Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!!

Size: px
Start display at page:

Download "Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!!"

Transcription

1 Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!! IDA*-1

2 A* space complexity!» What does the space complexity of A* depend upon?! IDA*-2

3 A* space complexity 2!» What does the space complexity of A* depend upon?! > Saves all found nodes! IDA*-3

4 A* space complexity 3!» What does the space complexity of A* depend upon?! > Saves all found nodes!» What does the number of found nodes depend upon?!! IDA*-4

5 A* space complexity 4!» What does the space complexity of A* depend upon?! > Saves all found nodes!» What does the number of saved nodes depend upon?!! > Depends upon the branching factor (B) and height of tree (H)! IDA*-5

6 A* space complexity 5!» What is the space complexity of A*?! IDA*-6

7 A* space complexity 6!» What is the space complexity of A*?! > Approximately B H! IDA*-7

8 Space saving!» How can we save space?! IDA*-8

9 Space saving 2!» How can we save space?! > Not keep all the found nodes!! IDA*-9

10 Space saving 3!» How can we save space?! > Not keep all the found nodes!» Which ones do we keep?! IDA*-10

11 Space saving 4!» How can we save space?! > Not keep all the found nodes!» Which ones do we keep?! > The ones in the current path! IDA*-11

12 Space saving 5!» How can we save space?! > Not keep all the found nodes!» Which ones do we keep?! > The ones in the current path!» How do we get the nodes we threw away?! IDA*-12

13 Space saving 6!» How can we save space?! > Not keep all the found nodes!» Which ones do we keep?! > The ones in the current path!» How do we get the nodes we threw away?! > By regenerating them when a different path is to be extended! IDA*-13

14 Iterative deepening!» How does iterative deepening work?! IDA*-14

15 Iterative deepening 2!» How does iterative deepening work?! > By doing depth-first search with increasing depth! IDA*-15

16 Iterative deepening 3!» How does iterative deepening work?! > By repeating depth-first search with increasing depth!» What can we use instead of depth?! IDA*-16

17 Iterative deepening 4!» How does iterative deepening work?! > By repeating depth-first search with increasing depth!» What can we use instead of depth? What analogous feature is the A* algorithm based on?! IDA*-17

18 Iterative deepening 5!» How does iterative deepening work?! > By repeating depth-first search with increasing depth!» What can we use instead of depth? What analogous feature is the A* algorithm based on?! > The f(n) function! IDA*-18

19 Iterative deepening 6!» How does iterative deepening work?! > By repeating depth-first search with increasing depth!» What can we use instead of depth? What analogous feature is the A* algorithm based on?! > The f(n) function!» How do we use the f(n) function?! IDA*-19

20 Iterative deepening 7!» How does iterative deepening work?! > By repeating depth-first search with increasing depth!» What can we use instead of depth? What analogous feature is the A* algorithm based on?! > The f(n) function!» How do we use the f(n) function?! > Do depth-first search with increasing f-limit! IDA*-20

21 A view of iterative f(n) deepening! S f = Bi f = Bj f = Bk Bi < Bj < Bk IDA*-21

22 IDA* algorithm! bound = f(start_node)! found = false!! while not found do!! depth-first search from start_node for nodes N such that f(n) bound!! if goal_found! then found! true! else bound = min { f(n) N generated by search f(n) > bound }! fi!! end! IDA*-22

23 Exercise question! Trace the execution of A* for the tree. How many nodes are! generated by A* and IDA*? Count all re-generated nodes.! A f = 1 f = 2 B C f = 1 f = 10 f = 10 D E F f = 1 G f = 2 f = 10 f = 10 f = 3 H I J K f = 4 L f = 4 M f = 5 Created Gunnar by Bratko! Gotshalks! IDA*-23

24 IDA* performance!» What would we examine in thinking about IDA* performance?! IDA*-24

25 IDA* performance 2!» What would we examine in thinking about IDA* performance?! > Space! > TIme! IDA*-25

26 IDA* space performance!» Space is not a consideration, why?!! IDA*-26

27 IDA* space performance 2!» Space is not a consideration, why?! > Only one path is kept at a time! IDA*-27

28 IDA* time performance! Need to look at time.!» What is the problem if only one path is kept at any time?! IDA*-28

29 IDA* time performance 2! Need to look at time.!» What is the problem if only one path is kept at any time?! > Have to regenerate paths that are to be extended! IDA*-29

