Constructing Street-maps from GPS Trajectories

Size: px
Start display at page:

Download "Constructing Street-maps from GPS Trajectories"

Transcription

1 Constructing Street-maps from GPS Trajectories Mahmuda Ahmed, Carola Wenk The University of Antonio Department of Computer Science Presented by Mahmuda Ahmed

2 Problem Statement Given a set of trajectories in the plane, compute a street map/graph that represents all trajectories in the set. Optional information may include parameters such as road width ω and precision ɛ. 2

3 Outline Problem Statement Data Models Related Works Machine Learning Approaches Computational Geometry Approach Preliminaries & Our Approach 3

4 How to Represent a Road-network? Geometric Data Model G(V,E) V: set of vertices. E: set of links between vertices which represents a road fragment. Region Based Model ωis the width of road fragment Each road fragment(γ) is represented as a polygonal region which is the MinkowskiSum of a polygonal curve and a disk B(s, ω/2), γ ω/2 ω/2 s Vertex(V) Road Width(ω) Edge(E) Road Fragment(γ) 4

5 Related Works Machine Learning (ML) or Artificial Intelligence (AI) Approaches Sub-trajectory Clustering [8] Force Simulation[4] Image Processing[9] Computational Geometry Approach D. Chen, L. Guibas, J. Hershberger, and J. Sun, Road Network Reconstruction for Organizing Paths, ACM-SIAM Symposium on Discrete Algorithms (SODA), Road Network Model Road Network is modeled as Geometric Graph G = (V,E) V represents the Sampling Points E represents linking line between two vertices Each road fragment is associated with a road width ω 5

6 Computational Geometry Approach 1. Compute bɛ-net 2. Compute Voronoi diagram 3. Compute Delaunay Triangulation 4. Compute Restricted Delaunay Triangulation 5. Identifying clean & not clean graph 6. Compute Structure Graph 7. Compute Reconstruction Graph D. Chen, L. Guibas, J. Hershberger, and J. Sun, Road Network Reconstruction for Organizing Paths, ACM-SIAM Symposium on Discrete Algorithms (SODA),

7 Outline Problem Statement Data Models Different Approaches Machine Learning Approaches Computational Geometry Approach Preliminaries & Our Approach 7

8 Incremental Map Construction works with Geometric Graph Input: Given graph(map) and a set of curves Task: Add one curve to the map in each iteration. Graph (G) Curve(l) Find paths in graph (G) that represents the sub-curves New Graph (G) 8

9 Preliminaries Fréchet Distance Between Two Curves δ ( f, g) : = inf max f( α( t)) g( β( t)) F α, β:[0,1] [0,1] t [0,1] where α and β range over continuous non-decreasing reparametrizations only. ɛ f >ɛ g ɛ g Decision variant solves the following problem: Findamonotonepathinfreespacefromlowerlefttoupper right endpoint. f 9

10 Preliminaries Map Matching Problem(uses weak Fréchet) Curve(l) Graph (G) Find a path in graph (G) that represents the curve Curve(l) Find an l-monotone path from any left end point to any right end point. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms, pages ,

11 Preliminaries Partial Curve Matching Black Region Weight:1 White Region Weight:0 Red Curve Matched portion Unmatched portion Blue Curve Find a monotone shortest path on weighted surface from lower left endpointtoupperrightendpoint. Kevin Buchin, MaikeBuchin, and YusuWang. Exact algorithm for partial curve matching via the Fréchet distance. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA09), pages ,

12 Incremental Map Construction Combining the idea of Map Matching and Partial Curve Matching, Map Construction problem can be redefined as finding an l-monotone shortest path on free-space surface from any left end point to any right end point. How our case is different from partial curve matching ε Graph(G) Curve(l) Graph(G) Curve(l) 12

13 Incremental Map Construction Our Observations Skipping a portion of graph is allowed. Which means, we are only interested to maximize the matching on curve. The path length from any left end to any right end point would be the length of unmatched portion of curve. Thus, the problem of computing shortest path on weighted nonmanifold surface transformed into a problem of computing the length of unmatched portion of curve. 13

14 The Algorithm Step 1: Identifying Matched and Unmatched Portion Compute the free-space surface Project white regions down on the curve (white intervals) Fill up the gap between non-overlapping white intervals with black intervals Step 2: Create Edge for Unmatched Portion Insert the sub curve corresponding to each black interval as an edge to the graph 14

