central tendency is a value used to represent the typical or average value in a data set. Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean the sum of all data values divided by the number of values in

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Create a bar graph that displays the data from the frequency table in Example 1. See the examples on p Does our graph look different?

Create a bar graph that displays the data from the frequency table in Example 1. See the examples on p Does our graph look different? A frequency table is a table with two columns, one for the categories and another for the number of times each category occurs. See Example 1 on p. 247. Create a bar graph that displays the data from the

More information

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis.

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis. 1.3 Density curves p50 Some times the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve. It is easier to work with a smooth curve, because the histogram

More information

Measures of Central Tendency:

Measures of Central Tendency: Measures of Central Tendency: One value will be used to characterize or summarize an entire data set. In the case of numerical data, it s thought to represent the center or middle of the values. Some data

More information

Learning Log Title: CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS. Date: Lesson: Chapter 8: Statistics and Multiplication Equations

Learning Log Title: CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS. Date: Lesson: Chapter 8: Statistics and Multiplication Equations Chapter 8: Statistics and Multiplication Equations CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 8: Statistics and Multiplication

More information

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data MATH& 146 Lesson 10 Section 1.6 Graphing Numerical Data 1 Graphs of Numerical Data One major reason for constructing a graph of numerical data is to display its distribution, or the pattern of variability

More information

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable.

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable. 5-number summary 68-95-99.7 Rule Area principle Bar chart Bimodal Boxplot Case Categorical data Categorical variable Center Changing center and spread Conditional distribution Context Contingency table

More information

Understanding and Comparing Distributions. Chapter 4

Understanding and Comparing Distributions. Chapter 4 Understanding and Comparing Distributions Chapter 4 Objectives: Boxplot Calculate Outliers Comparing Distributions Timeplot The Big Picture We can answer much more interesting questions about variables

More information

15 Wyner Statistics Fall 2013

15 Wyner Statistics Fall 2013 15 Wyner Statistics Fall 2013 CHAPTER THREE: CENTRAL TENDENCY AND VARIATION Summary, Terms, and Objectives The two most important aspects of a numerical data set are its central tendencies and its variation.

More information

Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1

Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1 Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1 KEY SKILLS: Organize a data set into a frequency distribution. Construct a histogram to summarize a data set. Compute the percentile for a particular

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I 4 th Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

More information

Sections 2.3 and 2.4

Sections 2.3 and 2.4 Sections 2.3 and 2.4 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) 2 / 25 Descriptive statistics For continuous

More information

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 3 Descriptive Measures Slide 3-2 Section 3.1 Measures of Center Slide 3-3 Definition 3.1 Mean of a Data Set The mean of a data set is the sum of the observations divided by the number of observations.

More information

NAME: DIRECTIONS FOR THE ROUGH DRAFT OF THE BOX-AND WHISKER PLOT

NAME: DIRECTIONS FOR THE ROUGH DRAFT OF THE BOX-AND WHISKER PLOT NAME: DIRECTIONS FOR THE ROUGH DRAFT OF THE BOX-AND WHISKER PLOT 1.) Put the numbers in numerical order from the least to the greatest on the line segments. 2.) Find the median. Since the data set has

More information

Section 6.3: Measures of Position

Section 6.3: Measures of Position Section 6.3: Measures of Position Measures of position are numbers showing the location of data values relative to the other values within a data set. They can be used to compare values from different

More information

STA Module 4 The Normal Distribution

STA Module 4 The Normal Distribution STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

Descriptive Statistics

Descriptive Statistics Chapter 2 Descriptive Statistics 2.1 Descriptive Statistics 1 2.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Display data graphically and interpret graphs:

More information

Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs.

Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs. 1 2 Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs. 2. How to construct (in your head!) and interpret confidence intervals.

More information

Measures of Position

Measures of Position Measures of Position In this section, we will learn to use fractiles. Fractiles are numbers that partition, or divide, an ordered data set into equal parts (each part has the same number of data entries).

More information

The main issue is that the mean and standard deviations are not accurate and should not be used in the analysis. Then what statistics should we use?

