Luke. Leia 2. Han Leia

Size: px
Start display at page:

Download "Luke. Leia 2. Han Leia"

Transcription

1 Reading SE : ata Structures raph lgorithms raph Search hapter.,.,. Lecture raph T raphs are a formalism for representing relationships between objects a graph is represented as = (V, E) Han V is a set of vertices E is a set of edges Leia Luke V = {Han, Leia, Luke} operations include: E = {(Luke, Leia), (Han, Leia), iterating over vertices (Leia, Han)} iterating over edges iterating over vertices adjacent to a specific vertex asking whether an edge exists connected two vertices raphs In Practice q Web graph Vertices are web pages Edge from u to v is a link to v appears on u q all graph of a computer program Vertices are functions Edge from u to v is u s v q Task graph for a work flow Vertices are tasks Edge from u to v if u must be completed before v begins raph Representation : djacency Matrix raph Representation : djacency List V x V array in which an element (u, v) is true if and only if there is an edge from u to v Han Luke Han Han Luke Leia Leia Runtime: Luke iterate over vertices O( v ) iterate ever edges O( v ) Leia iterate edges adj. to vertex O( v ) edge exists? O() Space required: O( v ) V -ary list (array) in which each entry stores a list (linked list) of all adjacent vertices Han Luke Han Leia Luke Runtime: iterate over vertices O(v) iterate ever edges O( e ) Leia iterate edges adj. to vertex O(d) (d is number of adj. vertices) edge exists? O(d) Space required: O( v + e )

2 Terminology Weighted raphs q In directed graphs, edges have a specific direction q In undirected graphs, edges are two-way q Vertices u and v are adjacent if (u, v) E q sparse graph has O( V ) edges (upper bound) q dense graph has Ω( V ) edges (lower bound) q complete graph has an edge between every pair of vertices q n undirected graph is connected if there is a path between any two vertices Each edge has an associated weight or cost. linton Kingston Bainbridge Mukilteo Edmonds Seattle Bremerton 8 Paths and ycles path is a list of vertices {v, v,, v n } such that (v i, v i+ ) E for all i < n. cycle is a path that begins and ends at the same node. hicago Seattle Path Length and ost Path length: the number of edges in the path Path cost: the sum of the costs of each edge Seattle. hicago Salt Lake ity. Salt Lake ity.. San Francisco allas p = {Seattle, Salt Lake ity, hicago, allas, San Francisco, Seattle} San Francisco allas length(p) = cost(p) =. Trees as raphs irected cyclic raphs (s) Every tree is a graph with some restrictions: the tree is directed there are no cycles (directed or undirected) there is a directed path from the root to every node B E F H s are directed graphs with no cycles. add() access() main() Trees s raphs program graph mult() read()

3 Topological Sort iven a directed graph, = (V, E), output all the vertices in V such that no vertex is output before any other vertex with an edge to it. to Topological Sort Label each vertex s in-degree Initialize a queue to contain all in-degree zero vertices While there are vertices remaining in the queue Remove a vertex v with in-degree of zero and output it Reduce the in-degree of all vertices adjacent to v Put any of these with new in-degree zero on the queue Runtime: O( v + e ) to Queue = Output = to Queue = Output = to Queue = Output = to Queue = Output = 8

4 to Queue = Output = to Queue = Output = Exercise to Queue = Output = esign the algorithm to initialize the in-degree array. ssume the adjacency list representation. raph Search eneral raph Search lgorithm Many problems in computer science correspond to searching for a path in a graph, given a start node and goal criteria Route planning Mapquest Packet-switching VLSI layout -degrees of Kevin Bacon Program synthesis Speech recognition We ll discuss these last two later Open some data structure (e.g., stack, queue, heap) riteria some method for removing an element from Open Search( Start, oal_test, riteria) insert(start, Open); repeat if (empty(open)) then return fail; select Node from Open using riteria; Mark Node as visited; if (oal_test(node)) then return Node;

5 Open Stack riteria Pop epth-first raph Search FS( Start, oal_test) push(start, Open); repeat if (empty(open)) then return fail; Node := pop(open); Mark Node as visited; if (oal_test(node)) then return Node; Open Queue Breadth-First raph Search riteria equeue (FIFO) BFS( Start, oal_test) enqueue(start, Open); repeat if (empty(open)) then return fail; Node := dequeue(open); Mark Node as visited; if (oal_test(node)) then return Node; for each hild of node do if (hild not already visited) then enqueue(hild, Open); end BFS - FS - QUEUE = STK = 8 Two Models Planning. Standard Model: raph given explicitly with n vertices and e edges. q Search is O(n + e) time in adjacency list representation. I Model: raph generated on the fly. q Time for search need not visit every vertex. huge graph may be implicitly specified by rules for generating it on-the-fly Blocks world: vertex = relative positions of all blocks edge = robot arm stacks one block stack(blue,table) stack(blue,red) stack(green,red) stack(green,blue) stack(green,blue)

