Deep Back-Projection Networks For Super-Resolution Supplementary Material

Size: px
Start display at page:

Download "Deep Back-Projection Networks For Super-Resolution Supplementary Material"

Transcription

1 Deep Back-Projection Networks For Super-Resolution Supplementary Material Muhammad Haris 1, Greg Shakhnarovich 2, and Norimichi Ukita 1, 1 Toyota Technological Institute, Japan 2 Toyota Technological Institute at Chicago, United States {mharis, ukita}@toyota-ti.ac.jp, gregory@ttic.edu Project Page 1. Overview We provide additional materials for better understanding of our proposed networks. First, we provide the detailed architectures from the variants of DBPN. Second, we present additional analysis of DBPN. Last, we provide additional qualitative results from our networks compare to the stateof-the-arts methods. 2. Implementation Details of Networks Architecture There are six variants of DBPN which is shown in the paper: DBPN-SS, DBPN-S, DBPN-M, DBPN-L, D-DBPN-L, and D-DBPN. The detailed architectures of those networks are shown in Table Additional Analysis 3.1. Sanity Check (R1 and R2) As an additional experiment, suggested by R1 and R2, we compared our network with the same network capacity and training set. We use DBPN-S (our shallow network with 599k parameters) and LapSRN [5], a state-of-the-art network with 812k parameters. The R1 suggested training our network on BSDS200 [1] and T91 [9] dataset. However, the modern deep learning methods should take beneficial on performing in larger dataset, such as DIV2K. Therefore, we should note that the smaller BSDS200 [1] and T91 [9] dataset may be less appropriate for training modern deep super-resolution methods, in particular due to lack of image variance. Moreover, BSDS200 is not intended, and may be ill-suited, for super-resolution training. Instead, larger dataset is used for fair comparison between DBPN-S and LapSRN which is DIV2K [8]. In Table 2, we report preliminary results of training with DIV2K, with total number 800 training images, on the x4 super-resolution task. For reference, we also include original LapSRN trained on BSDS200 [1] + T91 [9] dataset. From the table, it s evident that our network has overall better performance than either version of LapSRN, and in particular significantly better results on BSDS100, Urban100, and Manga109. Please be noted also that the gap is higher on our deeper network such as D-DBPN as shown in the manuscript s Fig. 8 and 9 which shows the efficiency of utilizing deeper network and large dataset Error Feedback As stated in our manuscript, error feedback (EF) is used to guide the reconstruction in the early layer. Here, we analyze how error feedback can help for better reconstruction. For the scenario without EF, we replace up- and downprojection unit with single up- and down-sampling (deconvolution and convolution) layer. We show PSNR of DBPN-S with EF and without EF in Table 3. The result with EF has 0.53 db and 0.26 db better than without EF on Set5 and Set14, respectively. In Fig. 1, we visually show how error feedback can construct better and sharper HR image especially in the white stripe pattern of the wing. The performance of DBPS-S without EF is interestingly 0.57 db and 0.35 db better than SRCNN [2], FSRCNN [3], respectively, on Set5. These results show the effectiveness of our mutual-connected up- and downsampling layers which can demonstrate the LR-HR mutual dependency by mapping LR features to HR space, then project it back to the LR space Convergence Curve In Fig. 2 and Fig. 3, we show the convergence curve of 4 and 8 enlargement from each proposed network in the manuscript. Our proposed networks have fast convergence speed especially for D-DBPN where the results of 50k iteration can outperform the state-of-the-art methods except for EDSR. 1

