Recursive Best-First Search with Bounded Overhead

Size: px
Start display at page:

Download "Recursive Best-First Search with Bounded Overhead"

Transcription

1 Recursive Best-First Search with Bounded Overhead Matthew Hatem and Scott Kiesel and Wheeler Ruml with support from NSF grant IIS Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 1 / 11

2 Problem Summary CR A* remembers every state it visits, often exceeds memory Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

3 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

4 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

5 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

6 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Only best-first in some cases! Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

7 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Only best-first in some cases! Recursive Best-First Search (Korf 1993) Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

8 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Only best-first in some cases! Recursive Best-First Search (Korf 1993) Always best-first! Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

9 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Only best-first in some cases! Recursive Best-First Search (Korf 1993) Always best-first! Suffers from thrashing overhead Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

10 Problem Summary CR A* remembers every state it visits, often exceeds memory Motivation for linear-space variants: Iterative Deepening A* (Korf 1985) Has bounded overhead Only best-first in some cases! Recursive Best-First Search (Korf 1993) Always best-first! Suffers from thrashing overhead This is what we fix! Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 2 / 11

11 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 0 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

12 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 1 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

13 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 2 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

14 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 3 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

15 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 4 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

16 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 5 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

17 Iterative Deepening Depth-First Search (IDDFS) CR Depth Bound = 6 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 3 / 11

18 Iterative Deepening A* (IDA*) CR Cost Bound = 6 f(n) = g(n) + h(n) "f layers" Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 4 / 11

19 Iterative Deepening A* (IDA*) CR Cost Bound = 6 f(n) = g(n) + h(n) "f layers" Only best-first if f layers are monotonically increasing! (not the case in, eg, suboptimal variants) Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 4 / 11

20 Recursive Best-First Search (RBFS) CR 3 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

21 Recursive Best-First Search (RBFS) CR best 3 next best bound = 7 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

22 Recursive Best-First Search (RBFS) CR 3 7 next best B=7 best 4 9 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

23 Recursive Best-First Search (RBFS) CR next best B=7 best 4 9 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

24 Recursive Best-First Search (RBFS) CR Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

25 Recursive Best-First Search (RBFS) CR Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

26 Recursive Best-First Search (RBFS) CR next best 3 B=8 8 7 best 9 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

27 Recursive Best-First Search (RBFS) CR B= best 8 next best 1 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

28 Recursive Best-First Search (RBFS) CR Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

29 Recursive Best-First Search (RBFS) CR Strict best-first search order causes thrashing! Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 5 / 11

30 RBFS with Bounded Overhead CR backup min Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 6 / 11

31 RBFS with Bounded Overhead CR min + epsilon Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 6 / 11

32 RBFS with Bounded Overhead CR 3 select value to guarantee at least double! f distribution Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 6 / 11

33 RBFS with Bounded Overhead CR 3 select value to guarantee at least double! f distribution Relaxing best-first search order reduces overhead! See paper for proof Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 6 / 11

34 Sliding Tile Puzzle Tile Puzzle Planning Korf 100 (Korf 1985) A* with Manhattan Distance runs out of memory Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 7 / 11

35 Sliding Tile Puzzle Tile Puzzle Planning Korfs puzzles (unit cost) (w=2) Exp. Avg. Cost Time RBFS 29,253, RBFS ǫ 13,078, RBFS CR 11,695, IDA* 11,136, Relaxing best-first search order gives faster solving times Better solutions but slower than IDA* Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 8 / 11

36 Dockyard Robot Planning Tile Puzzle Planning From Ghallab, Nau, Traverso (2004) All actions have real costs Many duplicate states CR and RBFS CR with transposition tables Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 9 / 11

37 Dockyard Robot Planning Tile Puzzle Planning 5 locations, cranes, piles and 8 containers Exp. Exp./Sec. Time Reopened IDA* CR 2,044m 112k 18,394 2,042m RBFS CR 188m 103k 1,824 87m RBFS ǫ=1 472m 147k 3,222 4m RBFS ǫ=2 251m 140k 1,795 5m RBFS ǫ=3 154m 141k 1,094 14m Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 10 / 11

