Introduction to Jackknife Algorithm

Size: px
Start display at page:

Download "Introduction to Jackknife Algorithm"

Transcription

1 Polytechnic School of the University of São Paulo Department of Computing Engeneering and Digital Systems Laboratory of Agricultural Automation Introduction to Jackknife Algorithm Renato De Giovanni Fabrício Rodrigues

2 Overview The Jackknife Algorithm Motivation The Jackknife Parallel Version Results Next Activities References

3 The Jackknife Algorithm Used for bias and variance estimation Resample technique Subsamples constructed from the original sample

4 The Jackknife Algorithm Let θ the parameter of interest be estimated An original sample X of size n is selected n Jackknife samples are generated eliminating example i in each new sample, from the original sample X Is calculated θ X= { X 1,X 2,X 3,...,X n }. X i ={ X 1,...,X i 1,X i+1,...,x n }. from the original sample θ i from each sample X (i)

5 The Jackknife Algorithm The Jackknife estimator of θ corrected by bias until order n -1 is obtained: θ J 1 θ J 1 =n θ n 1 θ. = θ n 1 θ. θ The term estimator n 1 θ. θ is the bias jackknife and θ. = θ i /n

6 Motivation Sequential version It is possible to use the Jackknife to determine the importance of each environmental layer in the modeling process of species distribution? Parallel version The sequential version presents high computational cost, which can make its use in the modeling process impracticable.

7 The Jackknife Parallel Version Master-slave model Master Caracteristics Dynamic Scheduling Task Slave 1 Slave 2 Slave n... File size of the Task Partial Results environmental layers Task Master Task Final Result

8 The Jackknife Parallel Version The parallel version of the Jackknife algorithm was developed using MPI library (Message Passing Interface) Messages exchange Inter-process communication SPMD (Sigle Program, Multiple Data)

9 Results Preliminary Tests Initial validation of the Jackknife parallel version Hardware: Intel Core 2 Duo of 1,66 Ghz and 2 GB RAM, Linux Ubuntu 7.04 The time command available in Linux was used Modeling algorithm: GARP Data: 100 occurrence points, being 50 presence points and 50 absence points Stryphnodendron obovatum 67 environmental layers

10 Results Results of the preliminary tests Sequential version took seconds Parallel version with 2 processes took seconds The execution becomes essentially sequential Additional overhead due to messages exchange Parallel version with 3 processes took seconds Approximately 38% faster than the sequential version The adequate use of the available cores by the application processes can drastically reduce the execution time of the Jackknife algorithm in the openmodeller tool

11 Results Tests in the openmodeller Cluster Hardware: SGI Altix XE 1300 system composed by an input node Altix XE 210 with two 2.00GHz Xeon quad Core processors, 8 GB RAM, 500 GB hard disk, 24-port InfiniBand switch, 24-port Gigabit ethernet switch, SGI Propack 5, SUSE Linux 10, and 10 Altix XE 310 nodes, each one with two 2.00GHz Xeon quad Core processors, 8 GB RAM and 250 GB hard disk, totaling 80 cores. The time command available in Linux was used Modeling algorithm: GARP Data: 100 occurrence points, being 50 presence points and 50 absence points Stryphnodendron obovatum 244 environmental layers

12 Results Results of the tests in the cluster Sequential version spent seconds The number of processes varied from 3 to Time in Seconds seconds Number of Processes

13 Results Results of the tests in the cluster The best execution time was with 68 processes (184.3 seconds) Approximately 95% faster than the execution with 3 processes 8500 With 3 processes: seconds Aproximately 98% faster than the sequential version Sequential: seconds Time in seconds Sequential 3 processes 68 processes

14 Results Results of the tests in the cluster The ideal is a linear speedup, that is, when S p = p, resulting in a very good scalability Speedup Number of Processes

15 Results Results of the tests in the cluster When each processor runs just one process, the performance is better Eficiency Efficiency 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Number of Processes

16 Next Activities Tests for hypothesis validation: it is possible to use the Jackknife to determine the importance of each environmental layer in the modeling process of species distribution? To make available a parallel version for cluster use

17 References M. H. Quenouille, Notes on Bias in Estimation. Biometrika, Vol. 43, No. 3/4., pp , B. Efron, Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, Vol. 7, No. 1, (Jan., 1979), pp