30 IDA* regeneration performance!» Under what conditions is the overhead of re-generating nodes! > High?! IDA*-30

31 IDA* regeneration performance 2!» Under what conditions is the overhead of re-generating nodes! > High?! When there are many different f values IDA*-31

32 IDA* regeneration performance 3!» Under what conditions is the overhead of re-generating nodes! > High?! When there are many different f values Extreme case have one new node per path regenerated IDA*-32

33 IDA* regeneration performance 4!» Under what conditions is the overhead of re-generating nodes! > High?! When there are many different f values Extreme case have one new node per path regenerated Unacceptable overhead IDA*-33

34 IDA* regeneration performance 5!» Under what conditions is the overhead of re-generating nodes! > Low?! IDA*-34

35 IDA* regeneration performance 5!» Under what conditions is the overhead of re-generating nodes! > Low?! When there are equal f values IDA*-35

36 IDA* regeneration performance 6!» Under what conditions is the overhead of re-generating nodes! > Low?! When there are equal f values Each path generates many new nodes IDA*-36

37 IDA* regeneration performance 7!» Under what conditions is the overhead of re-generating nodes! > Low?! When there are equal f values Each path generates many new nodes Regenerated nodes are a small fraction of total generated nodes IDA*-37

38 Monotonic function!» What does monotonic function mean?! IDA*-38

39 Monotonic function!» What does monotonic function mean?! > A function that is either entirely non-increasing or non-decreasing! IDA*-39

40 f function monotonicity!» For the A* algorithm does It matter if the f function is non-monotonic?! IDA*-40

41 f function monotonicity 2!» For the A* algorithm does It matter if the f function is non-monotonic?! > No!!!!!! IDA*-41

42 f function monotonicity 3!» For the A* algorithm does It matter if the f function is non-monotonic?! > No!» Why?!!!!!!!!!!!!!! IDA*-42

43 f function monotonicity 4!» For the A* algorithm does It matter if the f function is non-monotonic?! > No!» Why?! > The A* algorithm has all the paths and will always expand the best one first!!!!!!!!!!!!!! IDA*-43

44 f function monotonicity 5!» For the IDA* algorithm does It matter if the f function is non-monotonic?!!!!!!!!!!!!!!! IDA*-44

45 f function monotonicity 5!» For the IDA* algorithm does It matter if the f function is non-monotonic?! > Yes!!!! IDA*-45

46 f function monotonicity 6!» For the IDA* algorithm does It matter if the f function is non-monotonic?! > Yes!» Why?!!!!!!!!!!!!!! IDA*-46

47 f function monotonicity 7!» For the IDA* algorithm does It matter if the f function is non-monotonic?! > Yes!» Why?! > The IDA* algorithm always expands paths from the start with a monotonically increasing f function it expands nodes in best-first order.!!!!!!!!!!!!!! IDA*-47

48 Non-monotonic f function problem! In the following if f-bound = 3, then the B node could expand before the C, G sequence! A f = 5 f = 3 B C f = 1 F f = 4 G f = 2 IDA*-48

49 IDA* Problem!» What is a major problem with IDA*?! IDA*-49

50 IDA* Problem 2!» What is a major problem with IDA*?! > In unfavourable situations the cost of regenerating nodes becomes unacceptable! IDA*-50

51 IDA* Problem 3!» What is a major problem with IDA*?! > In unfavourable situations the cost of regenerating nodes becomes unacceptable!» How do we solve the problem?! IDA*-51

52 IDA* Problem 4!» What is a major problem with IDA*?! > In unfavourable situations the cost of regenerating nodes becomes unacceptable!» How do we solve the problem?! > Create a different algorithm! IDA*-52

53 IDA* Problem 5!» What is a major problem with IDA*?! > In unfavourable situations the cost of regenerating nodes becomes unacceptable!» How do we solve the problem?! > Create a different algorithm! RBFS Recursive Best-First Search IDA*-53