15 The Algorithm(cntd.) Step 3: Updating the Matched Portion Compute simplified(low complexity) representative curve of two curves, one is the edge of graph and another one is the matched portion of input curves. We used adaptive version of min-link algorithm[6]. Min-Link Problem: Given an ordered set of convex objects compute a stabbing curve with minimum complexity that stabs all the objects in the given order and vertices of the stabbing curve lie inside the convex hull of consecutive two objects. 15

16 Quality of the Reconstruction Graph Assumptions degree 2 Good Vertex π/2 Intersections p 1 α < 3ε α 2 α 1 Bad Vertex degree>2 p 2 <π/2 Good Road Fragment: No other road fragment is within 3εdistance Assumptions on Input Data: Each input path is within Fréchet distance ε/2of a sub curve of a path on G. For each road fragment, there exists an input path l such that, γ ε/2 contains that. 16

17 Quality of the Reconstruction Graph(cntd) Lemmas Lemma 1: A polygonal curve with n vertices, which is within ε/2fréchet distance from a k-link road fragment, can be simplified to a curve having at most k links. This guarantees that the number of good vertices in our reconstructed graph is at most the number of good vertices in the original road network graph. Lemma 2: If two road fragments γ 1 and γ 2 come close to each other (distance < 3ε), then our algorithm will detect the vertex no farther than 3ε /sin α from its original position. This guarantees maximum displacement of a vertex in reconstruction graph. 17

18 Quality of the Reconstruction Graph(cntd) Lemmas Lemma 3: A good road fragment in the original road network will be reconstructed with length at least len(γ)-(3ε/sin α 1 + 3ε/sin α 2 ), where α 1 and α 2 are the minimum angles with the terminal vertices of γ. This guarantees the length of road fragment in reconstruction graph. 18

19 Experimental Setup We applied our algorithm on real data. The tracking data was obtained by sampling vehicle movements at a rate of 30 seconds. The dataset consists of 3237 vehicle trajectories consisting of a total of position samples. The tracking data was collected from taxi cabs in the municipal area of Berlin, Germany, in

20 Experimental Results Original Map of Berlin, Germany (Map data by TeleAtlas) Reconstructed map of Berlin generated by our algorithm 20

21 Future Work How to update or merge bad vertices How to bound the number of bad vertices How to handle self-intersecting curves. 21

22 Thank You 22

23 References [1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps.journal of Algorithms, pages , [2] R. Bruntrup, S. Edelkamp, S. Jabbar, and B. Scholz. Incremental map generation with GPS traces. In Intelligent Transportation Systems, Proceedings IEEE, pages , Sept [3] Kevin Buchin, MaikeBuchin, and YusuWang. Exact algorithm for partial curve matching via the Fréchet distance. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA09), pages , [4] LiliCao and John Krumm. From GPS traces to a routable road map. In Proc. of the 17th ACM SIGSPATIAL, GIS '09, pages 312, New York, NY, USA, ACM. [5] Daniel Chen, LeonidasGuibas, John Hershberger, and JianSun. Road network reconstruction for organizing paths. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, [6] L J Guibas, J E Hershberger, J S B Mitchell, and J S Snoeyink. Approximating polygons and subdivisions with minimum-link paths, int. J. of Computational Geometry and Applications, pages 34, [7] Tao Guo, K. Iwamura, and M. Koga. Towards high accuracy road maps generation from massive GPS traces data. In Geoscienceand Remote Sensing Symposium, IGARSS IEEE International, pages , July [8] ZhenhuiLi, Jae-Gil Lee, XiaoleiLi, and JiaweiHan. Incremental clustering for trajectories. In DASFAA (2), pages 3246, [9] HuijingZhao, Jun Kumagai, MasafumiNakagawa and RyosukeShibasaki. Semi-automatic road extraction from High Resolution Satellite image. In Proc. ISPRS Technical CommisionIII Symposium: Photometric Computer Vision, page A:406,

24 Runtime The worst case Runtime for adding the i-thcurve iso(m i-1 *n i + k u +(m i-1 + n i ) 2 log(m i-1 + n i ) + k c ) where, m i-1 is the complexity of graph after adding the (i-1)-thcurve, n i is the complexity of the i-thcurve and k u and k c are the number of edges updated or created respectively. 24