6 I omparison: FS versus BFS epth-first search oes not always find shortest paths Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle Breadth-first search lways finds shortest paths optimal solutions Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate FS Space Requirements ssume: Longest path in graph is length d Highest number of out-edges is k FS stack grows at most to size dk For k=, d=, size is Is BFS always preferable? BFS Space Requirements onclusion ssume istance from start to a goal is d Highest number of out edges is k BFS Queue could grow to size k d For k=, d=, size is,,,,, In the I Model, FS is hugely more memory efficient, if we can limit the maximum path length to some fixed d. If we knew the distance from the start to the goal in advance, we can just not add any children to stack after level d But what if we don t know d in advance? Recursive epth-first Search Finding onnected omponents FS(v: vertex) mark v; for each vertex w adjacent to v do if w is unmarked then FS(w) Note: the recursion has the same effect as a stack For each vertex v do mark[v]= ; :=. For each vertex v do if mark[v] = then dfs(v); := +; dfs(v: vertex) mark[v] := ; for each vertex w adjacent to v do if mark[w] = then dfs(w) ll those vertices with the same mark are in the same connected component

7 Saving the Path For undirected graphs, each edge appears twice on the adjacency lists. mark Our pseudocode returns the goal node found, but not the path to it How can we remember the path? dd a field to each node, that points to the previous node along the path Follow pointers from goal back to start to recover path 8 (Unweighted raph) Seattle Seattle Salt Lake ity Salt Lake ity San Francisco allas San Francisco allas (Unweighted raph) raph Search, Saving Path Seattle Salt Lake ity San Francisco allas Search( Start, oal_test, riteria) insert(start, Open); repeat if (empty(open)) then return fail; select Node from Open using riteria; Mark Node as visited; if (oal_test(node)) then return Node; for each hild of node do if (hild not already visited) then hild.previous := Node; Insert( hild, Open ); end

8 Shortest Path for Weighted raphs Edsger Wybe ijkstra (-) iven a graph = (V, E) with edge costs c(e), and a vertex s V, find the shortest (lowest cost) path from s to every vertex in V ssume: only positive edge costs q Invented concepts of structured programming, synchronization, weakest precondition, and "semaphores" for controlling computer processes. The Oxford English ictionary cites his use of the words "vector" and "stack" in a computing context. q Believed programming should be taught without computers q Turing ward q In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind. ijkstra s lgorithm for Single Source Shortest Path Pseudocode for ijkstra Similar to breadth-first search, but uses a heap instead of a queue: lways select (expand) the vertex that has a lowest-cost path to the start vertex orrectly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges Initialize the cost of each node to s.cost := insert(s,,heap); While (! empty(heap)) n := deletemin(heap); For each edge e=(n,a) do if (n.cost + e.cost < a.cost) then a.cost = n.cost + e.cost; a.previous = n; if (a is in the heap) then decreasekey(a, a.cost, heap) else insert(a, a.cost, heap) end end Important Features ijkstra s lgorithm in ction Once a vertex is removed from the heap, the cost of the shortest path to that node is known While a vertex is still in the heap, another shorter path to it might still be found The shortest path itself can found by following the backward pointers stored in node.previous B E B E F H 8 8

9 ijkstra s lgorithm in ction ijkstra s lgorithm in ction B E x B E F H B E x B x E F H ijkstra s lgorithm in ction ijkstra s lgorithm in ction B E x B x x E F H B E x B x x x E F x H ijkstra s lgorithm in ction ijkstra s lgorithm in ction B 8 E x B x x x E F x 8 H x B 8 E x B x x x E F x x 8 H x

10 ijkstra s lgorithm in ction B 8 E x B x x x E x F x x 8 H x ata Structures for ijkstra s lgorithm V times: Select the unknown node with the lowest cost E times: a s cost = min(a s old cost, ) runtime: O( E log V ) findmin/deletemin decreasekey or insert O(log V ) O(log V ) Problem: Large raphs q It is expensive to find optimal paths in large graphs, using BFS or ijkstra s algorithm (for weighted graphs) q How can we search large graphs efficiently by using commonsense about which direction looks most promising? nd St nd St st St th St th ve S th ve 8 th ve th ve th ve th ve th ve rd ve nd ve Plan a route from th & th to rd & st 8 Best-First Search nd St nd St st St th St S rd ve th ve th ve th ve th ve 8 th ve th ve th ve Plan a route from th & th to rd & st nd ve The Manhattan distance ( x+ y) is an estimate of the distance to the goal It is a search heuristic q Best-First Search Order nodes in priority to minimize estimated distance to the goal q ompare: BFS / ijkstra Order nodes in priority to minimize distance from the start