38 Dockyard Robot Planning Tile Puzzle Planning 5 locations, cranes, piles and 8 containers Exp. Exp./Sec. Time Reopened IDA* CR 2,044m 112k 18,394 2,042m RBFS CR 188m 103k 1,824 87m RBFS ǫ=1 472m 147k 3,222 4m RBFS ǫ=2 251m 140k 1,795 5m RBFS ǫ=3 154m 141k 1,094 14m RBFS CR is faster because it expands 10x fewer nodes Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 10 / 11

39 Summary is depth-first, RBFS is always best-first! Summary Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 11 / 11

40 Summary is depth-first, RBFS is always best-first! Simple modifications reduce overhead (see paper) Summary Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 11 / 11

41 Summary Summary is depth-first, RBFS is always best-first! Simple modifications reduce overhead (see paper) CR gives first provable bounds for overhead Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 11 / 11

42 Summary Summary is depth-first, RBFS is always best-first! Simple modifications reduce overhead (see paper) CR gives first provable bounds for overhead Is it time for IDA* to retire? Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 11 / 11

43 Summary Summary is depth-first, RBFS is always best-first! Simple modifications reduce overhead (see paper) CR gives first provable bounds for overhead Is it time for IDA* to retire? deserves more attention! IDA* citations: 1523 RBFS citations: 310 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 11 / 11

44 Backup Backup Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 12 / 11

45 Anytime Heuristic Search 15-Puzzle (unit w=4.0) 0.9 Backup Solution Quality RBFS-cr RBFS CPU Time Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 13 / 11

46 Anytime Heuristic Search 15-Puzzle (sqrt w=4.0) 0.9 Backup Solution Quality CPU Time RBFS-cr RBFS Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 13 / 11

47 Anytime Heuristic Search 25 Pancake (sqrt w=1.2) 0.9 Backup Solution Quality RBFS-cr RBFS CPU Time Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead 13 / 11

Recursive Best-First Search with Bounded Overhead

Recursive Best-First Search with Bounded Overhead Recursive Best-First Search with Bounded Overhead Matthew Hatem and Scott Kiesel and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 03824 USA mhatem and skiesel and

More information

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches ITCS 6150 Intelligent Systems Lecture 5 Informed Searches Informed Searches We are informed (in some way) about future states and future paths We use this information to make better decisions about which

More information

Bounded Suboptimal Search in Linear Space: New Results

Bounded Suboptimal Search in Linear Space: New Results Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014) Bounded Suboptimal Search in Linear Space: New Results Matthew Hatem and Wheeler Ruml Department of Computer Science University

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

Bounded Suboptimal Heuristic Search in Linear Space

Bounded Suboptimal Heuristic Search in Linear Space Proceedings of the Sixth International Symposium on Combinatorial Search Bounded Suboptimal Heuristic Search in Linear Space Matthew Hatem Department of Computer Science University of New Hampshire Durham,

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

Solving Large Problems with Heuristic Search: General-Purpose Parallel External-Memory Search

Solving Large Problems with Heuristic Search: General-Purpose Parallel External-Memory Search Journal of Artificial Intelligence Research 62 (2018) 233-268 Submitted 12/2017; published 6/2018 Solving Large Problems with Heuristic Search: General-Purpose Parallel External-Memory Search Matthew Hatem

More information

CS 730/730W/830: Intro AI

CS 730/730W/830: Intro AI CS 730/730W/830: Intro AI 1 handout: slides asst 1 milestone was due Wheeler Ruml (UNH) Lecture 4, CS 730 1 / 19 EOLQs Wheeler Ruml (UNH) Lecture 4, CS 730 2 / 19 Comparison Heuristics Search Algorithms

More information

Heuristic Search for Large Problems With Real Costs

Heuristic Search for Large Problems With Real Costs Heuristic Search for Large Problems With Real Costs Matthew Hatem and Ethan Burns and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 03824 USA mhatem, eaburns and ruml