Constructing Street Networks from GPS Trajectories 1

Constructing Street Networks from GPS Trajectories 1 Constructing Street Networks from GPS Trajectories 1 Mahmuda Ahmed 1 Carola Wenk 2 1 The University of Texas at San Antonio, USA 2 Tulane University, USA European Symposium on Algorithms, 2012 1 This work

More information

On Map Construction and Map Comparison

On Map Construction and Map Comparison On Map Construction and Map Comparison Carola Wenk Department of Computer Science Tulane University Carola Wenk 1 GPS Trajectory Data Carola Wenk 2 GPS Trajectory Data & Roadmap Map Construction Carola

More information

Collaboration with: Dieter Pfoser, Computer Technology Institute, Athens, Greece Peter Wagner, German Aerospace Center, Berlin, Germany

Collaboration with: Dieter Pfoser, Computer Technology Institute, Athens, Greece Peter Wagner, German Aerospace Center, Berlin, Germany Towards traffic-aware aware a routing using GPS vehicle trajectories Carola Wenk University of Texas at San Antonio carola@cs.utsa.edu Collaboration with: Dieter Pfoser, Computer Technology Institute,

More information

Map Construction and Comparison

Map Construction and Comparison Map Construction and Comparison Using Local Structure Brittany Terese Fasy, Tulane University joint work with M. Ahmed and C. Wenk 6 February 2014 SAMSI Workshop B. Fasy (Tulane) Map Construction and Comparison

More information

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 193-204 www.stacs-conf.org GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON ATLAS F. COOK IV AND CAROLA WENK Department of Computer

More information

Computing the Fréchet Distance Between Simple Polygons

Computing the Fréchet Distance Between Simple Polygons Computing the Fréchet Distance Between Simple Polygons Kevin Buchin a,1, Maike Buchin a,1 and Carola Wenk b,2 a Institute of Computer Science, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany

More information

Approximate Map Matching with respect to the Fréchet Distance

Approximate Map Matching with respect to the Fréchet Distance Approximate Map Matching with respect to the Fréchet Distance Daniel Chen Anne Driemel Leonidas J. Guibas Andy Nguyen Carola Wenk Abstract We extend recent results using curve simplification for approximating

More information

arxiv: v2 [cs.cg] 12 Jun 2014

arxiv: v2 [cs.cg] 12 Jun 2014 Noname manuscript No. (will be inserted by the editor) A Comparison and Evaluation of Map Construction Algorithms Using Vehicle Tracking Data Mahmuda Ahmed Sophia Karagiorgou Dieter Pfoser Carola Wenk

More information

Bichromatic Line Segment Intersection Counting in O(n log n) Time

Bichromatic Line Segment Intersection Counting in O(n log n) Time Bichromatic Line Segment Intersection Counting in O(n log n) Time Timothy M. Chan Bryan T. Wilkinson Abstract We give an algorithm for bichromatic line segment intersection counting that runs in O(n log

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev Serdica J. Computing 4 00, 3 334 APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS J. Mark Keil, Tzvetalin S. Vassilev Abstract. We consider sets of points in the two-dimensional

More information

K-structure, Separating Chain, Gap Tree, and Layered DAG

K-structure, Separating Chain, Gap Tree, and Layered DAG K-structure, Separating Chain, Gap Tree, and Layered DAG Presented by Dave Tahmoush Overview Improvement on Gap Tree and K-structure Faster point location Encompasses Separating Chain Better storage Designed

More information

On Realistic Line Simplification under Area Measure

On Realistic Line Simplification under Area Measure On Realistic Line Simplification under Area Measure Shervin Daneshpajouh Alireza Zarei Mohammad Ghodsi Abstract In this paper, we consider the well-known 2D line simplification problem under area measure.

More information

Touring a Sequence of Line Segments in Polygonal Domain Fences

Touring a Sequence of Line Segments in Polygonal Domain Fences Touring a Sequence of Line Segments in Polygonal Domain Fences Amirhossein Mozafari mozafari@alum.sharif.edu Alireza Zarei zarei@sharif.edu Abstract In this paper, we consider the problem of touring a

More information

Computing the Fréchet Distance Between Folded Polygons 1

Computing the Fréchet Distance Between Folded Polygons 1 Computing the Fréchet Distance Between Folded Polygons 1 Atlas F. Cook IV 2, Anne Driemel 3, Sariel Har-Peled 4, Jessica Sherette 5, Carola Wenk 5 Abstract. We present the first results showing that the