11 Best-First Search Obstacles Open Heap (priority queue) riteria Smallest key (highest priority) h(n) heuristic estimate of distance from n to closest goal Best_First_Search( Start, oal_test) insert(start, h(start), heap); repeat if (empty(heap)) then return fail; Node := deletemin(heap); Mark Node as visited; nd St st St th St Best-FS eventually will expand vertex to get back on the right track th ve S th ve 8 th ve th ve th ve th ve th ve rd ve nd ve Non-Optimality of Best-First Improving Best-First nd St nd St st St th St th ve S Path found by Best-first th ve 8 th ve th ve th ve Shortest Path th ve th ve rd ve nd ve q Best-first is often tremendously faster than BFS/ijkstra, but might stop with a non-optimal solution q How can it be modified to be (almost) as fast, but guaranteed to find optimal solutions? q * - Hart, Nilsson, Raphael 8 One of the first significant algorithms developed in I Widely used in many applications * Optimality of * Exactly like Best-first search, but using a different criteria for the priority queue: minimize (distance from start) + (estimated distance to goal) priority f(n) = g(n) + h(n) f(n) = priority of a node g(n) = true distance from start h(n) = heuristic distance to goal Suppose the estimated distance is always less than or equal to the true distance to the goal heuristic is a lower bound Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!

12 * in ction pplications of *: Planning nd St nd St st St th St S h=+ h=+ huge graph may be implicitly specified by rules for generating it on-the-fly Blocks world: vertex = relative positions of all blocks edge = robot arm stacks one block stack(blue,table) stack(green,blue) stack(blue,red) H=+ th ve th ve 8 th ve th ve th ve th ve th ve rd ve nd ve stack(green,red) stack(green,blue) 8 Blocks World Blocks world: distance = number of stacks to perform heuristic lower bound = number of blocks out of place pplication of *: Speech Recognition (Simplified) Problem: System hears a sequence of words It is unsure about what it heard For each word, it has a set of possible guesses E.g.: Word is one of { hi, high, I } What is the most likely sentence it heard? # out of place =, true distance to goal = Speech Recognition as Shortest Path W W W onvert to a shortest-path problem: Utterance is a layered Begins with a special dummy start node Next: layer of nodes for each word position, one node for each word choice Edges between every node in layer i to every node in layer i+ ost of an edge is smaller if the pair of words frequently occur together in real speech + Techniy: - log probability of co-occurrence Finally: a dummy end node Find shortest path from start to end node W W W W W W W

13 Summary: raph Search epth First Little memory required Might find non-optimal path Breadth First Much memory required lways finds optimal path ijskstra s Short Path lgorithm Like BFS for weighted graphs Best First an visit fewer nodes Might find non-optimal path * an visit fewer nodes than BFS or ijkstra Optimal if heuristic estimate is a lower-bound

Problem: Large Graphs

Problem: Large Graphs S : ata Structures raph lgorithms raph Search Lecture Problem: Large raphs It is expensive to find optimal paths in large graphs, using S or ijkstra s algorithm (for weighted graphs) How can we search

More information

Graphs: Definitions and Representations (Chapter 9)

Graphs: Definitions and Representations (Chapter 9) oday s Outline Graphs: efinitions and Representations (hapter 9) dmin: HW #4 due hursday, Nov 10 at 11pm Memory hierarchy Graphs Representations SE 373 ata Structures and lgorithms 11/04/2011 1 11/04/2011

More information

CSE 332: Data Structures & Parallelism Lecture 19: Introduction to Graphs. Ruth Anderson Autumn 2018

CSE 332: Data Structures & Parallelism Lecture 19: Introduction to Graphs. Ruth Anderson Autumn 2018 SE 332: ata Structures & Parallelism Lecture 19: Introduction to Graphs Ruth nderson utumn 2018 Today Graphs Intro & efinitions 11/19/2018 2 Graphs graph is a formalism for representing relationships among

More information

Graphs: Definitions and Representations (Chapter 9)

Graphs: Definitions and Representations (Chapter 9) oday s Outline Graphs: efinitions and Representations (hapter 9) SE 373 ata Structures and lgorithms dmin: Homework #4 - due hurs, Nov 8 th at 11pm Midterm 2, ri Nov 16 Memory hierarchy Graphs Representations