More information

Lecture 5 Heuristics. Last Time: A* Search

Lecture 5 Heuristics. Last Time: A* Search CSE 473 Lecture 5 Heuristics CSE AI Faculty Last Time: A* Search Use an evaluation function f(n) for node n. f(n) = estimated total cost of path thru n to goal f(n) = g(n) + h(n) g(n) = cost so far to

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5 ARTIFICIAL INTELLIGENCE LECTURE 3 Ph. D. Lect. Horia Popa Andreescu 2012-2013 3 rd year, semester 5 The slides for this lecture are based (partially) on chapter 4 of the Stuart Russel Lecture Notes [R,

More information

Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!!

Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!! Best-First Search! Minimizing Space or Time!! IDA*! Save space, take more time!! IDA*-1 A* space complexity!» What does the space complexity of A* depend upon?! IDA*-2 A* space complexity 2!» What does

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

HEURISTIC SEARCH WITH LIMITED MEMORY. Matthew Hatem

HEURISTIC SEARCH WITH LIMITED MEMORY. Matthew Hatem HEURISTIC SEARCH WITH LIMITED MEMORY BY Matthew Hatem Bachelor s in Computer Science, Plymouth State College, 1999 Master s in Computer Science, University of New Hampshire, 2010 DISSERTATION Submitted

More information

CS 380: Artificial Intelligence Lecture #4

CS 380: Artificial Intelligence Lecture #4 CS 380: Artificial Intelligence Lecture #4 William Regli Material Chapter 4 Section 1-3 1 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing

More information

Advanced A* Improvements

Advanced A* Improvements Advanced A* Improvements 1 Iterative Deepening A* (IDA*) Idea: Reduce memory requirement of A* by applying cutoff on values of f Consistent heuristic function h Algorithm IDA*: 1. Initialize cutoff to

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004 Today s s lecture Search and Agents Material at the end of last lecture Lecture 3: Search - 2 Victor R. Lesser CMPSCI 683 Fall 2004 Continuation of Simple Search The use of background knowledge to accelerate

More information

Heuris'c Search. Reading note: Chapter 4 covers heuristic search.

Heuris'c Search. Reading note: Chapter 4 covers heuristic search. Heuris'c Search Reading note: Chapter 4 covers heuristic search. Credits: Slides in this deck are drawn from or inspired by a multitude of sources including: Shaul Markovitch Jurgen Strum Sheila McIlraith

More information

Best-First Search Minimizing Space or Time. IDA* Save space, take more time

Best-First Search Minimizing Space or Time. IDA* Save space, take more time Best-First Search Minimizing Space or Time IDA* Save space, take more time IDA*-1 A* space complexity» What does the space complexity of A* depend upon? IDA*-2 A* space complexity 2» What does the space

More information

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Jordan T. Thayer and Wheeler Ruml jtd7, ruml at cs.unh.edu With Thanks To NSF-IIS0812141 and DARPA CSSG N10AP20029 Jordan T. Thayer

More information

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First?

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First? Moving On 10. Single-agent Search Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Two-player adversary search is nice, but not all interesting problems can be mapped to games Large

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time!

Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time! Best-First Search! Minimizing Space or Time!! RBFS! Save space, take more time! RBFS-1 RBFS general properties! Similar to A* algorithm developed for heuristic search! RBFS-2 RBFS general properties 2!

More information

Lecture 4: Informed/Heuristic Search

Lecture 4: Informed/Heuristic Search Lecture 4: Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* RBFS SMA* Techniques

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

A Survey of Suboptimal Search Algorithms

A Survey of Suboptimal Search Algorithms A Survey of Search Algorithms Jordan T. Thayer and Wheeler Ruml jtd7, ruml at cs.unh.edu slides at: http://www.cs.unh.edu/ jtd7/papers/ Jordan Thayer and Wheeler Ruml (UNH) Search 1 / 28 This is Search

More information

This lecture. Lecture 6: Search 5. Other Time and Space Variations of A* Victor R. Lesser. RBFS - Recursive Best-First Search Algorithm