More information

Minimum-Link Watchman Tours

Minimum-Link Watchman Tours Minimum-Link Watchman Tours Esther M. Arkin Joseph S. B. Mitchell Christine D. Piatko Abstract We consider the problem of computing a watchman route in a polygon with holes. We show that the problem of

More information

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis

Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis CCCG 2008, Montréal, Québec, August 13 15, 2008 Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis Jérémy Barbay Eric Y. Chen Abstract We prove a tight asymptotic bound of Θ(δ

More information

Model-Driven Matching and Segmentation of Trajectories

Model-Driven Matching and Segmentation of Trajectories Model-Driven Matching and Segmentation of Trajectories Jiangwei Pan (Duke University) joint work with Swaminathan Sankararaman (Akamai Technologies) Pankaj K. Agarwal (Duke University) Thomas Mølhave (Scalable

More information

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Int J Adv Manuf Technol (1999) 15:182 187 1999 Springer-Verlag London Limited Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Jaehun Jeong and Kwangsoo Kim Department

More information

An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broadcast Trees in Wireless Networks. Qassem Abu Ahmad February 10, 2008

An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broadcast Trees in Wireless Networks. Qassem Abu Ahmad February 10, 2008 An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broadcast Trees in Wireless Networks Qassem Abu Ahmad February 10, 2008 i Contents 1 Introduction 1 2 Main Results 2 3 An Optimal bound

More information

Finding Shortest Path on Land Surface

Finding Shortest Path on Land Surface Finding Shortest Path on Land Surface Lian Liu, Raymond Chi-Wing Wong Hong Kong University of Science and Technology June 14th, 211 Introduction Land Surface Land surfaces are modeled as terrains A terrain

More information

Computational Geometry for Imprecise Data

Computational Geometry for Imprecise Data Computational Geometry for Imprecise Data November 30, 2008 PDF Version 1 Introduction Computational geometry deals with algorithms on geometric inputs. Historically, geometric algorithms have focused

More information

Detection and approximation of linear structures in metric spaces

Detection and approximation of linear structures in metric spaces Stanford - July 12, 2012 MMDS 2012 Detection and approximation of linear structures in metric spaces Frédéric Chazal Geometrica group INRIA Saclay Joint work with M. Aanjaneya, D. Chen, M. Glisse, L. Guibas,

More information

arxiv: v1 [cs.cg] 8 Jan 2018

arxiv: v1 [cs.cg] 8 Jan 2018 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon Eunjin Oh Hee-Kap Ahn arxiv:1801.02292v1 [cs.cg] 8 Jan 2018 Abstract Given a set of sites in a simple polygon, a geodesic Voronoi diagram

More information

On Merging Straight Skeletons

On Merging Straight Skeletons On Merging Straight Skeletons Franz Aurenhammer 1 and Michael Steinkogler 2 1 Institute for Theoretical Computer Science, University of Technology, Graz, Austria auren@igi.tugraz.at 2 Institute for Theoretical

More information

Approximate Shortest Routes for Frontier Visibility under Limited Visibility

Approximate Shortest Routes for Frontier Visibility under Limited Visibility Approximate Shortest Routes for Frontier Visibility under Limited Visibility Xia Chen 1, Fajie Li 1, and Reinhard Klette 2 1 College of Computer Science and Technology, Huaqiao University Xiamen, Fujian,

More information

A Road Network Construction Method Based on Clustering Algorithm

A Road Network Construction Method Based on Clustering Algorithm A Road Network Construction Method Based on Clustering Algorithm 12 Dept. of Information Engineering, Liaoning Provincial College of Communications Shenyang, China E-mail: xuelian_chen@163.com Qingchun

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Improved Results on Geometric Hitting Set Problems

Improved Results on Geometric Hitting Set Problems Improved Results on Geometric Hitting Set Problems Nabil H. Mustafa nabil@lums.edu.pk Saurabh Ray saurabh@cs.uni-sb.de Abstract We consider the problem of computing minimum geometric hitting sets in which,

More information

Smallest Intersecting Circle for a Set of Polygons

Smallest Intersecting Circle for a Set of Polygons Smallest Intersecting Circle for a Set of Polygons Peter Otfried Joachim Christian Marc Esther René Michiel Antoine Alexander 31st August 2005 1 Introduction Motivated by automated label placement of groups

More information

On Minimum Weight Pseudo-Triangulations

On Minimum Weight Pseudo-Triangulations On Minimum Weight Pseudo-Triangulations Oswin Aichholzer Franz Aurenhammer Thomas Hackl Bettina Speckmann Abstract In this note we discuss some structural properties of minimum weight pseudo-triangulations.