2 Table 1. Network Architecture of DBPN variants. Feat0 and Feat1 refer to first and second convolutional layer in the initial feature extraction stages. Note: conv(f, n, st, pd) where f is filter size, n is number of filters, st is striding, and pd is padding Scale DBPN-SS DBPN-S DBPN-M DBPN-L D-DBPN-L D-DBPN Input/Output Luminance Luminance Luminance Luminance Luminance RGB Feat0 conv(3,64,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,256,1,1) Feat1 conv(1,18,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,64,1,0) Reconstruction conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(3,3,1,1) 2 conv(6,18,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,64,2,2) BP stages 4 conv(8,18,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,64,4,2) 8 conv(12,18,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,64,8,2) Parameters (k) Depth No. of stage (T ) Dense connection No No No No Yes Yes Figure 1. Qualitative comparisons of DBPN-S with EF and without EF on 4 enlargement Filter Size We analyze the size of filters which is used in the backprojection stage. In the manuscript, we stated that the choice of filter size in the back-projection stage is based on the preliminary results. For the 4 enlargement, we show that filter 8 8 is 0.08 db and 0.09 db better than filter 6 6 and 10 10, respectively, as shown in Table Luminance vs RGB In the final network (D-DBPN), we change input/output from luminance to RGB color channels. There is no significant improvement in the quality of the result as shown in Table 5. However, it might reduce the complexity and simplify the implementation by avoiding the use of another interpolation techniques, such as Bicubic, to process other channels. Table 2. Comparison of the DBPN-S and LapSRN-DIV2K on 4 enlargement. DBPN-S LapSRN-DIV2K LapSRN [5] Algorithm PSNR SSIM PSNR SSIM PSNR SSIM Set Set BSDS Urban Manga Table 3. Analysis of EF using DBPN-S on 4 enlargement. Red indicates the best performance. Set5 Set14 SRCNN [2] FSRCNN [3] Without EF With EF Table 4. Analysis of filter size in the back-projection stages on 4 enlargement from D-DBPN. Red indicates the best performance. Filter size Striding Padding Set5 Set Table 5. Analysis of input/output color channel using DBPN-L. Red indicates the best performance. Set5 Set14 RGB Runtime Evaluation Luminance We present the runtime comparisons between our networks and 3 state-of-the-art networks: VDSR [4], DRRN [7], and EDSR [6]. The comparison must be done in fair settings. Therefore, we choose only three methods which have the same in nature with our implementation using Caffe. The runtime is calculated using python function timeit which encapsulating forward function in Caffe. For EDSR, we use original author code based on Torch and use timer function to obtain the runtime. We evaluate each network using Nvidia TITAN X GPU

3 Figure 2. Convergence curve for 4 enlargement on Set5. Figure 3. Convergence curve for 8 enlargement on Set5. (12G Memory). The input image size is 64 64, then upscaled into (2 ), (4 ), and (8 ). The results are the average of 10 times trials. Table 6 shows the runtime comparisons on 2, 4, and 8 enlargement. It shows that our SS and S networks obtain the best and second best performance on 4 and 8 enlargement. On 2 enlargement, we did not construct the variants of our proposed network except for D-DBPN. Therefore, we cannot produce the runtime for SS, S, M, and L networks. Compare to EDSR, our final network (D- DBPN) show its effectiveness by having faster runtime with comparable quality on 2 and 4 enlargement. On 8 enlargement, the gap is bigger. It shows that D-DBPN has better results with lower runtime than EDSR. Noted that input for VDSR and DRRN is only luminance channel and need preprocessing to create middle-resolution

4 image. So that, the runtime should be added by additional computation of interpolation computation on preprocessing. Table 6. Runtime evaluation with input size Red indicates the best and blue indicates the second best performance, * indicates the calculation using function timer in Torch, and N.A. indicates that the algorithm runs out of GPU memory ( ) ( ) ( ) VDSR [4] DRRN [7] N.A. *EDSR [6] DBPN-SS DBPN-S DBPN-M DBPN-L D-DBPN [7] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, , 4 [8] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee, et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages IEEE, [9] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image superresolution via sparse representation. Image Processing, IEEE Transactions on, 19(11): , Additional Qualitative Results In Fig. 4-16, we provide additional results for 8 enlargement to clearly show the effectiveness of our proposed network. The comparisons focus to compare between top-3 current state-of-the-art networks which are LapSRN [5], EDSR [6], and D-DBPN. The complete results on all datasets will be published in our website. References [1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5): , [2] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2): , , 2 [3] C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In European Conference on Computer Vision, pages Springer, , 2 [4] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages , June , 4 [5] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate superresolution. In IEEE Conferene on Computer Vision and Pattern Recognition, , 2, 4 [6] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image super-resolution. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July , 4

5 Figure 4. Visual comparison for 8 enlargement. D-DBPN is able to separate clearly between the hiragana word and outer stripe pattern. Figure 5. Visual comparison for 8 enlargement. All networks fail to keep the shape consistency from the HR image. However, the correct number of holes in the image is only achieved by D-DBPN. Figure 6. Visual comparison for 8 enlargement. D-DBPN is able to construct shaper eyelashes close to the ground truth. Figure 7. Visual comparison for 8 enlargement. D-DBPN is able to construct sharper edges. However, it also creates soft black stripes in the middle part of the wall.

6 Figure 8. Visual comparison for 8 enlargement. D-DBPN is able to construct sharper edges from the windows. Figure 9. Visual comparison for 8 enlargement. D-DBPN is able to construct more detailed patterns compare to LapSRN and EDSR. Figure 10. Visual comparison for 8 enlargement. D-DBPN is able to preserve the stripe pattern in the wall. Figure 11. Visual comparison for 8 enlargement. D-DBPN is able to construct the white stripes better than LapSRN and EDSR.