MPI CS 732. Joshua Hegie

MPI CS 732. Joshua Hegie MPI CS 732 Joshua Hegie 09 The goal of this assignment was to get a grasp of how to use the Message Passing Interface (MPI). There are several different projects that help learn the ups and downs of creating

More information

Headline in Arial Bold 30pt. SGI Altix XE Server ANSYS Microsoft Windows Compute Cluster Server 2003

Headline in Arial Bold 30pt. SGI Altix XE Server ANSYS Microsoft Windows Compute Cluster Server 2003 Headline in Arial Bold 30pt SGI Altix XE Server ANSYS Microsoft Windows Compute Cluster Server 2003 SGI Altix XE Building Blocks XE Cluster Head Node Two dual core Xeon processors 16GB Memory SATA/SAS

More information

HPC In The Cloud? Michael Kleber. July 2, Department of Computer Sciences University of Salzburg, Austria

HPC In The Cloud? Michael Kleber. July 2, Department of Computer Sciences University of Salzburg, Austria HPC In The Cloud? Michael Kleber Department of Computer Sciences University of Salzburg, Austria July 2, 2012 Content 1 2 3 MUSCLE NASA 4 5 Motivation wide spread availability of cloud services easy access

More information

Accelerating Cosmological Data Analysis with Graphics Processors Dylan W. Roeh Volodymyr V. Kindratenko Robert J. Brunner

Accelerating Cosmological Data Analysis with Graphics Processors Dylan W. Roeh Volodymyr V. Kindratenko Robert J. Brunner Accelerating Cosmological Data Analysis with Graphics Processors Dylan W. Roeh Volodymyr V. Kindratenko Robert J. Brunner University of Illinois at Urbana-Champaign Presentation Outline Motivation Digital

More information

Accelerating Parallel Analysis of Scientific Simulation Data via Zazen

Accelerating Parallel Analysis of Scientific Simulation Data via Zazen Accelerating Parallel Analysis of Scientific Simulation Data via Zazen Tiankai Tu, Charles A. Rendleman, Patrick J. Miller, Federico Sacerdoti, Ron O. Dror, and David E. Shaw D. E. Shaw Research Motivation

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Approaches to Parallel Computing

Approaches to Parallel Computing Approaches to Parallel Computing K. Cooper 1 1 Department of Mathematics Washington State University 2019 Paradigms Concept Many hands make light work... Set several processors to work on separate aspects

More information

SMCCSE: PaaS Platform for processing large amounts of social media

SMCCSE: PaaS Platform for processing large amounts of social media KSII The first International Conference on Internet (ICONI) 2011, December 2011 1 Copyright c 2011 KSII SMCCSE: PaaS Platform for processing large amounts of social media Myoungjin Kim 1, Hanku Lee 2 and

More information

Parallel calculation of LS factor for regional scale soil erosion assessment

Parallel calculation of LS factor for regional scale soil erosion assessment Parallel calculation of LS factor for regional scale soil erosion assessment Kai Liu 1, Guoan Tang 2 1 Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education,

More information

Whitepaper / Benchmark

Whitepaper / Benchmark Whitepaper / Benchmark Web applications on LAMP run up to 8X faster with Dolphin Express DOLPHIN DELIVERS UNPRECEDENTED PERFORMANCE TO THE LAMP-STACK MARKET Marianne Ronström Open Source Consultant iclaustron

More information

The Bootstrap and Jackknife

The Bootstrap and Jackknife The Bootstrap and Jackknife Summer 2017 Summer Institutes 249 Bootstrap & Jackknife Motivation In scientific research Interest often focuses upon the estimation of some unknown parameter, θ. The parameter

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Parallel Processing. Majid AlMeshari John W. Conklin. Science Advisory Committee Meeting September 3, 2010 Stanford University

Parallel Processing. Majid AlMeshari John W. Conklin. Science Advisory Committee Meeting September 3, 2010 Stanford University Parallel Processing Majid AlMeshari John W. Conklin 1 Outline Challenge Requirements Resources Approach Status Tools for Processing 2 Challenge A computationally intensive algorithm is applied on a huge

More information

Cluster computing performances using virtual processors and Matlab 6.5

Cluster computing performances using virtual processors and Matlab 6.5 Cluster computing performances using virtual processors and Matlab 6.5 Gianluca Argentini gianluca.argentini@riellogroup.com New Technologies and Models Information & Communication Technology Department

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information

What is Parallel Computing?