The main issue is that the mean and standard deviations are not accurate and should not be used in the analysis. Then what statistics should we use? Chapter 4 Analyzing Skewed Quantitative Data Introduction: In chapter 3, we focused on analyzing bell shaped (normal) data, but many data sets are not bell shaped. How do we analyze quantitative data when

More information

Exploratory Data Analysis

Exploratory Data Analysis Chapter 10 Exploratory Data Analysis Definition of Exploratory Data Analysis (page 410) Definition 12.1. Exploratory data analysis (EDA) is a subfield of applied statistics that is concerned with the investigation

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I Part II 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

AP Statistics Prerequisite Packet

AP Statistics Prerequisite Packet Types of Data Quantitative (or measurement) Data These are data that take on numerical values that actually represent a measurement such as size, weight, how many, how long, score on a test, etc. For these

More information

1.3 Graphical Summaries of Data

1.3 Graphical Summaries of Data Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 1.3 Graphical Summaries of Data In the previous section we discussed numerical summaries of either a sample or a data. In this

More information

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and CHAPTER-13 Mining Class Comparisons: Discrimination between DifferentClasses: 13.1 Introduction 13.2 Class Comparison Methods and Implementation 13.3 Presentation of Class Comparison Descriptions 13.4

More information

Statistical Methods. Instructor: Lingsong Zhang. Any questions, ask me during the office hour, or me, I will answer promptly.

Statistical Methods. Instructor: Lingsong Zhang. Any questions, ask me during the office hour, or  me, I will answer promptly. Statistical Methods Instructor: Lingsong Zhang 1 Issues before Class Statistical Methods Lingsong Zhang Office: Math 544 Email: lingsong@purdue.edu Phone: 765-494-7913 Office Hour: Monday 1:00 pm - 2:00

More information

6th Grade Vocabulary Mathematics Unit 2

6th Grade Vocabulary Mathematics Unit 2 6 th GRADE UNIT 2 6th Grade Vocabulary Mathematics Unit 2 VOCABULARY area triangle right triangle equilateral triangle isosceles triangle scalene triangle quadrilaterals polygons irregular polygons rectangles

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

CHAPTER 2 DESCRIPTIVE STATISTICS

CHAPTER 2 DESCRIPTIVE STATISTICS CHAPTER 2 DESCRIPTIVE STATISTICS 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is how the data is spread or distributed over the range of the data values. This is one of

More information

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 Objectives 2.1 What Are the Types of Data? www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

DAY 52 BOX-AND-WHISKER

DAY 52 BOX-AND-WHISKER DAY 52 BOX-AND-WHISKER VOCABULARY The Median is the middle number of a set of data when the numbers are arranged in numerical order. The Range of a set of data is the difference between the highest and

More information

CHAPTER 2: SAMPLING AND DATA

CHAPTER 2: SAMPLING AND DATA CHAPTER 2: SAMPLING AND DATA This presentation is based on material and graphs from Open Stax and is copyrighted by Open Stax and Georgia Highlands College. OUTLINE 2.1 Stem-and-Leaf Graphs (Stemplots),

More information

Homework Packet Week #3

Homework Packet Week #3 Lesson 8.1 Choose the term that best completes statements # 1-12. 10. A data distribution is if the peak of the data is in the middle of the graph. The left and right sides of the graph are nearly mirror

More information

Box Plots. OpenStax College

Box Plots. OpenStax College Connexions module: m46920 1 Box Plots OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0 Box plots (also called box-and-whisker

More information

Chapter 1. Looking at Data-Distribution

Chapter 1. Looking at Data-Distribution Chapter 1. Looking at Data-Distribution Statistics is the scientific discipline that provides methods to draw right conclusions: 1)Collecting the data 2)Describing the data 3)Drawing the conclusions Raw

More information

AND NUMERICAL SUMMARIES. Chapter 2

AND NUMERICAL SUMMARIES. Chapter 2 EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 What Are the Types of Data? 2.1 Objectives www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution Name: Date: Period: Chapter 2 Section 1: Describing Location in a Distribution Suppose you earned an 86 on a statistics quiz. The question is: should you be satisfied with this score? What if it is the