This lecture. Lecture 6: Search 5. Other Time and Space Variations of A* Victor R. Lesser. RBFS - Recursive Best-First Search Algorithm Lecture 6: Search 5 Victor R. Lesser CMPSCI 683 Fall 2010 This lecture Other Time and Space Variations of A* Finish off RBFS SMA* Anytime A* RTA* (maybe if have time) RBFS - Recursive Best-First Search

More information

Robust Bidirectional Search via Heuristic Improvement

Robust Bidirectional Search via Heuristic Improvement Robust via Heuristic Improvement Christopher Wilt and Wheeler Ruml Thanks to Michael Leighton, NSF (grants 0812141 and 1150068) and DARPA (grant N10AP20029) Christopher Wilt (UNH) Robust via Heuristic

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

A* optimality proof, cycle checking

A* optimality proof, cycle checking A* optimality proof, cycle checking CPSC 322 Search 5 Textbook 3.6 and 3.7.1 January 21, 2011 Taught by Mike Chiang Lecture Overview Recap Admissibility of A* Cycle checking and multiple path pruning Slide

More information

Efficient memory-bounded search methods

Efficient memory-bounded search methods Efficient memory-bounded search methods Mikhail Simin Arjang Fahim CSCE 580: Artificial Intelligence Fall 2011 Dr. Marco Voltorta Outline of The Presentation Motivations and Objectives Background - BFS

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03 p.1/47 Informed Search and Exploration Sections 3.5 and 3.6 Ch. 03 p.2/47 Outline Best-first search A search Heuristics, pattern databases IDA search (Recursive Best-First Search (RBFS), MA and

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03b p.1/51 Informed Search and Exploration Sections 3.5 and 3.6 Nilufer Onder Department of Computer Science Michigan Technological University Ch. 03b p.2/51 Outline Best-first search A search Heuristics,

More information

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty)

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Informed search algorithms Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Intuition, like the rays of the sun, acts only in an inflexibly

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

1 Introduction and Examples

1 Introduction and Examples 1 Introduction and Examples Sequencing Problems Definition A sequencing problem is one that involves finding a sequence of steps that transforms an initial system state to a pre-defined goal state for

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Jordan T. Thayer and Wheeler Ruml Department

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Wednesday March, 00 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

ARTIFICIAL INTELLIGENCE. Informed search

ARTIFICIAL INTELLIGENCE. Informed search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Informed search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Heuristic Evaluation Function. 11. Evaluation. Issues. Admissible Evaluations. Jonathan Schaeffer

Heuristic Evaluation Function. 11. Evaluation. Issues. Admissible Evaluations. Jonathan Schaeffer Heuristic Evaluation Function. Evaluation Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Most of the magic in a single-agent searcher is in the evaluation function To obtain an

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic Uninformed (blind) search algorithms can find an (optimal) solution to the problem,

More information

Artificial Intelligence Informed search. Peter Antal

Artificial Intelligence Informed search. Peter Antal Artificial Intelligence Informed search Peter Antal antal@mit.bme.hu 1 Informed = use problem-specific knowledge Which search strategies? Best-first search and its variants Heuristic functions? How to

More information

Informed Search. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison

Informed Search. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison Informed Search Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials ] slide 1 Main messages

More information

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017 Lecture 2: Fun with Search Rachel Greenstadt CS 510, October 5, 2017 Reminder! Project pre-proposals due tonight Overview Uninformed search BFS, DFS, Uniform-Cost, Graph-Search Informed search Heuristics,

More information

Informed search methods

Informed search methods Informed search methods Tuomas Sandholm Computer Science Department Carnegie Mellon University Read Section 3.5-3.7 of Russell and Norvig Informed Search Methods Heuristic = to find, to discover Heuristic

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

CS 771 Artificial Intelligence. Informed Search

CS 771 Artificial Intelligence. Informed Search CS 771 Artificial Intelligence Informed Search Outline Review limitations of uninformed search methods Informed (or heuristic) search Uses problem-specific heuristics to improve efficiency Best-first,