What is Parallel Computing? What is Parallel Computing? Parallel Computing is several processing elements working simultaneously to solve a problem faster. 1/33 What is Parallel Computing? Parallel Computing is several processing

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Computing Technology LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton

More information

Shared Parallel Filesystems in Heterogeneous Linux Multi-Cluster Environments

Shared Parallel Filesystems in Heterogeneous Linux Multi-Cluster Environments LCI HPC Revolution 2005 26 April 2005 Shared Parallel Filesystems in Heterogeneous Linux Multi-Cluster Environments Matthew Woitaszek matthew.woitaszek@colorado.edu Collaborators Organizations National

More information

Ekran System System Requirements and Performance Numbers

Ekran System System Requirements and Performance Numbers Ekran System System Requirements and Performance Numbers Table of Contents System Requirements... 3 Performance Numbers... 6 Database Statistics... 8 2 System Requirements Ekran System claims different

More information

Scalable and Fault Tolerant Failure Detection and Consensus

Scalable and Fault Tolerant Failure Detection and Consensus EuroMPI'15, Bordeaux, France, September 21-23, 2015 Scalable and Fault Tolerant Failure Detection and Consensus Amogh Katti, Giuseppe Di Fatta, University of Reading, UK Thomas Naughton, Christian Engelmann

More information

FDS and Intel MPI. Verification Report. on the. FireNZE Linux IB Cluster

FDS and Intel MPI. Verification Report. on the. FireNZE Linux IB Cluster Consulting Fire Engineers 34 Satara Crescent Khandallah Wellington 6035 New Zealand FDS 6.7.0 and Intel MPI Verification Report on the FireNZE Linux IB Cluster Prepared by: FireNZE Dated: 11 August 2018

More information

Efficient Processing of Multiple Contacts in MPP-DYNA

Efficient Processing of Multiple Contacts in MPP-DYNA Efficient Processing of Multiple Contacts in MPP-DYNA Abstract Brian Wainscott Livermore Software Technology Corporation 7374 Las Positas Road, Livermore, CA, 94551 USA Complex models often contain more

More information

The RAMDISK Storage Accelerator

The RAMDISK Storage Accelerator The RAMDISK Storage Accelerator A Method of Accelerating I/O Performance on HPC Systems Using RAMDISKs Tim Wickberg, Christopher D. Carothers wickbt@rpi.edu, chrisc@cs.rpi.edu Rensselaer Polytechnic Institute

More information

MINIMUM HARDWARE AND OS SPECIFICATIONS File Stream Document Management Software - System Requirements for V4.2

MINIMUM HARDWARE AND OS SPECIFICATIONS File Stream Document Management Software - System Requirements for V4.2 MINIMUM HARDWARE AND OS SPECIFICATIONS File Stream Document Management Software - System Requirements for V4.2 NB: please read this page carefully, as it contains 4 separate specifications for a Workstation

More information

Delegated Access for Hadoop Clusters in the Cloud

Delegated Access for Hadoop Clusters in the Cloud Delegated Access for Hadoop Clusters in the Cloud David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain Email: dnunez@lcc.uma.es

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI for Physical Scientists Michael Milligan MSI Scientific Computing Consultant Goals Introduction to MSI resources Show you how to access our systems

More information

Processing Genomics Data: High Performance Computing meets Big Data. Jan Fostier

Processing Genomics Data: High Performance Computing meets Big Data. Jan Fostier Processing Genomics Data: High Performance Computing meets Big Data Jan Fostier Traditional HPC way of doing things Communication network (Infiniband) Lots of communication c c c c c Lots of computations

More information

Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services

Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services Max Planck Institute for Software Systems Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services 1, Rodrigo Rodrigues 2, Krishna P. Gummadi 1, Stefan Saroiu 3 MPI-SWS 1, CITI / Universidade

More information

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS Ferdinando Alessi Annalisa Massini Roberto Basili INGV Introduction The simulation of wave propagation