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

arxiv: v1 [cs.cg] 24 Jul 2018

arxiv: v1 [cs.cg] 24 Jul 2018 Does a robot path have clearance c? Ovidiu Daescu and Hemant Malik University of Texas at Dallas, Richardson TX 75080, USA {daescu, malik}@utdallas.edu arxiv:1807.09392v1 [cs.cg] 24 Jul 2018 Abstract.

More information

Approximate Algorithms for Touring a Sequence of Polygons

Approximate Algorithms for Touring a Sequence of Polygons Approximate Algorithms for Touring a Sequence of Polygons Fajie Li 1 and Reinhard Klette 2 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The

More information

arxiv: v1 [cs.cg] 21 Dec 2018

arxiv: v1 [cs.cg] 21 Dec 2018 Distance Measures for Embedded Graphs arxiv:1812.09095v1 [cs.cg] 21 Dec 2018 Hugo A. Akitaya 1 Department of Computer Science, Tufts University, Medford, MA, USA hugo.alves_akitaya@tufts.edu Maike Buchin

More information

The Geometry of Carpentry and Joinery

The Geometry of Carpentry and Joinery The Geometry of Carpentry and Joinery Pat Morin and Jason Morrison School of Computer Science, Carleton University, 115 Colonel By Drive Ottawa, Ontario, CANADA K1S 5B6 Abstract In this paper we propose

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Optimal Compression of a Polyline with Segments and Arcs

Optimal Compression of a Polyline with Segments and Arcs Optimal Compression of a Polyline with Segments and Arcs Alexander Gribov Esri 380 New York Street Redlands, CA 92373 Email: agribov@esri.com arxiv:1604.07476v5 [cs.cg] 10 Apr 2017 Abstract This paper

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Improved Bounds for Intersecting Triangles and Halving Planes

Improved Bounds for Intersecting Triangles and Halving Planes Improved Bounds for Intersecting Triangles and Halving Planes David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 91-60 July 15, 1991 Abstract

More information

Reachability on a region bounded by two attached squares

Reachability on a region bounded by two attached squares Reachability on a region bounded by two attached squares Ali Mohades mohades@cic.aku.ac.ir AmirKabir University of Tech., Math. and Computer Sc. Dept. Mohammadreza Razzazi razzazi@ce.aku.ac.ir AmirKabir

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

arxiv: v1 [cs.cg] 2 Mar 2018

arxiv: v1 [cs.cg] 2 Mar 2018 A fast implementation of near neighbors queries for Fréchet distance (GIS Cup) Julian Baldus Karl Bringmann arxiv:1803.00806v1 [cs.cg] 2 Mar 2018 Abstract This paper describes an implementation of fast

More information

Anna Porazilová THE SHORTEST PATH. 1 Introduction 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE

Anna Porazilová THE SHORTEST PATH. 1 Introduction 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Anna Porazilová THE SHORTEST PATH Abstract This paper describes the shortest path problem, its classification and the best known algorithms. A new algorithm

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

Applications of Geometric Spanner

Applications of Geometric Spanner Title: Name: Affil./Addr. 1: Affil./Addr. 2: Affil./Addr. 3: Keywords: SumOriWork: Applications of Geometric Spanner Networks Joachim Gudmundsson 1, Giri Narasimhan 2, Michiel Smid 3 School of Information

More information

4. Conclusion. 5. Acknowledgment. 6. References

4. Conclusion. 5. Acknowledgment. 6. References [10] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, Communications of the ACM, vol. 20, pp. 87-93, 1977. [11] K. Ichida and T. Kiyono, Segmentation of

More information

Aggregate-Max Nearest Neighbor Searching in the Plane

Aggregate-Max Nearest Neighbor Searching in the Plane CCCG 2013, Waterloo, Ontario, August 8 10, 2013 Aggregate-Max Nearest Neighbor Searching in the Plane Haitao Wang Abstract We study the aggregate nearest neighbor searching for the Max operator in the