More information

Today s Outline CSE 221: Algorithms and Data Structures Graphs (with no Axes to Grind)

Today s Outline CSE 221: Algorithms and Data Structures Graphs (with no Axes to Grind) Today s Outline S : lgorithms and ata Structures raphs (with no xes to rind) Steve Wolfman 0W Topological Sort: etting to Know raphs with a Sort raph T and raph Representations raph Terminology (a lot

More information

Agenda. Graph Representation DFS BFS Dijkstra A* Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp

Agenda. Graph Representation DFS BFS Dijkstra A* Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp Graph Charles Lin genda Graph Representation FS BFS ijkstra * Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp Graph Representation djacency Matrix bool way[100][100];

More information

Introduction to Graphs. common/notes/ppt/

Introduction to Graphs.   common/notes/ppt/ Introduction to Graphs http://people.cs.clemson.edu/~pargas/courses/cs212/ common/notes/ppt/ Introduction Graphs are a generalization of trees Nodes or verticies Edges or arcs Two kinds of graphs irected

More information

Graphs: Topological Sort / Graph Traversals (Chapter 9)

Graphs: Topological Sort / Graph Traversals (Chapter 9) Today s Outline raphs: Topological Sort / raph Traversals (hapter 9) S 373 ata Structures and lgorithms dmin: omework #4 - due Thurs, Nov 8 th at pm Midterm 2, ri Nov 6 raphs Representations Topological

More information

CSE 326: Data Structures Dijkstra s Algorithm. James Fogarty Autumn 2007

CSE 326: Data Structures Dijkstra s Algorithm. James Fogarty Autumn 2007 SE 6: Data Structures Dijkstra s lgorithm James Fogarty utumn 007 Dijkstra, Edsger Wybe Legendary figure in computer science; was a professor at University of Texas. Supported teaching introductory computer

More information

Single Source, Shortest Path Problem

Single Source, Shortest Path Problem Lecture : From ijkstra to Prim Today s Topics: ijkstra s Shortest Path lgorithm epth First Search Spanning Trees Minimum Spanning Trees Prim s lgorithm overed in hapter 9 in the textbook Some slides based

More information

Unit #9: Graphs. CPSC 221: Algorithms and Data Structures. Will Evans 2012W1

Unit #9: Graphs. CPSC 221: Algorithms and Data Structures. Will Evans 2012W1 Unit #9: Graphs CPSC 1: Algorithms and Data Structures Will Evans 01W1 Unit Outline Topological Sort: Getting to Know Graphs with a Sort Graph ADT and Graph Representations Graph Terminology More Graph

More information

Today s Outline. CSE 326: Data Structures. Topic #15: Cool Graphs n Pretty Pictures. A Great Mathematician. The Bridges of Königsberg

Today s Outline. CSE 326: Data Structures. Topic #15: Cool Graphs n Pretty Pictures. A Great Mathematician. The Bridges of Königsberg CSE 326: Data Structures Topic #15: Cool Graphs n Pretty Pictures Ashish Sabharwal Autumn, 2003 Today s Outline Admin Project 3 in-progress checkin due tonight! Graph Algorithms Representation Applications

More information

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs). Lecture 13 Graph Algorithms I 13.1 Overview This is the first of several lectures on graph algorithms. We will see how simple algorithms like depth-first-search can be used in clever ways (for a problem

More information

Shortest Paths. CSE 373 Data Structures Lecture 21

Shortest Paths. CSE 373 Data Structures Lecture 21 Shortest Paths CSE 7 Data Structures Lecture Readings and References Reading Section 9., Section 0.. Some slides based on: CSE 6 by S. Wolfman, 000 //0 Shortest Paths - Lecture Path A path is a list of

More information

CMPSC 250 Analysis of Algorithms Spring 2018 Dr. Aravind Mohan Shortest Paths April 16, 2018

CMPSC 250 Analysis of Algorithms Spring 2018 Dr. Aravind Mohan Shortest Paths April 16, 2018 1 CMPSC 250 Analysis of Algorithms Spring 2018 Dr. Aravind Mohan Shortest Paths April 16, 2018 Shortest Paths The discussion in these notes captures the essence of Dijkstra s algorithm discussed in textbook

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Prim's algorithm ijkstra's algorithm November, 017 inda eeren / eoffrey Tien 1 Recall: S spanning tree Starting from vertex 16 9 1 6 10 13 4 3 17 5 11 7 16 13

More information

Route planning / Search Movement Group behavior Decision making

Route planning / Search Movement Group behavior Decision making Game AI Where is the AI Route planning / Search Movement Group behavior Decision making General Search Algorithm Design Keep a pair of set of states: One, the set of states to explore, called the open