More information

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents Chapter 7: Proportions and Percents CHAPTER 7: PROPORTIONS AND PERCENTS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 7: Proportions and Percents Date: Lesson: Learning Log

More information

AP Statistics Summer Assignment:

AP Statistics Summer Assignment: AP Statistics Summer Assignment: Read the following and use the information to help answer your summer assignment questions. You will be responsible for knowing all of the information contained in this

More information

TMTH 3360 NOTES ON COMMON GRAPHS AND CHARTS

TMTH 3360 NOTES ON COMMON GRAPHS AND CHARTS To Describe Data, consider: Symmetry Skewness TMTH 3360 NOTES ON COMMON GRAPHS AND CHARTS Unimodal or bimodal or uniform Extreme values Range of Values and mid-range Most frequently occurring values In

More information

UNIT 1A EXPLORING UNIVARIATE DATA

UNIT 1A EXPLORING UNIVARIATE DATA A.P. STATISTICS E. Villarreal Lincoln HS Math Department UNIT 1A EXPLORING UNIVARIATE DATA LESSON 1: TYPES OF DATA Here is a list of important terms that we must understand as we begin our study of statistics

More information

3.3 The Five-Number Summary Boxplots

3.3 The Five-Number Summary Boxplots 3.3 The Five-Number Summary Boxplots Tom Lewis Fall Term 2009 Tom Lewis () 3.3 The Five-Number Summary Boxplots Fall Term 2009 1 / 9 Outline 1 Quartiles 2 Terminology Tom Lewis () 3.3 The Five-Number Summary

More information

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd Chapter 3: Data Description - Part 3 Read: Sections 1 through 5 pp 92-149 Work the following text examples: Section 3.2, 3-1 through 3-17 Section 3.3, 3-22 through 3.28, 3-42 through 3.82 Section 3.4,

More information

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016)

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016) CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1 Daphne Skipper, Augusta University (2016) 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is

More information

Understanding Statistical Questions

Understanding Statistical Questions Unit 6: Statistics Standards, Checklist and Concept Map Common Core Georgia Performance Standards (CCGPS): MCC6.SP.1: Recognize a statistical question as one that anticipates variability in the data related

More information

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency Math 14 Introductory Statistics Summer 008 6-9-08 Class Notes Sections 3, 33 3: 1-1 odd 33: 7-13, 35-39 Measures of Central Tendency odd Notation: Let N be the size of the population, n the size of the

More information

Basic Statistical Terms and Definitions

Basic Statistical Terms and Definitions I. Basics Basic Statistical Terms and Definitions Statistics is a collection of methods for planning experiments, and obtaining data. The data is then organized and summarized so that professionals can

More information

1.2. Pictorial and Tabular Methods in Descriptive Statistics

1.2. Pictorial and Tabular Methods in Descriptive Statistics 1.2. Pictorial and Tabular Methods in Descriptive Statistics Section Objectives. 1. Stem-and-Leaf displays. 2. Dotplots. 3. Histogram. Types of histogram shapes. Common notation. Sample size n : the number

More information

Chapter2 Description of samples and populations. 2.1 Introduction.

Chapter2 Description of samples and populations. 2.1 Introduction. Chapter2 Description of samples and populations. 2.1 Introduction. Statistics=science of analyzing data. Information collected (data) is gathered in terms of variables (characteristics of a subject that

More information

Chapter 5: The standard deviation as a ruler and the normal model p131

Chapter 5: The standard deviation as a ruler and the normal model p131 Chapter 5: The standard deviation as a ruler and the normal model p131 Which is the better exam score? 67 on an exam with mean 50 and SD 10 62 on an exam with mean 40 and SD 12? Is it fair to say: 67 is

More information

Day 4 Percentiles and Box and Whisker.notebook. April 20, 2018

Day 4 Percentiles and Box and Whisker.notebook. April 20, 2018 Day 4 Box & Whisker Plots and Percentiles In a previous lesson, we learned that the median divides a set a data into 2 equal parts. Sometimes it is necessary to divide the data into smaller more precise

More information

Quantitative - One Population

Quantitative - One Population Quantitative - One Population The Quantitative One Population VISA procedures allow the user to perform descriptive and inferential procedures for problems involving one population with quantitative (interval)