Best-First Search Minimizing Space or Time. IDA* Save space, take more time

Best-First Search Minimizing Space or Time. IDA* Save space, take more time Best-First Search Minimizing Space or Time IDA* Save space, take more time IDA*-1 A* space complexity» What does the space complexity of A* depend upon? IDA*-2 A* space complexity 2» What does the space

More information

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati Heuristic Search CPSC 470/570 Artificial Intelligence Brian Scassellati Goal Formulation 200 Denver 300 200 200 Chicago 150 200 Boston 50 1200 210 75 320 255 Key West New York Well-defined function that

More information

Announcements. Today s Menu

Announcements. Today s Menu Announcements 1 Today s Menu Finish up (Chapter 9) IDA, IDA* & RBFS Search Efficiency 2 Related Algorithms Bi-Directional Search > Breadth-First may expand less nodes bidirectionally than unidirectionally

More information

Recursive Best-First Search with Bounded Overhead

Recursive Best-First Search with Bounded Overhead Recursive Best-First Search with Bounded Overhead Matthew Hatem and Scott Kiesel and Wheeler Ruml with support from NSF grant IIS-1150068 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead

More information

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches ITCS 6150 Intelligent Systems Lecture 5 Informed Searches Informed Searches We are informed (in some way) about future states and future paths We use this information to make better decisions about which

More information

Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time!

Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time! Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time! RBFS-1 RBFS general properties! Similar to A* algorithm developed for heuristic search! RBFS-2 RBFS general properties 2!

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

Efficient memory-bounded search methods

Efficient memory-bounded search methods Efficient memory-bounded search methods Mikhail Simin Arjang Fahim CSCE 580: Artificial Intelligence Fall 2011 Dr. Marco Voltorta Outline of The Presentation Motivations and Objectives Background - BFS

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture02 2012-10-03 1 Ariel Stolerman Midterm Evan will email about that after the lecture, at least 2 lectures from now. The exam will be given in a regular PDF (not an online form). We will

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

Informed State Space Search B4B36ZUI, LS 2018

Informed State Space Search B4B36ZUI, LS 2018 Informed State Space Search B4B36ZUI, LS 2018 Branislav Bošanský, Martin Schaefer, David Fiedler, Jaromír Janisch {name.surname}@agents.fel.cvut.cz Artificial Intelligence Center, Czech Technical University

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

Breadth-first heuristic search. Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon

Breadth-first heuristic search. Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon Breadth-first heuristic search Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon Breadth-first tree search 1 2 3 4 5 6 7 Used for search problems with uniform edge cost Prerequisite for presented

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First?

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First? Moving On 10. Single-agent Search Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Two-player adversary search is nice, but not all interesting problems can be mapped to games Large

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.5, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.5, Page 1 Learning Objectives At the end of the class you should be able to: justify why depth-bounded search is useful demonstrate how iterative-deepening works for a particular problem demonstrate how depth-first

More information

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague Informed search algorithms Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start precommended literature ::

More information

Advanced A* Improvements

Advanced A* Improvements Advanced A* Improvements 1 Iterative Deepening A* (IDA*) Idea: Reduce memory requirement of A* by applying cutoff on values of f Consistent heuristic function h Algorithm IDA*: 1. Initialize cutoff to

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

This lecture. Lecture 6: Search 5. Other Time and Space Variations of A* Victor R. Lesser. RBFS - Recursive Best-First Search Algorithm

This lecture. Lecture 6: Search 5. Other Time and Space Variations of A* Victor R. Lesser. RBFS - Recursive Best-First Search Algorithm Lecture 6: Search 5 Victor R. Lesser CMPSCI 683 Fall 2010 This lecture Other Time and Space Variations of A* Finish off RBFS SMA* Anytime A* RTA* (maybe if have time) RBFS - Recursive Best-First Search

More information

Effective use of memory in linear space best first search

Effective use of memory in linear space best first search Effective use of memory in linear space best first search Marko Robnik-Šikonja University of Ljubljana, Faculty of Electrical Engineering and Computer Science, Tržaška 5, 00 Ljubljana, Slovenia e-mail:

More information

Midterm Examination CS 540-2: Introduction to Artificial Intelligence

Midterm Examination CS 540-2: Introduction to Artificial Intelligence Midterm Examination CS 54-2: Introduction to Artificial Intelligence March 9, 217 LAST NAME: FIRST NAME: Problem Score Max Score 1 15 2 17 3 12 4 6 5 12 6 14 7 15 8 9 Total 1 1 of 1 Question 1. [15] State

More information

search, DFS & BrFS; cycle checking & MPC arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc.

search, DFS & BrFS; cycle checking & MPC arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc. CSC384: Lecture 5 Last time search, DFS & BrFS; cycle checking & MPC Today arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc. Readings: Today: Ch.4.5, 4.6 Next Weds: class notes (no

More information

Uniformed Search (cont.)

Uniformed Search (cont.) Uniformed Search (cont.) Computer Science cpsc322, Lecture 6 (Textbook finish 3.5) Sept, 16, 2013 CPSC 322, Lecture 6 Slide 1 Lecture Overview Recap DFS vs BFS Uninformed Iterative Deepening (IDS) Search

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Tuesday 8 th November (Week 7) 13:00-14:00 LIFS-LT2 and LIFS-LT3 Class Test 2 (Everything but Prolog)

More information

Heuristic Search: Intro

Heuristic Search: Intro Heuristic Search: Intro Blind search can be applied to all problems Is inefficient, as does not incorporate knowledge about the problem to guide the search Such knowledge can be used when deciding which

More information

Route planning / Search Movement Group behavior Decision making

Route planning / Search Movement Group behavior Decision making Game AI Where is the AI Route planning / Search Movement Group behavior Decision making General Search Algorithm Design Keep a pair of set of states: One, the set of states to explore, called the open

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lesson 1 1 About Lecturer: Prof. Sarit Kraus TA: Galit Haim: haimga@cs.biu.ac.il (almost) All you need can be found on the course website: http://u.cs.biu.ac.il/~haimga/teaching/ai/

More information

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017 Lecture 2: Fun with Search Rachel Greenstadt CS 510, October 5, 2017 Reminder! Project pre-proposals due tonight Overview Uninformed search BFS, DFS, Uniform-Cost, Graph-Search Informed search Heuristics,

More information

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search Overview Last time Depth-limited, iterative deepening and bi-directional search Avoiding repeated states Today Show how applying knowledge

More information

mywbut.com Informed Search Strategies-II

mywbut.com Informed Search Strategies-II Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

More information

SEARCHING AND SORTING HINT AT ASYMPTOTIC COMPLEXITY

SEARCHING AND SORTING HINT AT ASYMPTOTIC COMPLEXITY SEARCHING AND SORTING HINT AT ASYMPTOTIC COMPLEXITY Lecture 10 CS2110 Fall 2016 Miscellaneous 2 A3 due Monday night. Group early! Only 325 views of the piazza A3 FAQ yesterday morning. Everyone should

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Informed Search Best First Search A*

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Faculty of Science FINAL EXAMINATION

Faculty of Science FINAL EXAMINATION Faculty of Science FINAL EXAMINATION COMPUTER SCIENCE COMP 250 INTRODUCTION TO COMPUTER SCIENCE Examiner: Prof. Michael Langer April 27, 2010 Associate Examiner: Mr. Joseph Vybihal 9 A.M. 12 P.M. Instructions:

More information

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE 3010 ARTIFICIAL INTELLIGENCE Lecture 4 Iterative Deepening A* Masashi Shimbo 2017-05-02 Depth-first search Recursive implementation Depth-first search can be implemented in a recursive fashion 2 / 44 Depth-first

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Planning Techniques for Robotics Search Algorithms: Multi-goal A*, IDA*

Planning Techniques for Robotics Search Algorithms: Multi-goal A*, IDA* 6-350 Planning Techniques for Robotics Search Algorithms: Multi-goal A*, IDA* Maxim Likhachev Robotics Institute Agenda A* with multiple goals Iterative Deepening A* (IDA*) 2 Support for Multiple Goal

More information

Search: Advanced Topics and Conclusion

Search: Advanced Topics and Conclusion Search: Advanced Topics and Conclusion CPSC 322 Lecture 8 January 24, 2007 Textbook 2.6 Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 1 Lecture Overview 1 Recap 2 Branch & Bound 3 A