7 Figure 12. Visual comparison for 8 enlargement. D-DBPN is able to construct sharper the blue bars pattern. Figure 13. Visual comparison for 8 enlargement. D-DBPN is able to construct sharper pattern of 2 than LapSRN and EDSR. Figure 14. Visual comparison for 8 enlargement. D-DBPN is able to construct the characters sharper than LapSRN and EDSR. Figure 15. Visual comparison for 8 enlargement. D-DBPN is able to construct the bars in the window.

8 Figure 16. Visual comparison for 8 enlargement. D-DBPN is able to preserve the sketch pattern (light black stripes) in the image better than LapSRN and EDSR.

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Deep Back-Projection Networks For Super-Resolution Muhammad Haris 1, Greg Shakhnarovich, and Norimichi Ukita 1, 1 Toyota Technological Institute, Japan Toyota Technological Institute at Chicago, United

More information

arxiv: v1 [cs.cv] 18 Dec 2018 Abstract

arxiv: v1 [cs.cv] 18 Dec 2018 Abstract SREdgeNet: Edge Enhanced Single Image Super Resolution using Dense Edge Detection Network and Feature Merge Network Kwanyoung Kim, Se Young Chun Ulsan National Institute of Science and Technology (UNIST),

More information

Multi-scale Residual Network for Image Super-Resolution

Multi-scale Residual Network for Image Super-Resolution Multi-scale Residual Network for Image Super-Resolution Juncheng Li 1[0000 0001 7314 6754], Faming Fang 1[0000 0003 4511 4813], Kangfu Mei 2[0000 0001 8949 9597], and Guixu Zhang 1[0000 0003 4720 6607]

More information

Efficient Module Based Single Image Super Resolution for Multiple Problems

Efficient Module Based Single Image Super Resolution for Multiple Problems Efficient Module Based Single Image Super Resolution for Multiple Problems Dongwon Park Kwanyoung Kim Se Young Chun School of ECE, Ulsan National Institute of Science and Technology, 44919, Ulsan, South

More information

SINGLE image super-resolution (SR) aims to reconstruct

SINGLE image super-resolution (SR) aims to reconstruct Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang 1 arxiv:1710.01992v2 [cs.cv] 11 Oct 2017 Abstract Convolutional

More information

SINGLE image super-resolution (SR) aims to reconstruct

SINGLE image super-resolution (SR) aims to reconstruct Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang 1 arxiv:1710.01992v3 [cs.cv] 9 Aug 2018 Abstract Convolutional

More information

An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks

An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks Kangfu Mei 1, Juncheng Li 2, Luyao 1, Mingwen Wang 1, Aiwen Jiang 1 Jiangxi Normal University 1 East China Normal

More information

CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution

CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution Yawei Li 1, Eirikur Agustsson 1, Shuhang Gu 1, Radu Timofte 1, and Luc Van Gool 1,2 1 ETH Zürich, Sternwartstrasse

More information

IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution

IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution Manoj Sharma, Rudrabha Mukhopadhyay, Avinash Upadhyay, Sriharsha Koundinya, Ankit Shukla, Santanu Chaudhury.

More information

Image Super-Resolution Using Dense Skip Connections

Image Super-Resolution Using Dense Skip Connections Image Super-Resolution Using Dense Skip Connections Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao Imperial Vision Technology Fuzhou, China {ttraveltong,ligen,liu.xiejie,gqinquan}@imperial-vision.com Abstract

More information

Deep Bi-Dense Networks for Image Super-Resolution

Deep Bi-Dense Networks for Image Super-Resolution Deep Bi-Dense Networks for Image Super-Resolution Yucheng Wang *1, Jialiang Shen *2, and Jian Zhang 2 1 Intelligent Driving Group, Baidu Inc 2 Multimedia and Data Analytics Lab, University of Technology

More information

Densely Connected High Order Residual Network for Single Frame Image Super Resolution

Densely Connected High Order Residual Network for Single Frame Image Super Resolution Densely Connected High Order Residual Network for Single Frame Image Super Resolution Yiwen Huang Department of Computer Science Wenhua College, Wuhan, China nickgray0@gmail.com Ming Qin Department of

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material Xintao Wang 1 Ke Yu 1 Chao Dong 2 Chen Change Loy 1 1 CUHK - SenseTime Joint Lab, The Chinese

More information

SINGLE image restoration (IR) aims to generate a visually

SINGLE image restoration (IR) aims to generate a visually Concat 1x1 JOURNAL OF L A T E X CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1 Residual Dense Network for Image Restoration Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, Fellow, IEEE arxiv:1812.10477v1