More information

Minimum Hardware and OS Specifications

Minimum Hardware and OS Specifications Hardware and OS Specifications File Stream Document Management Software System Requirements for v4.5 NB: please read through carefully, as it contains 4 separate specifications for a Workstation PC, a

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information

CS650 Computer Architecture. Lecture 10 Introduction to Multiprocessors and PC Clustering

CS650 Computer Architecture. Lecture 10 Introduction to Multiprocessors and PC Clustering CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors and PC Clustering Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 10: Intro to Multiprocessors/Clustering

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

MD NASTRAN on Advanced SGI Architectures *

MD NASTRAN on Advanced SGI Architectures * W h i t e P a p e r MD NASTRAN on Advanced SGI Architectures * Olivier Schreiber, Scott Shaw, Joe Griffin** Abstract MD Nastran tackles all important Normal Mode Analyses utilizing both Shared Memory Parallelism

More information

Building 96-processor Opteron Cluster at Florida International University (FIU) January 5-10, 2004

Building 96-processor Opteron Cluster at Florida International University (FIU) January 5-10, 2004 Building 96-processor Opteron Cluster at Florida International University (FIU) January 5-10, 2004 Brian Dennis, Ph.D. Visiting Associate Professor University of Tokyo Designing the Cluster Goal: provide

More information

SGI Overview. HPC User Forum Dearborn, Michigan September 17 th, 2012

SGI Overview. HPC User Forum Dearborn, Michigan September 17 th, 2012 SGI Overview HPC User Forum Dearborn, Michigan September 17 th, 2012 SGI Market Strategy HPC Commercial Scientific Modeling & Simulation Big Data Hadoop In-memory Analytics Archive Cloud Public Private

More information

The rcuda middleware and applications

The rcuda middleware and applications The rcuda middleware and applications Will my application work with rcuda? rcuda currently provides binary compatibility with CUDA 5.0, virtualizing the entire Runtime API except for the graphics functions,

More information

Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources

Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources Ming Zhao, Renato J. Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer

More information

Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters ANSYS, Inc. All rights reserved. 1 ANSYS, Inc.

Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters 2006 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Our Business Simulation Driven Product Development Deliver superior

More information

Multiprocessors. Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS. CPUs DO NOT share physical memory

Multiprocessors. Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS. CPUs DO NOT share physical memory Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS CPUs DO NOT share physical memory IITAC Cluster [in Lloyd building] 346 x IBM e326 compute node each with 2 x 2.4GHz

More information

A Load Balancing Fault-Tolerant Algorithm for Heterogeneous Cluster Environments

A Load Balancing Fault-Tolerant Algorithm for Heterogeneous Cluster Environments 1 A Load Balancing Fault-Tolerant Algorithm for Heterogeneous Cluster Environments E. M. Karanikolaou and M. P. Bekakos Laboratory of Digital Systems, Department of Electrical and Computer Engineering,

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Intel Cluster Ready Allowed Hardware Variances

Intel Cluster Ready Allowed Hardware Variances Intel Cluster Ready Allowed Hardware Variances Solution designs are certified as Intel Cluster Ready with an exact bill of materials for the hardware and the software stack. When instances of the certified

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces Hye-Churn Jang Hyun-Wook (Jin) Jin Department of Computer Science and Engineering Konkuk University Seoul, Korea {comfact,

More information

GTRC Hosting Infrastructure Reports

GTRC Hosting Infrastructure Reports GTRC Hosting Infrastructure Reports GTRC 2012 1. Description - The Georgia Institute of Technology has provided a data hosting infrastructure to support the PREDICT project for the data sets it provides.