More information

Laboratory Module X B TREES

Laboratory Module X B TREES Purpose: Purpose 1... Purpose 2 Purpose 3. Laboratory Module X B TREES 1. Preparation Before Lab When working with large sets of data, it is often not possible or desirable to maintain the entire structure

More information

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5 ARTIFICIAL INTELLIGENCE LECTURE 3 Ph. D. Lect. Horia Popa Andreescu 2012-2013 3 rd year, semester 5 The slides for this lecture are based (partially) on chapter 4 of the Stuart Russel Lecture Notes [R,

More information

Uninformed Search Methods

Uninformed Search Methods Uninformed Search Methods Search Algorithms Uninformed Blind search Breadth-first uniform first depth-first Iterative deepening depth-first Bidirectional Branch and Bound Informed Heuristic search Greedy

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Wednesday March, 00 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Chapter 2 Classical algorithms in Search and Relaxation

Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 overviews topics on the typical problems, data structures, and algorithms for inference in hierarchical and flat representations. Part

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

Bounded Suboptimal Search in Linear Space: New Results

Bounded Suboptimal Search in Linear Space: New Results Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014) Bounded Suboptimal Search in Linear Space: New Results Matthew Hatem and Wheeler Ruml Department of Computer Science University

More information

Solving Problems by Searching. Artificial Intelligence Santa Clara University 2016

Solving Problems by Searching. Artificial Intelligence Santa Clara University 2016 Solving Problems by Searching Artificial Intelligence Santa Clara University 2016 Problem Solving Agents Problem Solving Agents Use atomic representation of states Planning agents Use factored or structured

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Solving problems by searching

More information

Branch & Bound (B&B) and Constraint Satisfaction Problems (CSPs)

Branch & Bound (B&B) and Constraint Satisfaction Problems (CSPs) Branch & Bound (B&B) and Constraint Satisfaction Problems (CSPs) Alan Mackworth UBC CS 322 CSP 1 January 25, 2013 P&M textbook 3.7.4 & 4.0-4.2 Lecture Overview Recap Branch & Bound Wrap up of search module

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz 3. Suche Teil 3 Dr. Claudia Schon schon@uni-koblenz.de Arbeitsgruppe Künstliche Intelligenz Universität Koblenz-Landau Except for some small changes these slides are transparencies

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

Subset sum problem and dynamic programming

Subset sum problem and dynamic programming Lecture Notes: Dynamic programming We will discuss the subset sum problem (introduced last time), and introduce the main idea of dynamic programming. We illustrate it further using a variant of the so-called

More information

Recursive Best-First Search with Bounded Overhead

Recursive Best-First Search with Bounded Overhead Recursive Best-First Search with Bounded Overhead Matthew Hatem and Scott Kiesel and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 03824 USA mhatem and skiesel and

More information

Heuristic Search and Advanced Methods

Heuristic Search and Advanced Methods Heuristic Search and Advanced Methods Computer Science cpsc322, Lecture 3 (Textbook Chpt 3.6 3.7) May, 15, 2012 CPSC 322, Lecture 3 Slide 1 Course Announcements Posted on WebCT Assignment1 (due on Thurs!)

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Monday 9 March, 0 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Chapter S:IV. IV. Informed Search

Chapter S:IV. IV. Informed Search Chapter S:IV IV. Informed Search Best-First Search Best-First Search for State-Space Graphs Cost Functions for State-Space Graphs Evaluation of State-Space Graphs Algorithm A* BF* Variants Hybrid Strategies

More information

1 Introduction and Examples

1 Introduction and Examples 1 Introduction and Examples Sequencing Problems Definition A sequencing problem is one that involves finding a sequence of steps that transforms an initial system state to a pre-defined goal state for

More information

Search and Optimization

Search and Optimization Search and Optimization Search, Optimization and Game-Playing The goal is to find one or more optimal or sub-optimal solutions in a given search space. We can either be interested in finding any one solution