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Improving the Efficiency of Depth-First Search by Cycle Elimination

Improving the Efficiency of Depth-First Search by Cycle Elimination Improving the Efficiency of Depth-First Search by Cycle Elimination John F. Dillenburg and Peter C. Nelson * Department of Electrical Engineering and Computer Science (M/C 154) University of Illinois Chicago,

More information

Search. CS 3793/5233 Artificial Intelligence Search 1

Search. CS 3793/5233 Artificial Intelligence Search 1 CS 3793/5233 Artificial Intelligence 1 Basics Basics State-Space Problem Directed Graphs Generic Algorithm Examples Uninformed is finding a sequence of actions that achieve a goal from an initial state.

More information

Informed/Heuristic Search

Informed/Heuristic Search Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* Techniques for generating

More information

Announcements. Today s Menu

Announcements. Today s Menu Announcements 1 Today s Menu Finish up (Chapter 9) IDA, IDA* & RBFS Search Efficiency 2 Related Algorithms Bi-Directional Search > Breadth-First may expand less nodes bidirectionally than unidirectionally

More information

Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 472 SADI EVREN SEKER

Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 472 SADI EVREN SEKER Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 7 SADI EVREN SEKER Review of Search - BFS Review of Search - DFS Review of Search - IDDFS DFS Remembering: IDDFS(root, A, B, goal) D, F, E,

More information

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search:

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search: Outline for today s lecture Informed Search II Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing 2 Review: Greedy best-first search: f(n): estimated

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Informed Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, 2018 Chapter 3 Informed Searching Mustafa Jarrar University of Birzeit Jarrar 2018 1 Watch this lecture and download the slides

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 16 rd November, 2011 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Lecture 3 - States and Searching

Lecture 3 - States and Searching Lecture 3 - States and Searching Jesse Hoey School of Computer Science University of Waterloo January 15, 2018 Readings: Poole & Mackworth Chapt. 3 (all) Searching Often we are not given an algorithm to

More information

INTRODUCTION TO HEURISTIC SEARCH

INTRODUCTION TO HEURISTIC SEARCH INTRODUCTION TO HEURISTIC SEARCH What is heuristic search? Given a problem in which we must make a series of decisions, determine the sequence of decisions which provably optimizes some criterion. What

More information

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati Heuristic Search CPSC 470/570 Artificial Intelligence Brian Scassellati Goal Formulation 200 Denver 300 200 200 Chicago 150 200 Boston 50 1200 210 75 320 255 Key West New York Well-defined function that

More information

Informed State Space Search B4B36ZUI, LS 2018

Informed State Space Search B4B36ZUI, LS 2018 Informed State Space Search B4B36ZUI, LS 2018 Branislav Bošanský, Martin Schaefer, David Fiedler, Jaromír Janisch {name.surname}@agents.fel.cvut.cz Artificial Intelligence Center, Czech Technical University

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Monday 9 March, 0 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman selman@cs.cornell.edu Module: Informed Search Readings R&N - Chapter 3: 3.5 and 3.6 Search Search strategies determined by choice of node (in

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Informed Search Prof. Scott Niekum University of Texas at Austin [These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

Faster Than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search

Faster Than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Faster Than Weighted A*: An Approach to Bounded Suboptimal Search Jordan T. Thayer and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 08 USA jtd7, ruml at cs.unh.edu

More information

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek Lecture 9 Heuristic search, continued A* revisited Reminder: with A* we want to find the best-cost (C ) path to the goal first. To do this, all we have to do is make sure our cost estimates are less than

More information

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA Heuristic Search Rob Platt Northeastern University Some images and slides are used from: AIMA Recap: What is graph search? Start state Goal state Graph search: find a path from start to goal what are the

More information

Iterative-Deepening Search with On-line Tree Size Prediction

Iterative-Deepening Search with On-line Tree Size Prediction Iterative-Deepening Search with On-line Tree Size Prediction Ethan Burns and Wheeler Ruml University of New Hampshire Department of Computer Science eaburns at cs.unh.edu and ruml at cs.unh.edu Abstract.