More information

A Global Operating System for HPC Clusters

A Global Operating System for HPC Clusters A Global Operating System Emiliano Betti 1 Marco Cesati 1 Roberto Gioiosa 2 Francesco Piermaria 1 1 System Programming Research Group, University of Rome Tor Vergata 2 BlueGene Software Division, IBM TJ

More information

Clusters. Rob Kunz and Justin Watson. Penn State Applied Research Laboratory

Clusters. Rob Kunz and Justin Watson. Penn State Applied Research Laboratory Clusters Rob Kunz and Justin Watson Penn State Applied Research Laboratory rfk102@psu.edu Contents Beowulf Cluster History Hardware Elements Networking Software Performance & Scalability Infrastructure

More information

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers Outline Execution Environments for Parallel Applications Master CANS 2007/2008 Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya Supercomputers OS abstractions Extended OS

More information

REMEM: REmote MEMory as Checkpointing Storage

REMEM: REmote MEMory as Checkpointing Storage REMEM: REmote MEMory as Checkpointing Storage Hui Jin Illinois Institute of Technology Xian-He Sun Illinois Institute of Technology Yong Chen Oak Ridge National Laboratory Tao Ke Illinois Institute of

More information

Tasking and OpenMP Success Stories

Tasking and OpenMP Success Stories Tasking and OpenMP Success Stories Christian Terboven 23.03.2011 / Aachen, Germany Stand: 21.03.2011 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda OpenMP: Tasking

More information

ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing

ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing Prof. Wu FENG Department of Computer Science Virginia Tech Work smarter not harder Overview Grand Challenge A large-scale biological

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI Systems Andrew Gustafson The Machines at MSI Machine Type: Cluster Source: http://en.wikipedia.org/wiki/cluster_%28computing%29 Machine Type: Cluster

More information

WRF performance on Intel Processors

WRF performance on Intel Processors WRF performance on Intel Processors R. Dubtsov, A. Semenov, D. Shkurko Intel Corp., pr. ak. Lavrentieva 6/1, Novosibirsk, Russia, 630090 {roman.s.dubtsov, alexander.l.semenov,dmitry.v.shkurko,}@intel.com

More information

GROMACS Performance Benchmark and Profiling. August 2011

GROMACS Performance Benchmark and Profiling. August 2011 GROMACS Performance Benchmark and Profiling August 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

CPMD Performance Benchmark and Profiling. February 2014

CPMD Performance Benchmark and Profiling. February 2014 CPMD Performance Benchmark and Profiling February 2014 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Meltdown and Spectre Interconnect Performance Evaluation Jan Mellanox Technologies

Meltdown and Spectre Interconnect Performance Evaluation Jan Mellanox Technologies Meltdown and Spectre Interconnect Evaluation Jan 2018 1 Meltdown and Spectre - Background Most modern processors perform speculative execution This speculation can be measured, disclosing information about

More information

Performance analysis of parallel de novo genome assembly in shared memory system

Performance analysis of parallel de novo genome assembly in shared memory system IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Performance analysis of parallel de novo genome assembly in shared memory system To cite this article: Syam Budi Iryanto et al 2018

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

MATE-EC2: A Middleware for Processing Data with Amazon Web Services

MATE-EC2: A Middleware for Processing Data with Amazon Web Services MATE-EC2: A Middleware for Processing Data with Amazon Web Services Tekin Bicer David Chiu* and Gagan Agrawal Department of Compute Science and Engineering Ohio State University * School of Engineering

More information

Multiprocessors. Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS. CPUs DO NOT share physical memory

Multiprocessors. Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS. CPUs DO NOT share physical memory Loosely coupled [Multi-computer] each CPU has its own memory, I/O facilities and OS CPUs DO NOT share physical memory IITAC Cluster [in Lloyd building] 346 x IBM e326 compute node each with 2 x 2.4GHz

More information

Solving Large Complex Problems. Efficient and Smart Solutions for Large Models

Solving Large Complex Problems. Efficient and Smart Solutions for Large Models Solving Large Complex Problems Efficient and Smart Solutions for Large Models 1 ANSYS Structural Mechanics Solutions offers several techniques 2 Current trends in simulation show an increased need for

More information

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures Procedia Computer Science Volume 51, 2015, Pages 2774 2778 ICCS 2015 International Conference On Computational Science Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization Exploiting Task-Parallelism on Clusters via Adrián Castelló, Rafael Mayo, Judit Planas, Enrique S. Quintana-Ortí RePara 2015, August Helsinki, Finland Exploiting Task-Parallelism on Clusters via Power/energy/utilization

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

Structuring PLFS for Extensibility

Structuring PLFS for Extensibility Structuring PLFS for Extensibility Chuck Cranor, Milo Polte, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University What is PLFS? Parallel Log Structured File System Interposed filesystem b/w

