Computing the Integer Points of a Polyhedron

Size: px
Start display at page:

Download "Computing the Integer Points of a Polyhedron"

Transcription

1 Computing the Integer Points of a Polyhedron Complexity Estimates Rui-Juan Jing 1,2 and Marc Moreno Maza 2,3 1 Key Laboratoty of Mathematics Mechnization, Academy of Mathematics and Systems Science, Chinese of Academy of Sciences 2 University of Western Ontario, London, Ontario 3 IBM Center for Advanced Studies, Markham, Ontario CASC 2017, September 19

2 Plan Recall the algorithm Complexity Experiments Application Summary

3 Motivations 1. Data dependence analysis and scheduling of for-loop nests of computer programs, 2. support for decision problems in Presburger arithmetic, 3. manipulation of Z-polyhedra.

4 Algorithm IntegerSolve(K) relies on three sub-procedures. Procedure 1: IntegerNormalize(Ax b): Solve the equation systems and remove the redundant inequalities;

5 Algorithm IntegerSolve(K) relies on three sub-procedures. Procedure 1: IntegerNormalize(Ax b): Solve the equation systems and remove the redundant inequalities; Procedure 2: DarkShadow(Mt v) Any integer point in the dark shadow can be lifted to an integer point of the original polyhedron (represented by (Mt v))

6 Algorithm IntegerSolve(K) relies on three sub-procedures. Procedure 1: IntegerNormalize(Ax b): Solve the equation systems and remove the redundant inequalities; Procedure 2: DarkShadow(Mt v) Any integer point in the dark shadow can be lifted to an integer point of the original polyhedron (represented by (Mt v)) Procedure 3: GreyShadow(Mt v) Output the grey shadow parts of polyhedron represented by Mt v, each integer point in every grey shadow part corresponding to one integer point satisfying Mt v and the number of variables to be dealt with is less than the length of t.

7 Plan Recall the algorithm Complexity Experiments Application Summary

8 Complexity-FM elimination K polyhedron in R d, defined by m inequalities

9 Complexity-FM elimination K polyhedron in R d, defined by m inequalities K is full-dimentional Ax b (Ax b has no implicit equations.)

10 Complexity-FM elimination K polyhedron in R d, defined by m inequalities K is full-dimentional Ax b (Ax b has no implicit equations.) k-dimentional face of K { A I k x = b Ik, A I Ik b I Ik (I = {1,..., m}, I k I with d k elements.)

11 Complexity-FM elimination K polyhedron in R d, defined by m inequalities K is full-dimentional Ax b (Ax b has no implicit equations.) k-dimentional face of K { A I k x = b Ik, A I Ik b I Ik (I = {1,..., m}, I k I with d k elements.) Lemma Let f d,m,k be the number of k-dimensional faces of K. Then, we have f d,m,k ( m d k ). Therefore, we have f d,m,0 + f d,m,1 + + f d,m,d 1 m d.

12 Complexity-FM elimination Proposition { A I k x = b Ik, A I Ik x b I Ik IntegerNormalize Mt v M, v (k + 1) k+1 2 L k+1.

13 Complexity-FM elimination Proposition { A I k x = b Ik, A I Ik x b I Ik IntegerNormalize Mt v M, v (k + 1) k+1 2 L k+1. Notation Given a linear program with total bit size H and with d variables LP(d, H): the number of bit operations required for solving it. Karmarkar s algorithm: LP(d, H) O(d 3.5 H 2 log H log log H).

14 Complexity-FM elimination Proposition { A I k x = b Ik, A I Ik x b I Ik IntegerNormalize Mt v M, v (k + 1) k+1 2 L k+1. Notation Given a linear program with total bit size H and with d variables LP(d, H): the number of bit operations required for solving it. Karmarkar s algorithm: LP(d, H) O(d 3.5 H 2 log H log log H). Proposition Given a polyhedron K in R d, which is defined by m inequalities and with coefficient maximum bit size h, one can perform Fourier-Motzkin elimination within O(d 2 m 2d LP(d, 2 d hd 2 m d )) bit operations.

15 Complexity of our algorithm Hypothesis During the execution of the function call IntegerSolve(K), for any polyhedral set K, input of a recursive call, each facet of the dark shadow of K is parallel to some facet of the real shadow of K.