More information

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING 3D surface reconstruction of objects by using stereoscopic viewing Baki Koyuncu, Kurtuluş Küllü bkoyuncu@ankara.edu.tr kkullu@eng.ankara.edu.tr Computer Engineering Department, Ankara University, Ankara,

More information

Packing Two Disks into a Polygonal Environment

Packing Two Disks into a Polygonal Environment Packing Two Disks into a Polygonal Environment Prosenjit Bose, School of Computer Science, Carleton University. E-mail: jit@cs.carleton.ca Pat Morin, School of Computer Science, Carleton University. E-mail:

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon Eunjin Oh 1 and Hee-Kap Ahn 2 1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea jin9082@postech.ac.kr 2 Department

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Menelaos I. Karavelas joint work with Eleni Tzanaki University of Crete & FO.R.T.H. OrbiCG/ Workshop on Computational

More information

Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points

Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points Maarten Löffler Marc van Kreveld Department of Information and Computing Sciences, Utrecht University Technical Report

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

For a set S of line segments, a separator can be found using duality. Under duality, the segments transform to double wedges, and a separator line tra

For a set S of line segments, a separator can be found using duality. Under duality, the segments transform to double wedges, and a separator line tra Separating and Shattering Long Line Segments? Alon Efrat School of Mathematical Sciences, Tel Aviv University, Tel-Aviv 69982, Israel. Email: alone@cs.tau.ac.il Otfried Schwarzkopf Dept of Computer Science,

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 408 (2008) 129 142 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Drawing colored graphs on colored points

More information

An Approximation Algorithm for Shortest Descending Paths

An Approximation Algorithm for Shortest Descending Paths University of Waterloo Technical Report CS-2007-14 An Approximation Algorithm for Shortest Descending Paths Mustaq Ahmed and Anna Lubiw David R. Cheriton School of Computer Science University of Waterloo,

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Summary of Coverage Problems in Wireless Ad-hoc Sensor Networks

Summary of Coverage Problems in Wireless Ad-hoc Sensor Networks Summary of Coverage Problems in Wireless Ad-hoc Sensor Networks Laura Kneckt 21th of March, 2005 Abstract This paper presents a brief summary of the article about Coverage Problems in Wireless Ad-hoc Sensor

More information

Approximating Geodesic Distances on 2-Manifolds in R 3

Approximating Geodesic Distances on 2-Manifolds in R 3 CCCG 2011, Toronto ON, August 10 12, 2011 Approximating Geodesic Distances on 2-Manifolds in R 3 Christian Scheffer Jan Vahrenhold Abstract We present an algorithm for approximating geodesic distances

More information

Rounding Voronoi Diagram

Rounding Voronoi Diagram Rounding Voronoi Diagram Olivier Devillers and Pierre-Marie Gandoin INRIA, P93, 06902 Sophia Antipolis Abstract. omputational geometry classically assumes real-number arithmetic which does not exist in

More information

Average case analysis of dynamic geometric optimization

Average case analysis of dynamic geometric optimization Average case analysis of dynamic geometric optimization David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 May 19, 1995 Abstract We maintain the maximum

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Lecture 16: Voronoi Diagrams and Fortune s Algorithm

Lecture 16: Voronoi Diagrams and Fortune s Algorithm contains q changes as a result of the ith insertion. Let P i denote this probability (where the probability is taken over random insertion orders, irrespective of the choice of q). Since q could fall through

More information

Computational Geometry Exercise Duality

Computational Geometry Exercise Duality Computational Geometry Exercise Duality LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Duality Transforms We have seen duality for

More information

The Polygon Exploration Problem II: The Angle Hull

The Polygon Exploration Problem II: The Angle Hull The Polygon Exploration Problem II: The Angle Hull Frank Hoffmann Christian Icking Rolf Klein Klaus Kriegel Abstract Let D be a connected region inside a simple polygon, P. We define the angle hull of

More information

Crossing Families. Abstract

Crossing Families. Abstract Crossing Families Boris Aronov 1, Paul Erdős 2, Wayne Goddard 3, Daniel J. Kleitman 3, Michael Klugerman 3, János Pach 2,4, Leonard J. Schulman 3 Abstract Given a set of points in the plane, a crossing

More information

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions Timothy M. Chan 1 1 Cheriton School of Computer Science, University of Waterloo tmchan@uwaterloo.ca Abstract Chazelle

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

Relative Convex Hulls in Semi-Dynamic Subdivisions

Relative Convex Hulls in Semi-Dynamic Subdivisions Relative Convex Hulls in Semi-Dynamic Subdivisions Mashhood Ishaque 1 and Csaba D. Tóth 2 1 Dept. of Comp. Sci., Tufts University, Medford, MA, mishaq01@cs.tufts.edu 2 Dept. of Mathematics, University

More information

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards Nicole Chesnokov May 16, 2018 Contents 1 Introduction 2 2 The Art Gallery Problem 3 2.1 Proof..................................