More information

CSE 332 Data Abstractions: Graphs and Graph Traversals

CSE 332 Data Abstractions: Graphs and Graph Traversals CSE 332 Data Abstractions: Graphs and Graph Traversals Kate Deibel Summer 2012 July 23, 2012 CSE 332 Data Abstractions, Summer 2012 1 Some course stuff and a humorous story GRADES, MIDTERMS, AND IT SEEMED

More information

Today s topics. Data Structures. Re-revised Workshop Schedule. Thursday and Friday. University of Washington Course. Highlights from Day 2

Today s topics. Data Structures. Re-revised Workshop Schedule. Thursday and Friday. University of Washington Course. Highlights from Day 2 Today s topics Data Structures Richard Anderson University of Washington Teaching Data Structures Active Learning in Data Structures Big Ideas: Average Case Analysis Research discussion Re-revised Workshop

More information

Note. Out of town Thursday afternoon. Willing to meet before 1pm, me if you want to meet then so I know to be in my office

Note. Out of town Thursday afternoon. Willing to meet before 1pm,  me if you want to meet then so I know to be in my office raphs and Trees Note Out of town Thursday afternoon Willing to meet before pm, email me if you want to meet then so I know to be in my office few extra remarks about recursion If you can write it recursively

More information

CSE 373: Data Structures and Algorithms. Graph Traversals. Autumn Shrirang (Shri) Mare

CSE 373: Data Structures and Algorithms. Graph Traversals. Autumn Shrirang (Shri) Mare SE 373: ata Structures and lgorithms Graph Traversals utumn 2018 Shrirang (Shri) Mare shri@cs.washington.edu Thanks to Kasey hampion, en Jones, dam lank, Michael Lee, Evan Mcarty, Robbie Weber, Whitaker

More information

L10 Graphs. Alice E. Fischer. April Alice E. Fischer L10 Graphs... 1/37 April / 37

L10 Graphs. Alice E. Fischer. April Alice E. Fischer L10 Graphs... 1/37 April / 37 L10 Graphs lice. Fischer pril 2016 lice. Fischer L10 Graphs... 1/37 pril 2016 1 / 37 Outline 1 Graphs efinition Graph pplications Graph Representations 2 Graph Implementation 3 Graph lgorithms Sorting

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold S1800: raph lgorithms (2nd Part) Professor Kevin old Summary So ar readth-irst Search (S) and epth-irst Search (S) are two efficient algorithms for finding paths on graphs. S also finds the shortest path.

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

The wolf sheep cabbage problem. Search. Terminology. Solution. Finite state acceptor / state space

The wolf sheep cabbage problem. Search. Terminology. Solution. Finite state acceptor / state space Search The wolf sheep cabbage problem What is search? Terminology: search space, strategy Modelling Uninformed search (not intelligent ) Breadth first Depth first, some variations omplexity space and time

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 6: Dijkstra s Algorithm (Graphs) Instructor: Lilian de Greef Quarter: Summer 207 Today Announcements Graph Traversals Continued Remarks on DFS & BFS Shortest

More information

Undirected graph is a special case of a directed graph, with symmetric edges

Undirected graph is a special case of a directed graph, with symmetric edges S-6S- ijkstra s lgorithm -: omputing iven a directed weighted graph (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in. Undirected graph is a special case of a

More information

CSE 100: GRAPH ALGORITHMS

CSE 100: GRAPH ALGORITHMS CSE 100: GRAPH ALGORITHMS 2 Graphs: Example A directed graph V5 V = { V = E = { E Path: 3 Graphs: Definitions A directed graph V5 V6 A graph G = (V,E) consists of a set of vertices V and a set of edges

More information

Shortest Paths and Minimum Spanning Trees

Shortest Paths and Minimum Spanning Trees /9/ hortest Paths and Minimum panning Trees dmin avid Kauchak cs0 pring 0 ijkstra s algorithm What about ijkstra s on? 0-0 /9/ What about ijkstra s on? ijkstra s algorithm only works for positive edge

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Kruskal's lgorithm Prim's lgorithm Shortest Paths pril 04, 018 inda eeren / eoffrey Tien 1 Kruskal's algorithm ata types for implementation Kruskalslgorithm()

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 239 11 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

Today s Outline. Graph ADT? Graph Definitions. Trees as Graphs. Graphs Chapter 9 in Weiss. More Definitions: Simple Paths and Cycles.

Today s Outline. Graph ADT? Graph Definitions. Trees as Graphs. Graphs Chapter 9 in Weiss. More Definitions: Simple Paths and Cycles. Today s Outline Graphs Chapter 9 in Weiss CSE 6 Data Structures Ruth Anderson /6/00 Announcements Written Homework #6 due NOW Project Code due Mon March by pm Project Benchmarking & Written due Thurs March

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

GRAPH THEORY. What are graphs? Why graphs? Graphs are usually used to represent different elements that are somehow related to each other.