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

Data Structures Lecture 3 Order Notation and Recursion

Data Structures Lecture 3 Order Notation and Recursion Data Structures Lecture 3 Order Notation and Recursion 1 Overview The median grade.cpp program from Lecture 2 and background on constructing and using vectors. Algorithm analysis; order notation Recursion

More information

Topic 1 Uninformed Search

Topic 1 Uninformed Search Topic 1 Uninformed Search [George F Luger. 2008. Artificial Intelligence Structures and Strategies for Complex Problem Solving. 6 th Ed. Pearson. ISBN: 0321545893.] 1 Contents 1. Depth-First Search (DFS)

More information

Comparative Study of RBFS & ARBFS Algorithm

Comparative Study of RBFS & ARBFS Algorithm IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 78-066, p- ISSN: 78-877Volume 0, Issue 5 (Mar. - Apr. 0), PP 05-0 Comparative Study of RBFS & ARBFS Algorithm Disha Sharma, Sanjay Kumar Dubey (Information

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 Dynamic Programming is a powerful technique that allows one to solve many different types

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Friday 17th November (Week 8), 15:00-17:00. Class Test 2 (Everything but Prolog) Friday 15th December

More information

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004 Today s s lecture Search and Agents Material at the end of last lecture Lecture 3: Search - 2 Victor R. Lesser CMPSCI 683 Fall 2004 Continuation of Simple Search The use of background knowledge to accelerate

More information

Informed search methods

Informed search methods Informed search methods Tuomas Sandholm Computer Science Department Carnegie Mellon University Read Section 3.5-3.7 of Russell and Norvig Informed Search Methods Heuristic = to find, to discover Heuristic

More information

Properties of Criteria. 1. Applicability Property. Criteria

Properties of Criteria. 1. Applicability Property. Criteria Properties of Criteria Program-based To recognize a good adequacy criteria And to discard poor choices Objective, well-defined properties 1. Applicability Property For every program, there exists an adequate

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr. Malek Mouhoub Department of Computer Science University of Regina Fall 2005 Malek Mouhoub, CS820 Fall 2005 1 3. State-Space Search 3. State-Space Search Graph Theory Uninformed

More information

COMP Data Structures

COMP Data Structures COMP 2140 - Data Structures Shahin Kamali Topic 5 - Sorting University of Manitoba Based on notes by S. Durocher. COMP 2140 - Data Structures 1 / 55 Overview Review: Insertion Sort Merge Sort Quicksort

More information

CS61A Notes 02b Fake Plastic Trees. 2. (cons ((1 a) (2 o)) (3 g)) 3. (list ((1 a) (2 o)) (3 g)) 4. (append ((1 a) (2 o)) (3 g))

CS61A Notes 02b Fake Plastic Trees. 2. (cons ((1 a) (2 o)) (3 g)) 3. (list ((1 a) (2 o)) (3 g)) 4. (append ((1 a) (2 o)) (3 g)) CS61A Notes 02b Fake Plastic Trees Box and Pointer Diagrams QUESTIONS: Evaluate the following, and draw a box-and-pointer diagram for each. (Hint: It may be easier to draw the box-and-pointer diagram first.)

More information

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

II (Sorting and) Order Statistics

II (Sorting and) Order Statistics II (Sorting and) Order Statistics Heapsort Quicksort Sorting in Linear Time Medians and Order Statistics 8 Sorting in Linear Time The sorting algorithms introduced thus far are comparison sorts Any comparison

More information

Heuris'c Search. Reading note: Chapter 4 covers heuristic search.

Heuris'c Search. Reading note: Chapter 4 covers heuristic search. Heuris'c Search Reading note: Chapter 4 covers heuristic search. Credits: Slides in this deck are drawn from or inspired by a multitude of sources including: Shaul Markovitch Jurgen Strum Sheila McIlraith

More information

Chapter 3: Search. c D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 1

Chapter 3: Search. c D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 1 Chapter 3: Search c D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 1 Searching Often we are not given an algorithm to solve a problem, but only a specification of

More information

This should prevent residual sexism, racism, favoritism lurking in the unconscious of your professor & TA from biasing grading!!