16 Complexity-our algorithm S D G D G D G D G D G

17 Complexity-our algorithm S D G D G D G D G D G number of pathes T : T m d 2 d 3d 3 L 3d 3 coefficient bound M in any node in a path: M d 3d 2 d 4d 3 L 6d 3

18 Complexity-our algorithm S D G D G D G D G D G number of pathes T : T m d 2 d 3d 3 L 3d 3 coefficient bound M in any node in a path: M d 3d 2 d 4d 3 L 6d 3 Theorem Under our Hypothesis, the function call IntegerSolve(K) runs within O(m 2d 2 d 4d 3 L 4d 3 LP(d, m d d 4 (log d + log L))) bit operations.

19 Plan Recall the algorithm Complexity Experiments Application Summary

20 Experiments IntegerSolve is implemented in the Polyhedra library and available from Example m d L m o L o?hyp t H t P Tetrahedron yes TruncatedTetrahedron yes Presburger yes Presburger yes Bounded no Bounded yes Bounded no Unbounded no Unbounded no Unbounded no P no Sys yes Sys yes Automatic yes Automatic yes Table: Implementation

21 Plan Recall the algorithm Complexity Experiments Application Summary

22 Application Solve integer programming: min lex (x 1,..., x d ) Ax b, x Z d Example Problem: min lex (x 3, x 2, x 1 ) 3x 1 2x 2 + x 3 7 2x 1 + 2x 2 x x 1 + x 2 + 3x 3 15 x 2 25 x 1, x 2, x 3 Z

23 Application Example 3x 1 2x 2 + x 3 7 2x 1 + 2x 2 x 3 12 Input: K 1, assume x 1 > x 2 > x 3. 4x 1 + x 2 + 3x 3 15 x 2 25 Output: K 1 1, K 2 1, K 3 1, K 4 1, K 5 1 given by: 3x 1 2x 2 + x 3 7 2x 1 + 2x 2 x x 1 + x 2 + 3x x 2 x x x 3 67 x x 3 17, x 1 = 15 x 2 = 27, x 3 = 16 x 1 = 18 x 2 = 33, x 3 = 18 x 1 = 19 x 1 = 14 x 2 = 50 + t x 2 = 25, x 3 = t x 3 = t 16.

24 Application min(x 3, x 2, x 1 ) K 1 Z 3 min(x 3, x 2, x 1 ) min(x 3, x 2, x 1 ) min(x 3, x 2, x 1 ) min(x 3, x 2, x 1 ) min(x 3, x 2, x 1 ) K1 1 Z3 K1 2 Z3 K1 3 Z3 K1 4 Z3 K1 5 Z3 (2, 8, 4) (16, 27, 15) (18, 33, 18) (15, 25, 14) (0, 25, 19) (0, 25, 19)

25 Plan Recall the algorithm Complexity Experiments Application Summary

26 Summary Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.

27 Summary Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space. This assumption is almost always verified in practice, in particular for problems coming from computer program analysis.

28 Summary Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space. This assumption is almost always verified in practice, in particular for problems coming from computer program analysis. Taking advantage of the good structure of the simpler polyhedra, we give an application to solve the lexicographic minimum of some variable orders.

29 Summary Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space. This assumption is almost always verified in practice, in particular for problems coming from computer program analysis. Taking advantage of the good structure of the simpler polyhedra, we give an application to solve the lexicographic minimum of some variable orders. Works in progress A CilkPlus version of the Polyhedra library Parametric integer programming (PIP) in support of automatic parallelization.

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era 1 CS671 Parallel Programming in the Many-Core Era Polyhedral Framework for Compilation: Polyhedral Model Representation, Data Dependence Analysis, Scheduling and Data Locality Optimizations December 3,

More information

Systems of Inequalities

Systems of Inequalities Systems of Inequalities 1 Goals: Given system of inequalities of the form Ax b determine if system has an integer solution enumerate all integer solutions 2 Running example: Upper bounds for x: (2)and

More information

Legal and impossible dependences

Legal and impossible dependences Transformations and Dependences 1 operations, column Fourier-Motzkin elimination us use these tools to determine (i) legality of permutation and Let generation of transformed code. (ii) Recall: Polyhedral

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 6. Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Integer Programming as Projection

Integer Programming as Projection Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA A Different Perspective on IP Projection of an IP onto

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 15, 2010 888.11, Class #4 Introduction: Polyhedral

More information

Minimizing Memory Strides using Integer Transformations of Parametric Polytopes

Minimizing Memory Strides using Integer Transformations of Parametric Polytopes Minimizing Memory Strides using Integer Transformations of Parametric Polytopes Rachid Seghir, Vincent Loechner and Benoît Meister ICPS/LSIIT UMR CNRS-ULP 7005 Pôle API, Bd Sébastien Brant F-67400 Illkirch