GRAPH THEORY. What are graphs? Why graphs? Graphs are usually used to represent different elements that are somehow related to each other. GRPH THEORY Hadrian ng, Kyle See, March 2017 What are graphs? graph G is a pair G = (V, E) where V is a nonempty set of vertices and E is a set of edges e such that e = {a, b where a and b are vertices.

More information

Shortest Paths and Minimum Spanning Trees

Shortest Paths and Minimum Spanning Trees // hortest Paths and Minimum panning Trees avid Kauchak cs pring dmin an resubmit homeworks - for up to half credit back l ue by the end of the week Read book // // // // // Is ijkstra s algorithm correct?

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review 1 Review 1 Something I did not emphasize enough last time is that during the execution of depth-firstsearch, we construct depth-first-search trees. One graph may have multiple depth-firstsearch trees,

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 1 Learning Objectives At the end of the class you should be able to: devise an useful heuristic function for a problem demonstrate how best-first and A search will work on a graph predict the space and time

More information

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Floyd-Warshall algorithm in O(n 3 ) time. Neither of

More information

Chapter 9: Elementary Graph Algorithms Basic Graph Concepts

Chapter 9: Elementary Graph Algorithms Basic Graph Concepts hapter 9: Elementary Graph lgorithms asic Graph oncepts msc 250 Intro to lgorithms graph is a mathematical object that is used to model different situations objects and processes: Linked list Tree (partial

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

CS 106X, Lecture 23 Dijkstra and A* Search

CS 106X, Lecture 23 Dijkstra and A* Search CS 106X, Lecture 23 Dijkstra and A* Search reading: Programming Abstractions in C++, Chapter 18 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons

More information

Undirected graph is a special case of a directed graph, with symmetric edges

Undirected graph is a special case of a directed graph, with symmetric edges ijkstra s lgorithm 7-: omputing iven a directed weighted graph(all weights non-negative) and two verticesxand y, find the least-cost path fromxtoy in. Undirected graph is a special case of a directed graph,

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

Spanning Trees. CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Motivation. Observations. Spanning tree via DFS

Spanning Trees. CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Motivation. Observations. Spanning tree via DFS Spanning Trees S: ata Structures & lgorithms Lecture : Minimum Spanning Trees simple problem: iven a connected undirected graph =(V,), find a minimal subset of edges such that is still connected graph

More information

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel raphs Topic " Hopefully, you've played around a bit with The Oracle of acon at Virginia and discovered how few steps are necessary to link just about anybody who has ever been in a movie to Kevin acon,

More information

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013 lgorithms for Data Structures: Uninformed Search Phillip Smith 19/11/2013 Representations for Reasoning We know (at least) two models of a world: model of the static states of the world model of the effects

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Topological sort Shortest paths Adam Smith The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle

More information

Section 08: Solutions

Section 08: Solutions Section 08: Solutions 1. Limitations and properties of shortest path algorithms (a) Draw an example of a directed graph where (a) there exists a path between two vertices s and t but (b) there is no shortest

More information

The ADT priority queue Orders its items by a priority value The first item removed is the one having the highest priority value

The ADT priority queue Orders its items by a priority value The first item removed is the one having the highest priority value The ADT priority queue Orders its items by a priority value The first item removed is the one having the highest priority value 1 Possible implementations Sorted linear implementations o Appropriate if

More information

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M.

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Lecture 9 Graphs Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Wootters (2017) 1 Graphs A graph is a set of vertices

More information

Search in discrete and continuous spaces

Search in discrete and continuous spaces UNSW COMP3431: Robot Architectures S2 2006 1 Overview Assignment #1 Answer Sheet Search in discrete and continuous spaces Due: Start of Lab, Week 6 (1pm, 30 August 2006) The goal of this assignment is

More information

Lecture 13: Weighted Shortest Paths. These slides include material originally prepared by Dr. Ron Cytron and Dr. Steve Cole.

Lecture 13: Weighted Shortest Paths. These slides include material originally prepared by Dr. Ron Cytron and Dr. Steve Cole. Lecture : Weighted Shortest Paths These slides include material originally prepared by r. Ron ytron and r. Steve ole. nnouncements Lab code and post-lab due tonight Lab released tomorrow ijkstra s algorithm

More information

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) _ UWNetID: Lecture Section: A CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will give

More information

(Re)Introduction to Graphs and Some Algorithms

(Re)Introduction to Graphs and Some Algorithms (Re)Introduction to Graphs and Some Algorithms Graph Terminology (I) A graph is defined by a set of vertices V and a set of edges E. The edge set must work over the defined vertices in the vertex set.