More information

SILC: Efficient Query Processing on Spatial Networks

SILC: Efficient Query Processing on Spatial Networks Hanan Samet hjs@cs.umd.edu Department of Computer Science University of Maryland College Park, MD 20742, USA Joint work with Jagan Sankaranarayanan and Houman Alborzi Proceedings of the 13th ACM International

More information

Minimum-Perimeter Enclosures

Minimum-Perimeter Enclosures Minimum-Perimeter Enclosures Joseph S. B. Mitchell 1 Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, NY 11794-3600, USA Valentin Polishchuk Helsinki Institute for Information

More information

Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph

Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 93-18 April

More information

Derrick Stolee. April 12,

Derrick Stolee. April 12, 1 / 38 University Of Nebraska Lincoln Computer Science & Mathematics April 12, 2008 s-dstolee1@math.unl.edu 2 / 38 Acknowledgments Research Assistance and Funding This research funded by UCARE USDA FCIC/RMA

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

An Efficient Visual Hull Computation Algorithm

An Efficient Visual Hull Computation Algorithm An Efficient Visual Hull Computation Algorithm Wojciech Matusik Chris Buehler Leonard McMillan Laboratory for Computer Science Massachusetts institute of Technology (wojciech, cbuehler, mcmillan)@graphics.lcs.mit.edu

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

The Medial Axis of the Union of Inner Voronoi Balls in the Plane

The Medial Axis of the Union of Inner Voronoi Balls in the Plane The Medial Axis of the Union of Inner Voronoi Balls in the Plane Joachim Giesen a, Balint Miklos b,, Mark Pauly b a Max-Planck Institut für Informatik, Saarbrücken, Germany b Applied Geometry Group, ETH

More information

α-visibility October 2, 2013

α-visibility October 2, 2013 α-visibility Mohammad Ghodsi 1, Anil Maheshwari 2, Mostafa Nouri-Baygi 1, Jörg-Rüdiger Sack 2, and Hamid Zarrabi-Zadeh 1 1 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

More information

Map Matching with Inverse Reinforcement Learning

Map Matching with Inverse Reinforcement Learning Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Map Matching with Inverse Reinforcement Learning Takayuki Osogami and Rudy Raymond IBM Research - Tokyo 5-6-52

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Geometric Streaming Algorithms with a Sorting Primitive (TR CS )

Geometric Streaming Algorithms with a Sorting Primitive (TR CS ) Geometric Streaming Algorithms with a Sorting Primitive (TR CS-2007-17) Eric Y. Chen School of Computer Science University of Waterloo Waterloo, ON N2L 3G1, Canada, y28chen@cs.uwaterloo.ca Abstract. We

More information

Dynamic Coverage in Ad-hoc Sensor Networks

Dynamic Coverage in Ad-hoc Sensor Networks Dynamic Coverage in Ad-hoc Sensor Networks Hai Huang Andréa W. Richa, Michael Segal Abstract Ad-hoc networks of sensor nodes are in general semi-permanently deployed. However, the topology of such networks

More information

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

CS-235 Computational Geometry

CS-235 Computational Geometry CS-235 Computational Geometry Computer Science Department Fall Quarter 2002. Computational Geometry Study of algorithms for geometric problems. Deals with discrete shapes: points, lines, polyhedra, polygonal

More information

Interval Stabbing Problems in Small Integer Ranges

Interval Stabbing Problems in Small Integer Ranges Interval Stabbing Problems in Small Integer Ranges Jens M. Schmidt Freie Universität Berlin, Germany Enhanced version of August 2, 2010 Abstract Given a set I of n intervals, a stabbing query consists

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

Road Map Inference: A Segmentation and Grouping Framework

Road Map Inference: A Segmentation and Grouping Framework International Journal of Geo-Information Article Road Map Inference: A Segmentation and Grouping Framework Jia Qiu and Ruisheng Wang * Department of Geomatics Engineering, University of Calgary, 2500 University

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information