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Solving the Live-out Iterator Problem, Part I

Solving the Live-out Iterator Problem, Part I Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University September 2010 888.11 Outline: Reminder: step-by-step methodology 1 Problem definition:

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra

Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra Alain Ketterlin / Camus IMPACT 2018: January, 23, 2018 Motivation Periodic-Linear Inequalities The Omicron Test Decomposition Motivation

More information

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH Richard Kipp Martin Graduate School of Business University of Chicago % Kluwer Academic Publishers Boston/Dordrecht/London CONTENTS Preface

More information

The Polyhedral Model (Transformations)

The Polyhedral Model (Transformations) The Polyhedral Model (Transformations) Announcements HW4 is due Wednesday February 22 th Project proposal is due NEXT Friday, extension so that example with tool is possible (see resources website for

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Space vs Time, Cache vs Main Memory

Space vs Time, Cache vs Main Memory Space vs Time, Cache vs Main Memory Marc Moreno Maza University of Western Ontario, London, Ontario (Canada) CS 4435 - CS 9624 (Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 1 / 49

More information

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 4 Dr. Ted Ralphs IE406 Lecture 4 1 Reading for This Lecture Bertsimas 2.2-2.4 IE406 Lecture 4 2 The Two Crude Petroleum Example Revisited Recall the

More information

Loop Transformations, Dependences, and Parallelization

Loop Transformations, Dependences, and Parallelization Loop Transformations, Dependences, and Parallelization Announcements HW3 is due Wednesday February 15th Today HW3 intro Unimodular framework rehash with edits Skewing Smith-Waterman (the fix is in!), composing

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0 The Simplex Algorithm Chapter 5 Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Outline 1 Gaussian Elimination 2 Satisfiability with Simplex 3 General Simplex Form

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Polyhedral Operations. Algorithms needed for automation. Logistics

Polyhedral Operations. Algorithms needed for automation. Logistics Polyhedral Operations Logistics Intermediate reports late deadline is Friday March 30 at midnight HW6 (posted) and HW7 (posted) due April 5 th Tuesday April 4 th, help session during class with Manaf,

More information

A Subexponential Randomized Simplex Algorithm

A Subexponential Randomized Simplex Algorithm s A Subexponential Randomized Gil Kalai (extended abstract) Shimrit Shtern Presentation for Polynomial time algorithms for linear programming 097328 Technion - Israel Institute of Technology May 14, 2012

More information

Integrated Mathematics I Performance Level Descriptors

Integrated Mathematics I Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Integrated Mathematics I. A student at this level has an emerging ability to demonstrate

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

C&O 355 Lecture 16. N. Harvey

C&O 355 Lecture 16. N. Harvey C&O 355 Lecture 16 N. Harvey Topics Review of Fourier-Motzkin Elimination Linear Transformations of Polyhedra Convex Combinations Convex Hulls Polytopes & Convex Hulls Fourier-Motzkin Elimination Joseph

More information

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem IE 5: Integer Programming, Spring 29 24 Jan, 29 Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem Lecturer: Karthik Chandrasekaran Scribe: Setareh Taki Disclaimer: These notes have not been subjected

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 On the Complexity of Polytopes in LI( Komei Fuuda May Szedlá July, 018 arxiv:170610114v1 [cscc] 30 Jun 017 Abstract In this paper we consider polytopes given by systems of n inequalities in d variables,

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Using Facets of a MILP Model for solving a Job Shop Scheduling Problem

Using Facets of a MILP Model for solving a Job Shop Scheduling Problem Using Facets of a MILP Model for solving a Job Shop Scheduling Problem Master s Thesis in Complex Adaptive Systems VIKTOR FORSMAN Department of Mathematical Sciences Gothenburg University Gothenburg, Sweden

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Integer and Combinatorial Optimization: Clustering Problems

Integer and Combinatorial Optimization: Clustering Problems Integer and Combinatorial Optimization: Clustering Problems John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2019 Mitchell Clustering Problems 1 / 14 Clustering Clustering

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 Polyhedral Computation Today s Topic: The Double Description Algorithm Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 1 Convexity Review: Farkas-Type Alternative Theorems Gale

More information

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems.