More information

Lecture 9 Graph Traversal

Lecture 9 Graph Traversal Lecture 9 Graph Traversal Euiseong Seo (euiseong@skku.edu) SWE00: Principles in Programming Spring 0 Euiseong Seo (euiseong@skku.edu) Need for Graphs One of unifying themes of computer science Closely

More information

Goals! CSE 417: Algorithms and Computational Complexity!

Goals! CSE 417: Algorithms and Computational Complexity! Goals! CSE : Algorithms and Computational Complexity! Graphs: defns, examples, utility, terminology! Representation: input, internal! Traversal: Breadth- & Depth-first search! Three Algorithms:!!Connected

More information

ME/CS 132: Advanced Robotics: Navigation and Vision

ME/CS 132: Advanced Robotics: Navigation and Vision ME/CS 132: Advanced Robotics: Navigation and Vision Lecture #5: Search Algorithm 1 Yoshiaki Kuwata 4/12/2011 Lecture Overview Introduction Label Correcting Algorithm Core idea Depth-first search Breadth-first

More information

CSE 332: Data Abstractions Lecture 15: Topological Sort / Graph Traversals. Ruth Anderson Winter 2013

CSE 332: Data Abstractions Lecture 15: Topological Sort / Graph Traversals. Ruth Anderson Winter 2013 CSE 332: Data Abstractions Lecture 15: Topological Sort / Graph Traversals Ruth Anderson Winter 2013 Announcements Homework 4 due Friday Feb 15 th at the BEGINNING of lecture Project 2 Phase B due Tues

More information

mywbut.com Informed Search Strategies-I

mywbut.com Informed Search Strategies-I Informed Search Strategies-I 1 3.1 Introduction We have outlined the different types of search strategies. In the earlier chapter we have looked at different blind search strategies. Uninformed search

More information

Section 7: Dijkstra s

Section 7: Dijkstra s Section 7: ijkstra s Slides by lex Mariakakis with material Kellen onohue, avid Mailhot, and an rossman Late days Things to iscuss o cse33-lateday@cs.washington.edu o 3 assignments left o an use late days

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010 MSSHUSETTS INSTITUTE OF TEHNOLOY epartment of Electrical Engineering and omputer Science 6.0 rtificial Intelligence Fall, 00 Search Me! Recitation, Thursday September Prof. ob erwick. ifference between

More information

Dijkstra s Shortest Path Algorithm

Dijkstra s Shortest Path Algorithm Dijkstra s Shortest Path Algorithm DPV 4.4, CLRS 24.3 Revised, October 23, 2014 Outline of this Lecture Recalling the BFS solution of the shortest path problem for unweighted (di)graphs. The shortest path

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Distributed Algorithms 6.046J, Spring, Nancy Lynch

Distributed Algorithms 6.046J, Spring, Nancy Lynch Distributed Algorithms 6.046J, Spring, 205 Nancy Lynch What are Distributed Algorithms? Algorithms that run on networked processors, or on multiprocessors that share memory. They solve many kinds of problems:

More information

CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT

CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT PROJECT 3 500 Internal Error problems Hopefully all resolved (or close to) P3P1 grades are up (but muted) Leave canvas comment Emails tomorrow End of quarter GRAPHS

More information

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday Notes Video Game AI: Lecture 5 Planning for Pathfinding Nathan Sturtevant COMP 3705 Jonathan Schaeffer this Friday Planning vs localization We cover planning today Localization is just mapping a real-valued

More information

Basic Search Algorithms

Basic Search Algorithms Basic Search Algorithms Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract The complexities of various search algorithms are considered in terms of time, space, and cost

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 10/21/1999 Definitions for graphs Breadth First Search and Depth First Search Topological Sort. Graphs AgraphG is given by a set of vertices V and a set of edges E. Normally

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 350 - Algorithms and Complexity Graph Theory, Midterm Review Sean Anderson 2/6/18 Portland State University Table of contents 1. Graph Theory 2. Graph Problems 3. Uninformed Exhaustive Search 4. Informed

More information

mywbut.com Uninformed Search

mywbut.com Uninformed Search Uninformed Search 1 2.4 Search Searching through a state space involves the following: set of states Operators and their costs Start state test to check for goal state We will now outline the basic search

More information

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 6: BFS and Dijkstra s

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 6: BFS and Dijkstra s CSE 101 Algorithm Design and Analysis Miles Jones mej016@eng.ucsd.edu Office 4208 CSE Building Lecture 6: BFS and Dijkstra s BREADTH FIRST SEARCH (BFS) Given a graph G and a starting vertex s, BFS computes