More information

arxiv: v1 [cs.cv] 31 Dec 2018 Abstract

arxiv: v1 [cs.cv] 31 Dec 2018 Abstract Image Super-Resolution via RL-CSC: When Residual Learning Meets olutional Sparse Coding Menglei Zhang, Zhou Liu, Lei Yu School of Electronic and Information, Wuhan University, China {zmlhome, liuzhou,

More information

Fast and Accurate Single Image Super-Resolution via Information Distillation Network

Fast and Accurate Single Image Super-Resolution via Information Distillation Network Fast and Accurate Single Image Super-Resolution via Information Distillation Network Recently, due to the strength of deep convolutional neural network (CNN), many CNN-based SR methods try to train a deep

More information

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution Wei-Sheng Lai 1 Jia-Bin Huang 2 Narendra Ahuja 3 Ming-Hsuan Yang 1 1 University of California, Merced 2 Virginia Tech 3 University

More information

arxiv: v1 [cs.cv] 3 Jan 2017

arxiv: v1 [cs.cv] 3 Jan 2017 Learning a Mixture of Deep Networks for Single Image Super-Resolution Ding Liu, Zhaowen Wang, Nasser Nasrabadi, and Thomas Huang arxiv:1701.00823v1 [cs.cv] 3 Jan 2017 Beckman Institute, University of Illinois

More information

Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet

Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet Yunjin Chen, Kai Zhang and Wangmeng Zuo April 17, 2017 1 Team details Team name HIT-ULSee Team

More information

Residual Dense Network for Image Super-Resolution

Residual Dense Network for Image Super-Resolution Residual Dense Network for Image Super-Resolution Yulun Zhang 1, Yapeng Tian 2,YuKong 1, Bineng Zhong 1, Yun Fu 1,3 1 Department of Electrical and Computer Engineering, Northeastern University, Boston,

More information

arxiv: v2 [cs.cv] 4 Nov 2018

arxiv: v2 [cs.cv] 4 Nov 2018 arxiv:1811.00344v2 [cs.cv] 4 Nov 2018 Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network Subeesh Vasu 1, Nimisha Thekke Madam 2, and Rajagopalan A.N. 3 Indian Institute

More information

IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE

IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE Yulun Zhang 1, Kaiyu Gu 2, Yongbing Zhang 1, Jian Zhang 3, and Qionghai Dai 1,4 1 Shenzhen

More information

arxiv: v1 [cs.cv] 23 Mar 2018

arxiv: v1 [cs.cv] 23 Mar 2018 arxiv:1803.08664v1 [cs.cv] 23 Mar 2018 Fast, Accurate, and, Lightweight Super-Resolution with Cascading Residual Network Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn Department of Computer Engineering,

More information

SINGLE image super-resolution (SR) aims to infer a high. Single Image Super-Resolution via Cascaded Multi-Scale Cross Network

SINGLE image super-resolution (SR) aims to infer a high. Single Image Super-Resolution via Cascaded Multi-Scale Cross Network This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. 1 Single Image Super-Resolution via

More information

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary Mehdi S. M. Sajjadi Bernhard Schölkopf Michael Hirsch Max Planck Institute for Intelligent Systems Spemanstr.

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

arxiv: v5 [cs.cv] 4 Oct 2018

arxiv: v5 [cs.cv] 4 Oct 2018 Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network Namhyuk Ahn [0000 0003 1990 9516], Byungkon Kang [0000 0001 8541 2861], and Kyung-Ah Sohn [0000 0001 8941 1188] arxiv:1803.08664v5

More information

arxiv: v2 [cs.cv] 11 Nov 2016

arxiv: v2 [cs.cv] 11 Nov 2016 Accurate Image Super-Resolution Using Very Deep Convolutional Networks Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee Department of ECE, ASRI, Seoul National University, Korea {j.kim, deruci, kyoungmu}@snu.ac.kr

More information

Introduction. Prior work BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK. Bjo rn Stenger. Rakuten Institute of Technology

Introduction. Prior work BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK. Bjo rn Stenger. Rakuten Institute of Technology BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK Jiu Xu Yeongnam Chae Bjo rn Stenger Rakuten Institute of Technology ABSTRACT This paper proposes a deep residual network, ByNet, for the single

More information

Fast and Accurate Single Image Super-Resolution via Information Distillation Network

Fast and Accurate Single Image Super-Resolution via Information Distillation Network Fast and Accurate Single Image Super-Resolution via Information Distillation Network Zheng Hui, Xiumei Wang, Xinbo Gao School of Electronic Engineering, Xidian University Xi an, China zheng hui@aliyun.com,