More information

COPYRIGHTED MATERIAL CONTENTS

COPYRIGHTED MATERIAL CONTENTS PREFACE ACKNOWLEDGMENTS LIST OF TABLES xi xv xvii 1 INTRODUCTION 1 1.1 Historical Background 1 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods 3 1.2.1 Jackknife 6 1.2.2

More information

Enhancing Checkpoint Performance with Staging IO & SSD

Enhancing Checkpoint Performance with Staging IO & SSD Enhancing Checkpoint Performance with Staging IO & SSD Xiangyong Ouyang Sonya Marcarelli Dhabaleswar K. Panda Department of Computer Science & Engineering The Ohio State University Outline Motivation and

More information

Full Vehicle Dynamic Analysis using Automated Component Modal Synthesis. Peter Schartz, Parallel Project Manager ClusterWorld Conference June 2003

Full Vehicle Dynamic Analysis using Automated Component Modal Synthesis. Peter Schartz, Parallel Project Manager ClusterWorld Conference June 2003 Full Vehicle Dynamic Analysis using Automated Component Modal Synthesis Peter Schartz, Parallel Project Manager Conference Outline Introduction Background Theory Case Studies Full Vehicle Dynamic Analysis

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

HPC Capabilities at Research Intensive Universities

HPC Capabilities at Research Intensive Universities HPC Capabilities at Research Intensive Universities Purushotham (Puri) V. Bangalore Department of Computer and Information Sciences and UAB IT Research Computing UAB HPC Resources 24 nodes (192 cores)

More information

ELASTIC: Dynamic Tuning for Large-Scale Parallel Applications

ELASTIC: Dynamic Tuning for Large-Scale Parallel Applications Workshop on Extreme-Scale Programming Tools 18th November 2013 Supercomputing 2013 ELASTIC: Dynamic Tuning for Large-Scale Parallel Applications Toni Espinosa Andrea Martínez, Anna Sikora, Eduardo César

More information

HPC Solution. Technology for a New Era in Computing

HPC Solution. Technology for a New Era in Computing HPC Solution Technology for a New Era in Computing TEL IN HPC & Storage.. 20 years of changing with Technology Complete Solution Integrators for Select Verticals Mechanical Design & Engineering High Performance

More information

Copyright 2009 by Scholastic Inc. All rights reserved. Published by Scholastic Inc. PDF0090 (PDF)

Copyright 2009 by Scholastic Inc. All rights reserved. Published by Scholastic Inc. PDF0090 (PDF) Enterprise Edition Version 1.9 System Requirements and Technology Overview The Scholastic Achievement Manager (SAM) is the learning management system and technology platform for all Scholastic Enterprise

More information

Memcached Design on High Performance RDMA Capable Interconnects

Memcached Design on High Performance RDMA Capable Interconnects Memcached Design on High Performance RDMA Capable Interconnects Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi- ur- Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan

More information

Chapter 1. Introduction: Part I. Jens Saak Scientific Computing II 7/348

Chapter 1. Introduction: Part I. Jens Saak Scientific Computing II 7/348 Chapter 1 Introduction: Part I Jens Saak Scientific Computing II 7/348 Why Parallel Computing? 1. Problem size exceeds desktop capabilities. Jens Saak Scientific Computing II 8/348 Why Parallel Computing?

More information

Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc

Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc Motivation Motifs Algorithms G-Tries Parallelism Complex Networks Networks are ubiquitous! Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc Images: UK Highways Agency, Uriel

More information

Parallel Programming with MPI

Parallel Programming with MPI Parallel Programming with MPI Science and Technology Support Ohio Supercomputer Center 1224 Kinnear Road. Columbus, OH 43212 (614) 292-1800 oschelp@osc.edu http://www.osc.edu/supercomputing/ Functions

More information

Acceleration of Virtual Machine Live Migration on QEMU/KVM by Reusing VM Memory

Acceleration of Virtual Machine Live Migration on QEMU/KVM by Reusing VM Memory Acceleration of Virtual Machine Live Migration on QEMU/KVM by Reusing VM Memory Soramichi Akiyama Department of Creative Informatics Graduate School of Information Science and Technology The University