More information

lecture29: Shortest Path Algorithms

lecture29: Shortest Path Algorithms lecture29: Shortest Path Algorithms Largely based on slides by Cinda Heeren CS 225 UIUC 30th July, 2013 Outline 1 Announcements 2 3 4 Announcements lab graphs due Thursday, 8/1 final exam this Friday (8/2),

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms Elementary Graph Algorithms: Summary CmSc250 Intro to Algorithms Definition: A graph is a collection (nonempty set) of vertices and edges A path from vertex x to vertex y : a list of vertices in which

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

CSE100. Advanced Data Structures. Lecture 12. (Based on Paul Kube course materials)

CSE100. Advanced Data Structures. Lecture 12. (Based on Paul Kube course materials) CSE100 Advanced Data Structures Lecture 12 (Based on Paul Kube course materials) CSE 100 Coding and decoding with a Huffman coding tree Huffman coding tree implementation issues Priority queues and priority

More information

Graphs. Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale Room - Faner 3131

Graphs. Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale Room - Faner 3131 Graphs Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale tessema.mengistu@siu.edu Room - Faner 3131 1 Outline Introduction to Graphs Graph Traversals Finding a

More information

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29 Lecture 13 Connectedness in graphs Spanning trees in graphs Finding a minimal spanning tree Time costs of graph problems and NP-completeness Finding a minimal spanning tree: Prim s and Kruskal s algorithms

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Basic Graph Definitions

Basic Graph Definitions CMSC 341 Graphs Basic Graph Definitions A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. Each edge is a pair (v,w) where v, w V. V and E are sets, so each vertex

More information

Informed search algorithms

Informed search algorithms Informed search algorithms This lecture topic Chapter 3.5-3.7 Next lecture topic Chapter 4.1-4.2 (Please read lecture topic material before and after each lecture on that topic) Outline Review limitations

More information

Graph Algorithms: Part 1. Dr. Baldassano Yu s Elite Education

Graph Algorithms: Part 1. Dr. Baldassano Yu s Elite Education Graph Algorithms: Part 1 Dr. Baldassano chrisb@princeton.edu Yu s Elite Education Last week recap: Machine Learning Unsupervised learning: cluster datapoints without labels K-means clustering Hierarchical

More information

Graphs and Graph Algorithms. Slides by Larry Ruzzo

Graphs and Graph Algorithms. Slides by Larry Ruzzo Graphs and Graph Algorithms Slides by Larry Ruzzo Goals Graphs: defns, examples, utility, terminology Representation: input, internal Traversal: Breadth- & Depth-first search Three Algorithms: Connected

More information

CS 4349 Lecture October 23rd, 2017

CS 4349 Lecture October 23rd, 2017 CS 4349 Lecture October 23rd, 2017 Main topics for #lecture include #minimum_spanning_trees and #SSSP. Prelude Homework 7 due Wednesday, October 25th. Don t forget about the extra credit. Minimum Spanning

More information

CAP 4630 Artificial Intelligence

CAP 4630 Artificial Intelligence CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 http://www.ultimateaiclass.com/ https://moodle.cis.fiu.edu/ 2 Solving problems by search 3 8-puzzle 4 8-queens 5 Search

More information

CSE 373 Data Structures & Algorithms

CSE 373 Data Structures & Algorithms CSE 373 Data Structures & Algorithms Lectures 24 Final Review 1 Third Midterm (a.k.a. Final) Friday, 12:30 1:30, here in class Logistics: Closed Book Comprehensive Everything up to and including Network

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

Search in State-Spaces 16/9 2014

Search in State-Spaces 16/9 2014 Search in State-Spaces 16/9 2014 NB: Oblig 1 (mandatory assignment 1) has been availible for some time at the INF4130 home page Deadline is Friday, September 25 The topics of the day: Backtracking (Ch.

More information

2.1 Greedy Algorithms. 2.2 Minimum Spanning Trees. CS125 Lecture 2 Fall 2016

2.1 Greedy Algorithms. 2.2 Minimum Spanning Trees. CS125 Lecture 2 Fall 2016 CS125 Lecture 2 Fall 2016 2.1 Greedy Algorithms We will start talking about methods high-level plans for constructing algorithms. One of the simplest is just to have your algorithm be greedy. Being greedy,

More information

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list UNIT-4 Graph: Terminology, Representation, Traversals Applications - spanning trees, shortest path and Transitive closure, Topological sort. Sets: Representation - Operations on sets Applications. 1. Name

More information