More information

Fast and Accurate Image Super-Resolution Using A Combined Loss

Fast and Accurate Image Super-Resolution Using A Combined Loss Fast and Accurate Image Super-Resolution Using A Combined Loss Jinchang Xu 1, Yu Zhao 1, Yuan Dong 1, Hongliang Bai 2 1 Beijing University of Posts and Telecommunications, 2 Beijing Faceall Technology

More information

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 Team 16 Soomin Kim Leslie Tiong Youngki Kwon Insu Jang

More information

Balanced Two-Stage Residual Networks for Image Super-Resolution

Balanced Two-Stage Residual Networks for Image Super-Resolution Balanced Two-Stage Residual Networks for Image Super-Resolution Yuchen Fan *, Honghui Shi, Jiahui Yu, Ding Liu, Wei Han, Haichao Yu, Zhangyang Wang, Xinchao Wang, and Thomas S. Huang Beckman Institute,

More information

UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution

UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution Chang Chen Xinmei Tian Zhiwei Xiong Feng Wu University of Science and Technology of China Abstract Recently,

More information

An Attention-Based Approach for Single Image Super Resolution

An Attention-Based Approach for Single Image Super Resolution An Attention-Based Approach for Single Image Super Resolution Yuan Liu 1,2,3, Yuancheng Wang 1, Nan Li 1,Xu Cheng 4, Yifeng Zhang 1,2,3,, Yongming Huang 1, Guojun Lu 5 1 School of Information Science and

More information

SRHRF+: Self-Example Enhanced Single Image Super-Resolution Using Hierarchical Random Forests

SRHRF+: Self-Example Enhanced Single Image Super-Resolution Using Hierarchical Random Forests SRHRF+: Self-Example Enhanced Single Image Super-Resolution Using Hierarchical Random Forests Jun-Jie Huang, Tianrui Liu, Pier Luigi Dragotti, and Tania Stathaki Imperial College London, UK {j.huang15,

More information

arxiv: v1 [cs.cv] 8 Feb 2018

arxiv: v1 [cs.cv] 8 Feb 2018 DEEP IMAGE SUPER RESOLUTION VIA NATURAL IMAGE PRIORS Hojjat S. Mousavi, Tiantong Guo, Vishal Monga Dept. of Electrical Engineering, The Pennsylvania State University arxiv:802.0272v [cs.cv] 8 Feb 208 ABSTRACT

More information

OPTICAL Character Recognition systems aim at converting

OPTICAL Character Recognition systems aim at converting ICDAR 2015 COMPETITION ON TEXT IMAGE SUPER-RESOLUTION 1 Boosting Optical Character Recognition: A Super-Resolution Approach Chao Dong, Ximei Zhu, Yubin Deng, Chen Change Loy, Member, IEEE, and Yu Qiao

More information

arxiv: v1 [cs.cv] 10 Jul 2017

arxiv: v1 [cs.cv] 10 Jul 2017 Enhanced Deep Residual Networks for Single Image SuperResolution Bee Lim Sanghyun Son Heewon Kim Seungjun Nah Kyoung Mu Lee Department of ECE, ASRI, Seoul National University, 08826, Seoul, Korea forestrainee@gmail.com,

More information

A Novel Multi-Frame Color Images Super-Resolution Framework based on Deep Convolutional Neural Network. Zhe Li, Shu Li, Jianmin Wang and Hongyang Wang

A Novel Multi-Frame Color Images Super-Resolution Framework based on Deep Convolutional Neural Network. Zhe Li, Shu Li, Jianmin Wang and Hongyang Wang 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016) A Novel Multi-Frame Color Images Super-Resolution Framewor based on Deep Convolutional Neural Networ Zhe Li, Shu

More information

Example-Based Image Super-Resolution Techniques

Example-Based Image Super-Resolution Techniques Example-Based Image Super-Resolution Techniques Mark Sabini msabini & Gili Rusak gili December 17, 2016 1 Introduction With the current surge in popularity of imagebased applications, improving content

More information

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation Introduction Supplementary material In the supplementary material, we present additional qualitative results of the proposed AdaDepth

More information

MULTIPLE-IMAGE SUPER RESOLUTION USING BOTH RECONSTRUCTION OPTIMIZATION AND DEEP NEURAL NETWORK. Jie Wu, Tao Yue, Qiu Shen, Xun Cao, Zhan Ma

MULTIPLE-IMAGE SUPER RESOLUTION USING BOTH RECONSTRUCTION OPTIMIZATION AND DEEP NEURAL NETWORK. Jie Wu, Tao Yue, Qiu Shen, Xun Cao, Zhan Ma MULIPLE-IMAGE SUPER RESOLUION USING BOH RECONSRUCION OPIMIZAION AND DEEP NEURAL NEWORK Jie Wu, ao Yue, Qiu Shen, un Cao, Zhan Ma School of Electronic Science and Engineering, Nanjing University ABSRAC