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven test gamma 2006/2007 Intelligent Systems 1 Intelligent Systems Prof. dr. Paul De Bra Technische Universiteit Eindhoven debra@win.tue.nl 2006/2007 Intelligent Systems 2 Informed search and exploration Best-first

More information

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague Informed search algorithms Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start precommended literature ::

More information

! A* is best first search with f(n) = g(n) + h(n) ! Three changes make it an anytime algorithm:

! A* is best first search with f(n) = g(n) + h(n) ! Three changes make it an anytime algorithm: Anytime A* Today s s lecture Lecture 5: Search - 4 Hierarchical A* Jiaying Shen CMPSCI 683 Fall 2004 Other Examples of Hierarchical Problem Solving Reviews of A* and its varations 2 Anytime algorithms

More information

Effective use of memory in linear space best first search

Effective use of memory in linear space best first search Effective use of memory in linear space best first search Marko Robnik-Šikonja University of Ljubljana, Faculty of Electrical Engineering and Computer Science, Tržaška 5, 00 Ljubljana, Slovenia e-mail:

More information

Chapter 3 Solving Problems by Searching Informed (heuristic) search strategies More on heuristics

Chapter 3 Solving Problems by Searching Informed (heuristic) search strategies More on heuristics Chapter 3 Solving Problems by Searching 3.5 3.6 Informed (heuristic) search strategies More on heuristics CS5811 - Advanced Artificial Intelligence Nilufer Onder Department of Computer Science Michigan

More information

Uninformed Search. Chapter 3

Uninformed Search. Chapter 3 Uninformed Search Chapter 3 (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, Richard Korf, and other UW-AI faculty) Agent s Knowledge Representation Type State

More information

Breadth-first heuristic search. Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon

Breadth-first heuristic search. Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon Breadth-first heuristic search Paper by Rong Zhou, Eric A. Hansen Presentation by Salomé Simon Breadth-first tree search 1 2 3 4 5 6 7 Used for search problems with uniform edge cost Prerequisite for presented

More information

Informed Search and Exploration for Agents

Informed Search and Exploration for Agents Informed Search and Exploration for Agents R&N: 3.5, 3.6 Michael Rovatsos University of Edinburgh 29 th January 2015 Outline Best-first search Greedy best-first search A * search Heuristics Admissibility

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität

More information

Breadth-First Heuristic Search

Breadth-First Heuristic Search 14th International Conference on Automated Planning and Scheduling (ICAPS-04) Whistler, British Columbia, Canada June 3-7, 2004 Breadth-First Heuristic Search Rong Zhou and Eric A. Hansen Department of

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

What is a Pattern Database? Pattern Databases. Success Story #1. Success Story #2. Robert Holte Computing Science Dept. University of Alberta

What is a Pattern Database? Pattern Databases. Success Story #1. Success Story #2. Robert Holte Computing Science Dept. University of Alberta What is a Pattern Database Pattern Databases Robert Holte Computing Science Dept. University of Alberta November, 00 PDB = a heuristic stored as a lookup table Invented by Culberson and Schaeffer (99)

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit Lecture Notes on Informed Searching University of Birzeit, Palestine 1 st Semester, 2014 Artificial Intelligence Chapter 4 Informed Searching Dr. Mustafa Jarrar Sina Institute, University of Birzeit mjarrar@birzeit.edu

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

ITS: An Ecient Limited-Memory Heuristic Tree Search Algorithm. Subrata Ghosh Ambuj Mahanti Dana S. Nau

ITS: An Ecient Limited-Memory Heuristic Tree Search Algorithm. Subrata Ghosh Ambuj Mahanti Dana S. Nau ITS: An Ecient Limited-Memory Heuristic Tree Search Algorithm Subrata Ghosh Ambuj Mahanti Dana S. Nau Department of Computer Science IIM, Calcutta Dept. of Computer Science, and University of Maryland

More information