More information

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Jianting Zhang 1,2 Simin You 2, Le Gruenwald 3 1 Depart of Computer Science, CUNY City College (CCNY) 2 Department of Computer

More information

Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance

Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance This Dell EMC technical white paper discusses performance benchmarking results and analysis for Simulia

More information

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Summarized by: Michael Riera 9/17/2011 University of Central Florida CDA5532 Agenda

More information

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Torben Kling-Petersen, PhD Presenter s Name Principle Field Title andengineer Division HPC &Cloud LoB SunComputing Microsystems

More information

Towards Real-Time, Many Task Applications on Large Distributed Systems

Towards Real-Time, Many Task Applications on Large Distributed Systems Towards Real-Time, Many Task Applications on Large Distributed Systems - focusing on the implementation of RT-BOINC Sangho Yi (sangho.yi@inria.fr) Content Motivation and Background RT-BOINC in a nutshell

More information

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Multigrid Solvers Method of solving linear equation

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Trends of optimizing

More information

Benchmark runs of pcmalib on Nehalem and Shanghai nodes

Benchmark runs of pcmalib on Nehalem and Shanghai nodes MOSAIC group Institute of Theoretical Computer Science Department of Computer Science Benchmark runs of pcmalib on Nehalem and Shanghai nodes Christian Lorenz Müller, April 9 Addresses: Institute for Theoretical

More information

OCTOPUS Performance Benchmark and Profiling. June 2015

OCTOPUS Performance Benchmark and Profiling. June 2015 OCTOPUS Performance Benchmark and Profiling June 2015 2 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Open-E High Availability Certification report for Intel Server System R2224GZ4GC4

Open-E High Availability Certification report for Intel Server System R2224GZ4GC4 Open-E High Availability Certification report for Intel Server System R2224GZ4GC4 1 Executive summary After successfully passing all the required tests, the Intel Server System R2224GZ4GC4 is now officially

More information

Benchmarking computers for seismic processing and imaging

Benchmarking computers for seismic processing and imaging Benchmarking computers for seismic processing and imaging Evgeny Kurin ekurin@geo-lab.ru Outline O&G HPC status and trends Benchmarking: goals and tools GeoBenchmark: modules vs. subsystems Basic tests

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( )

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( ) Guide: CIS 601 Graduate Seminar Presented By: Dr. Sunnie S. Chung Dhruv Patel (2652790) Kalpesh Sharma (2660576) Introduction Background Parallel Data Warehouse (PDW) Hive MongoDB Client-side Shared SQL

More information

Reference Architecture for Dell VIS Self-Service Creator and VMware vsphere 4

Reference Architecture for Dell VIS Self-Service Creator and VMware vsphere 4 Reference Architecture for Dell VIS Self-Service Creator and VMware vsphere 4 Solutions for Small & Medium Environments Virtualization Solutions Engineering Ryan Weldon and Tom Harrington THIS WHITE PAPER

More information

Maximizing Memory Performance for ANSYS Simulations

Maximizing Memory Performance for ANSYS Simulations Maximizing Memory Performance for ANSYS Simulations By Alex Pickard, 2018-11-19 Memory or RAM is an important aspect of configuring computers for high performance computing (HPC) simulation work. The performance

More information

Optimization of parameter settings for GAMG solver in simple solver

Optimization of parameter settings for GAMG solver in simple solver Optimization of parameter settings for GAMG solver in simple solver Masashi Imano (OCAEL Co.Ltd.) Aug. 26th 2012 OpenFOAM Study Meeting for beginner @ Kanto Test cluster condition Hardware: SGI Altix ICE8200

More information

Using virtual processors for SPMD parallel programs

Using virtual processors for SPMD parallel programs arxiv:cs/0312049v1 [cs.dc] 21 Dec 2003 Using virtual processors for SPMD parallel programs Gianluca Argentini gianluca.argentini@riellogroup.com New Technologies and Models Information & Communication

More information

D1-1 Optimisation of R bootstrapping on HECToR with SPRINT

D1-1 Optimisation of R bootstrapping on HECToR with SPRINT D1-1 Optimisation of R bootstrapping on HECToR with SPRINT Project Title Document Title Authorship ESPRC dcse "Bootstrapping and support vector machines with R and SPRINT" D1-1 Optimisation of R bootstrapping

More information