More information

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Kai Zhang,2, Wangmeng Zuo, Lei Zhang 2 School of Computer Science and Technology, Harbin Institute of Technology, Harbin,

More information

arxiv: v2 [cs.cv] 24 May 2018

arxiv: v2 [cs.cv] 24 May 2018 Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Kai Zhang 1,2,3, Wangmeng Zuo 1, Lei Zhang 2 1 School of Computer Science and Technology, Harbin Institute of Technology,

More information

Single Image Super Resolution - When Model Adaptation Matters

Single Image Super Resolution - When Model Adaptation Matters JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Single Image Super Resolution - When Model Adaptation Matters arxiv:1703.10889v1 [cs.cv] 31 Mar 2017 Yudong Liang, Radu Timofte, Member, IEEE,

More information

Single Image Super Resolution of Textures via CNNs. Andrew Palmer

Single Image Super Resolution of Textures via CNNs. Andrew Palmer Single Image Super Resolution of Textures via CNNs Andrew Palmer What is Super Resolution (SR)? Simple: Obtain one or more high-resolution images from one or more low-resolution ones Many, many applications

More information

Exploiting Reflectional and Rotational Invariance in Single Image Superresolution

Exploiting Reflectional and Rotational Invariance in Single Image Superresolution Exploiting Reflectional and Rotational Invariance in Single Image Superresolution Simon Donn, Laurens Meeus, Hiep Quang Luong, Bart Goossens, Wilfried Philips Ghent University - TELIN - IPI Sint-Pietersnieuwstraat

More information

Task-Aware Image Downscaling

Task-Aware Image Downscaling Task-Aware Image Downscaling Heewon Kim, Myungsub Choi, Bee Lim, and Kyoung Mu Lee Department of ECE, ASRI, Seoul National University, Seoul, Korea {ghimhw,cms6539,biya999,kyoungmu}@snu.ac.kr https://cv.snu.ac.kr

More information

A DEEP DICTIONARY MODEL FOR IMAGE SUPER-RESOLUTION. Jun-Jie Huang and Pier Luigi Dragotti

A DEEP DICTIONARY MODEL FOR IMAGE SUPER-RESOLUTION. Jun-Jie Huang and Pier Luigi Dragotti A DEEP DICTIONARY MODEL FOR IMAGE SUPER-RESOLUTION Jun-Jie Huang and Pier Luigi Dragotti Communications and Signal Processing Group CSP), Imperial College London, UK ABSTRACT Inspired by the recent success

More information

STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion

STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion Yao Xiao 1, Ajay Gupta 2, Pina C. Sanelli 3, Ruogu Fang 1 1 University of Florida, Gainesville, FL 2 Weill Cornell Medical

More information

arxiv: v2 [cs.cv] 19 Apr 2019

arxiv: v2 [cs.cv] 19 Apr 2019 arxiv:1809.04789v2 [cs.cv] 19 Apr 2019 Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality Jun-Ho Choi, Jun-Hyuk Kim, Manri Cheon, and Jong-Seok Lee School of Integrated

More information

arxiv: v1 [cs.cv] 16 Dec 2018

arxiv: v1 [cs.cv] 16 Dec 2018 Efficient Super Resolution Using Binarized Neural Network arxiv:1812.06378v1 [cs.cv] 16 Dec 2018 Yinglan Ma Adobe Inc. Research yingma@adobe.com Abstract Deep convolutional neural networks (DCNNs) have

More information

DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION. Bjo rn Stenger2

DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION. Bjo rn Stenger2 DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION Jiu Xu1 Yeongnam Chae2 1 Bjo rn Stenger2 Ankur Datta1 Rakuten Institute of Technology, Boston Rakuten Institute of Technology, Tokyo 2 ABSTRACT

More information

arxiv: v1 [cs.cv] 6 Nov 2015

arxiv: v1 [cs.cv] 6 Nov 2015 Seven ways to improve example-based single image super resolution Radu Timofte Computer Vision Lab D-ITET, ETH Zurich timofter@vision.ee.ethz.ch Rasmus Rothe Computer Vision Lab D-ITET, ETH Zurich rrothe@vision.ee.ethz.ch

More information

arxiv: v1 [cs.cv] 10 Apr 2018

arxiv: v1 [cs.cv] 10 Apr 2018 arxiv:1804.03360v1 [cs.cv] 10 Apr 2018 Reference-Conditioned Super-Resolution by Neural Texture Transfer Zhifei Zhang 1, Zhaowen Wang 2, Zhe Lin 2, and Hairong Qi 1 1 Department of Electrical Engineering