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2 Basics In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2.1 Notation Let A R m n be a matrix with row index set M = {1,...,m}

More information

Data Dependences and Parallelization

Data Dependences and Parallelization Data Dependences and Parallelization 1 Agenda Introduction Single Loop Nested Loops Data Dependence Analysis 2 Motivation DOALL loops: loops whose iterations can execute in parallel for i = 11, 20 a[i]

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

Ranking Functions. Linear-Constraint Loops

Ranking Functions. Linear-Constraint Loops for Linear-Constraint Loops Amir Ben-Amram 1 for Loops Example 1 (GCD program): while (x > 1, y > 1) if x

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron

The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron Juan Pablo Vielma Joint work with Daniel Dadush and Santanu S. Dey July, Atlanta, GA Outline Introduction Proof: Step Step

More information

Convex Hull Representation Conversion (cddlib, lrslib)

Convex Hull Representation Conversion (cddlib, lrslib) Convex Hull Representation Conversion (cddlib, lrslib) Student Seminar in Combinatorics: Mathematical Software Niklas Pfister October 31, 2014 1 Introduction In this report we try to give a short overview

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 22, 2010 888.11, Class #5 Introduction: Polyhedral

More information

Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time

Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen and Nicolas Vasilache ALCHEMY, INRIA Futurs / University of Paris-Sud XI March

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

A Many-Core Machine Model for Designing Algorithms with Minimum Parallelism Overheads

A Many-Core Machine Model for Designing Algorithms with Minimum Parallelism Overheads A Many-Core Machine Model for Designing Algorithms with Minimum Parallelism Overheads Sardar Anisul Haque Marc Moreno Maza Ning Xie University of Western Ontario, Canada IBM CASCON, November 4, 2014 ardar

More information

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Isil Dillig, Thomas Dillig, and Alex Aiken Computer Science Department Stanford University Linear Arithmetic

More information

A Note on Polyhedral Relaxations for the Maximum Cut Problem

A Note on Polyhedral Relaxations for the Maximum Cut Problem A Note on Polyhedral Relaxations for the Maximum Cut Problem Alantha Newman Abstract We consider three well-studied polyhedral relaxations for the maximum cut problem: the metric polytope of the complete

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All rights reserved.

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

The Basic Polynomial Algebra Subprograms

The Basic Polynomial Algebra Subprograms The Basic Polynomial Algebra Subprograms Changbo Chen 1, Svyatoslav Covanov 2, Farnam Mansouri 2, Marc Moreno Maza 2, Ning Xie 2, and Yuzhen Xie 2 1 Chongqing Key Laboratory of Automated Reasoning and

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

The Polyhedral Model (Dependences and Transformations)

The Polyhedral Model (Dependences and Transformations) The Polyhedral Model (Dependences and Transformations) Announcements HW3 is due Wednesday February 15 th, tomorrow Project proposal is due NEXT Friday, extension so that example with tool is possible Today

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

9 Bounds for the Knapsack Problem (March 6)

9 Bounds for the Knapsack Problem (March 6) 9 Bounds for the Knapsack Problem (March 6) In this lecture, I ll develop both upper and lower bounds in the linear decision tree model for the following version of the (NP-complete) Knapsack 1 problem:

More information

arxiv: v1 [math.co] 27 Feb 2015

arxiv: v1 [math.co] 27 Feb 2015 Mode Poset Probability Polytopes Guido Montúfar 1 and Johannes Rauh 2 arxiv:1503.00572v1 [math.co] 27 Feb 2015 1 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany,

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Linear Programming Motivation: The Diet Problem

Linear Programming Motivation: The Diet Problem Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Network Flows & Applications NP-completeness Now Linear Programming and the Simplex Method Hung Q. Ngo (SUNY at Buffalo) CSE 531 1

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

J Linear Programming Algorithms

J Linear Programming Algorithms Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words, because the language of Truth is itself simple.]

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem

Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem July 5, Introduction Abstract Problem Statement and Properties In this paper we will consider discrete-time linear

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Symbolic Evaluation of Sums for Parallelising Compilers

Symbolic Evaluation of Sums for Parallelising Compilers Symbolic Evaluation of Sums for Parallelising Compilers Rizos Sakellariou Department of Computer Science University of Manchester Oxford Road Manchester M13 9PL United Kingdom e-mail: rizos@csmanacuk Keywords:

More information

Assignment 1 (concept): Solutions

Assignment 1 (concept): Solutions CS10b Data Structures and Algorithms Due: Thursday, January 0th Assignment 1 (concept): Solutions Note, throughout Exercises 1 to 4, n denotes the input size of a problem. 1. (10%) Rank the following functions

More information