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

3. Data Analysis and Statistics

3. Data Analysis and Statistics 3. Data Analysis and Statistics 3.1 Visual Analysis of Data 3.2.1 Basic Statistics Examples 3.2.2 Basic Statistical Theory 3.3 Normal Distributions 3.4 Bivariate Data 3.1 Visual Analysis of Data Visual

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapter 2: Descriptive Statistics Student Learning Outcomes By the end of this chapter, you should be able to: Display data graphically and interpret graphs: stemplots, histograms and boxplots. Recognize,

More information

1.3 Box and Whisker Plot

1.3 Box and Whisker Plot 1.3 Box and Whisker Plot 1 Box and Whisker Plot = a type of graph used to display data. It shows how data are dispersed around a median, but does not show specific items in the data. How to form one: Example:

More information

Using a percent or a letter grade allows us a very easy way to analyze our performance. Not a big deal, just something we do regularly.

Using a percent or a letter grade allows us a very easy way to analyze our performance. Not a big deal, just something we do regularly. GRAPHING We have used statistics all our lives, what we intend to do now is formalize that knowledge. Statistics can best be defined as a collection and analysis of numerical information. Often times we

More information

Vocabulary: Data Distributions

Vocabulary: Data Distributions Vocabulary: Data Distributions Concept Two Types of Data. I. Categorical data: is data that has been collected and recorded about some non-numerical attribute. For example: color is an attribute or variable

More information

Chapter 5. Understanding and Comparing Distributions. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 5. Understanding and Comparing Distributions. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 5 Understanding and Comparing Distributions The Big Picture We can answer much more interesting questions about variables when we compare distributions for different groups. Below is a histogram

More information

Chapter 5: The normal model

Chapter 5: The normal model Chapter 5: The normal model Objective (1) Learn how rescaling a distribution affects its summary statistics. (2) Understand the concept of normal model. (3) Learn how to analyze distributions using the

More information

Frequency Distributions

Frequency Distributions Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data so that it is possible to get a general overview of the results. Remember,

More information

Lecture 6: Chapter 6 Summary

Lecture 6: Chapter 6 Summary 1 Lecture 6: Chapter 6 Summary Z-score: Is the distance of each data value from the mean in standard deviation Standardizes data values Standardization changes the mean and the standard deviation: o Z

More information

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs After this section, you should be able to CONSTRUCT and INTERPRET dotplots,

More information

Mean,Median, Mode Teacher Twins 2015

Mean,Median, Mode Teacher Twins 2015 Mean,Median, Mode Teacher Twins 2015 Warm Up How can you change the non-statistical question below to make it a statistical question? How many pets do you have? Possible answer: What is your favorite type

More information

MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation

MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation Objectives: 1. Learn the meaning of descriptive versus inferential statistics 2. Identify bar graphs,

More information

How individual data points are positioned within a data set.

How individual data points are positioned within a data set. Section 3.4 Measures of Position Percentiles How individual data points are positioned within a data set. P k is the value such that k% of a data set is less than or equal to P k. For example if we said

More information

Chapter 5. Understanding and Comparing Distributions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 5. Understanding and Comparing Distributions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 5 Understanding and Comparing Distributions The Big Picture We can answer much more interesting questions about variables when we compare distributions for different groups. Below is a histogram

More information

Chapter 3 Understanding and Comparing Distributions

Chapter 3 Understanding and Comparing Distributions Chapter 3 Understanding and Comparing Distributions In this chapter, we will meet a new statistics plot based on numerical summaries, a plot to track the changes in a data set through time, and ways to

More information

Descriptive Statistics: Box Plot

Descriptive Statistics: Box Plot Connexions module: m16296 1 Descriptive Statistics: Box Plot Susan Dean Barbara Illowsky, Ph.D. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes.

M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes. M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes. Population: Census: Biased: Sample: The entire group of objects or individuals considered

More information

Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night

Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night 2 nd Year Maths Revision Worksheet: Algebra I Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night 1. I know how to add and subtract positive and negative numbers. 2. I know how to

More information