More information

arxiv: v2 [cs.cv] 17 Sep 2018

arxiv: v2 [cs.cv] 17 Sep 2018 arxiv:1809.00219v2 [cs.cv] 17 Sep 2018 ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks Xintao Wang 1, Ke Yu 1, Shixiang Wu 2, Jinjin Gu 3, Yihao Liu 4, Chao Dong 2, Chen Change Loy 5,

More information

S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction

S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction Bolun Zheng, a Rui Sun, b Xiang Tian, a,c Yaowu Chen d,e a Zhejiang University, Institute of Advanced Digital Technology

More information

Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network

Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network 1 Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network Yudong Liang, Ze Yang, Kai Zhang, Yihui He, Jinjun Wang, Senior Member, IEEE, and Nanning Zheng, Fellow, IEEE arxiv:1703.08173v2

More information

arxiv: v1 [cs.cv] 13 Sep 2018

arxiv: v1 [cs.cv] 13 Sep 2018 arxiv:1809.04789v1 [cs.cv] 13 Sep 2018 Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality Jun-Ho Choi, Jun-Hyuk Kim, Manri Cheon, and Jong-Seok Lee School of Integrated

More information

DCGANs for image super-resolution, denoising and debluring

DCGANs for image super-resolution, denoising and debluring DCGANs for image super-resolution, denoising and debluring Qiaojing Yan Stanford University Electrical Engineering qiaojing@stanford.edu Wei Wang Stanford University Electrical Engineering wwang23@stanford.edu

More information

Image Super Resolution Based on Fusing Multiple Convolution Neural Networks

Image Super Resolution Based on Fusing Multiple Convolution Neural Networks Image Super Resolution Based on Fusing Multiple Convolution Neural Networks Haoyu Ren, Mostafa El-Khamy, Jungwon Lee SAMSUNG SEMICONDUCTOR INC. 4921 Directors Place, San Diego, CA, US {haoyu.ren, mostafa.e,

More information

Boosting face recognition via neural Super-Resolution

Boosting face recognition via neural Super-Resolution Boosting face recognition via neural Super-Resolution Guillaume Berger, Cle ment Peyrard and Moez Baccouche Orange Labs - 4 rue du Clos Courtel, 35510 Cesson-Se vigne - France Abstract. We propose a two-step

More information

Single Image Super-Resolution Using a Deep Encoder-Decoder. Symmetrical Network with Iterative Back Projection

Single Image Super-Resolution Using a Deep Encoder-Decoder. Symmetrical Network with Iterative Back Projection Single Image Super-Resolution Using a Deep Encoder-Decoder Symmetrical Network with Iterative Back Projection Heng Liu 1, Jungong Han 2, *, Shudong Hou 1, Ling Shao 3, Yue Ruan 1 1 School of Computer Science

More information

arxiv: v1 [cs.cv] 25 Dec 2017

arxiv: v1 [cs.cv] 25 Dec 2017 Deep Blind Image Inpainting Yang Liu 1, Jinshan Pan 2, Zhixun Su 1 1 School of Mathematical Sciences, Dalian University of Technology 2 School of Computer Science and Engineering, Nanjing University of

More information

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models [Supplemental Materials] 1. Network Architecture b ref b ref +1 We now describe the architecture of the networks

More information

arxiv: v1 [cs.cv] 7 Aug 2017

arxiv: v1 [cs.cv] 7 Aug 2017 MemNet: A Persistent Memory Network for Image Restoration Ying Tai 1, Jian Yang 1, Xiaoming Liu 2, and Chunyan Xu 1 1 Department of Computer Science and Engineering, Nanjing University of Science and Technology

More information

Augmented Coupled Dictionary Learning for Image Super-Resolution

Augmented Coupled Dictionary Learning for Image Super-Resolution Augmented Coupled Dictionary Learning for Image Super-Resolution Muhammad Rushdi and Jeffrey Ho Computer and Information Science and Engineering University of Florida Gainesville, Florida, U.S.A. Email:

More information

arxiv: v4 [cs.cv] 25 Mar 2018

arxiv: v4 [cs.cv] 25 Mar 2018 Frame-Recurrent Video Super-Resolution Mehdi S. M. Sajjadi 1,2 msajjadi@tue.mpg.de Raviteja Vemulapalli 2 ravitejavemu@google.com 1 Max Planck Institute for Intelligent Systems 2 Google Matthew Brown 2