This should prevent residual sexism, racism, favoritism lurking in the unconscious of your professor & TA from biasing grading!! NAME login: Signature: Computer Science and Engineering 150 Programming Languages for Artificial Intelligence Tuesday, November 5, 2002: DON T FORGET TO VOTE!!! FIRST MIDTERM EXAM DO NOT TURN THIS PAGE

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Discrete planning (an introduction)

Discrete planning (an introduction) Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Discrete planning (an introduction) Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic Uninformed (blind) search algorithms can find an (optimal) solution to the problem,

More information

CS 416, Artificial Intelligence Midterm Examination Fall 2004

CS 416, Artificial Intelligence Midterm Examination Fall 2004 CS 416, Artificial Intelligence Midterm Examination Fall 2004 Name: This is a closed book, closed note exam. All questions and subquestions are equally weighted. Introductory Material 1) True or False:

More information

The PRAM Model. Alexandre David

The PRAM Model. Alexandre David The PRAM Model Alexandre David 1.2.05 1 Outline Introduction to Parallel Algorithms (Sven Skyum) PRAM model Optimality Examples 11-02-2008 Alexandre David, MVP'08 2 2 Standard RAM Model Standard Random

More information

SORTING. Insertion sort Selection sort Quicksort Mergesort And their asymptotic time complexity

SORTING. Insertion sort Selection sort Quicksort Mergesort And their asymptotic time complexity 1 SORTING Insertion sort Selection sort Quicksort Mergesort And their asymptotic time complexity See lecture notes page, row in table for this lecture, for file searchsortalgorithms.zip Lecture 11 CS2110

More information

Dynamic Programming. CSE 421: Intro Algorithms. Some Algorithm Design Techniques, I. Techniques, II. Outline:

Dynamic Programming. CSE 421: Intro Algorithms. Some Algorithm Design Techniques, I. Techniques, II. Outline: Dynamic Programming CSE 42: Intro Algorithms Summer 2007 W. L. Ruzzo Dynamic Programming, I Fibonacci & Stamps Outline: General Principles Easy Examples Fibonacci, Licking Stamps Meatier examples RNA Structure

More information

Flow Graph Theory. Depth-First Ordering Efficiency of Iterative Algorithms Reducible Flow Graphs

Flow Graph Theory. Depth-First Ordering Efficiency of Iterative Algorithms Reducible Flow Graphs Flow Graph Theory Depth-First Ordering Efficiency of Iterative Algorithms Reducible Flow Graphs 1 Roadmap Proper ordering of nodes of a flow graph speeds up the iterative algorithms: depth-first ordering.

More information

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap.

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap. Notes about the assignment Informed Search Russell and Norvig chap. 4 If it says return True or False, return True or False, not "True" or "False Comment out or remove print statements before submitting.

More information

Algorithms A Look At Efficiency

Algorithms A Look At Efficiency Algorithms A Look At Efficiency 1B Big O Notation 15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 1 Big O Instead of using the exact number of operations to express the complexity

More information

COMP 202 Recursion. CONTENTS: Recursion. COMP Recursion 1

COMP 202 Recursion. CONTENTS: Recursion. COMP Recursion 1 COMP 202 Recursion CONTENTS: Recursion COMP 202 - Recursion 1 Recursive Thinking A recursive definition is one which uses the word or concept being defined in the definition itself COMP 202 - Recursion

More information

Contents. Foundations of Artificial Intelligence. General Algorithm. Best-First Search

Contents. Foundations of Artificial Intelligence. General Algorithm. Best-First Search Contents Foundations of Artificial Intelligence 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität

More information

CSE 146. Asymptotic Analysis Interview Question of the Day Homework 1 & Project 1 Work Session

CSE 146. Asymptotic Analysis Interview Question of the Day Homework 1 & Project 1 Work Session CSE 146 Asymptotic Analysis Interview Question of the Day Homework 1 & Project 1 Work Session Comparing Algorithms Rough Estimate Ignores Details Or really: independent of details What are some details

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

CS 495 & 540: Problem Set 1

CS 495 & 540: Problem Set 1 CS 495 & 540: Problem Set 1 Section: MW 10-11:50 am Total: 150pts Due: 02/10/2016 Instructions: 1. I leave plenty of space on each page for your computation. If you need more sheet, please attach your

More information