More information

Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network

Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network sensors Article Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network Xiaofeng Du 1 ID, Xiaobo Qu 2, Yifan He 1 and Di Guo 1, * ID 1 School of Computer and Information

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos Zhengdong Zhang, Vivienne Sze Massachusetts Institute of Technology http://www.mit.edu/~sze/fast.html 1 Super-Resolution

More information

arxiv: v1 [cs.lg] 21 Dec 2018

arxiv: v1 [cs.lg] 21 Dec 2018 Multimodal Sensor Fusion In Single Thermal image Super-Resolution Feras Almasri 1 and Olivier Debeir 2 arxiv:1812.09276v1 [cs.lg] 21 Dec 2018 Dept.LISA - Laboratory of Image Synthesis and Analysis, Universit

More information

RSRN: Rich Side-output Residual Network for Medial Axis Detection

RSRN: Rich Side-output Residual Network for Medial Axis Detection RSRN: Rich Side-output Residual Network for Medial Axis Detection Chang Liu, Wei Ke, Jianbin Jiao, and Qixiang Ye University of Chinese Academy of Sciences, Beijing, China {liuchang615, kewei11}@mails.ucas.ac.cn,

More information

Task-Driven Super Resolution: Object Detection in Low-resolution Images

Task-Driven Super Resolution: Object Detection in Low-resolution Images Task-Driven Super Resolution: Object Detection in Low-resolution Images Muhammad Haris 1, Greg Shakhnarovich 2, and Norimichi Ukita 1 1 TTI, Japan 2 TTI-C, United States {mharis, ukita}@toyota-ti.ac.jp,

More information

Improving Facial Landmark Detection via a Super-Resolution Inception Network

Improving Facial Landmark Detection via a Super-Resolution Inception Network Improving Facial Landmark Detection via a Super-Resolution Inception Network Martin Knoche, Daniel Merget, Gerhard Rigoll Institute for Human-Machine Communication Technical University of Munich, Germany

More information

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Qi Zhang & Yan Huang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition

More information

SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material

SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material Ayan Sinha MIT Asim Unmesh IIT Kanpur Qixing Huang UT Austin Karthik Ramani Purdue sinhayan@mit.edu a.unmesh@gmail.com

More information

Depth image super-resolution via multi-frame registration and deep learning

Depth image super-resolution via multi-frame registration and deep learning Depth image super-resolution via multi-frame registration and deep learning Ching Wei Tseng 1 and Hong-Ren Su 1 and Shang-Hong Lai 1 * and JenChi Liu 2 1 National Tsing Hua University, Hsinchu, Taiwan

More information

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Osama Makansi, Eddy Ilg, and Thomas Brox Department of Computer Science, University of Freiburg 1 Computation

More information

FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION. Image Processing Lab Technicolor R&I Hannover

FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION. Image Processing Lab Technicolor R&I Hannover FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION Jordi Salvador Eduardo Pérez-Pellitero Axel Kochale Image Processing Lab Technicolor R&I Hannover ABSTRACT This paper presents a new method for

More information

Seven ways to improve example-based single image super resolution

Seven ways to improve example-based single image super resolution Seven ways to improve example-based single image super resolution Radu Timofte CVL, D-ITET, ETH Zurich radu.timofte@vision.ee.ethz.ch Rasmus Rothe CVL, D-ITET, ETH Zurich rrothe@vision.ee.ethz.ch Luc Van

More information

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Konstantina Fotiadou, Greg Tsagkatakis & Panagiotis Tsakalides kfot@ics.forth.gr, greg@ics.forth.gr, tsakalid@ics.forth.gr ICS-

More information

VARIATION LEARNING GUIDED CONVOLUTIONAL NETWORK FOR IMAGE INTERPOLATION

VARIATION LEARNING GUIDED CONVOLUTIONAL NETWORK FOR IMAGE INTERPOLATION VARIATION LEARNING GUIDED CONVOLUTIONAL NETWORK FOR IMAGE INTERPOLATION Wenhan Yang 1, Jiaying Liu 1, Sifeng Xia 1, Zongming Guo 1,2 1 Institute of Computer Science and Technology, Peking University, Beijing,

More information

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Peak memory usage, GB 10 1 0.1 0.01 OGN Quadratic Dense Cubic Iteration time, s 10

More information

Single Image Super-Resolution via Iterative Collaborative Representation

Single Image Super-Resolution via Iterative Collaborative Representation Single Image Super-Resolution via Iterative Collaborative Representation Yulun Zhang 1(B), Yongbing Zhang 1, Jian Zhang 2, aoqian Wang 1, and Qionghai Dai 1,3 1 Graduate School at Shenzhen, Tsinghua University,

More information

Attribute Augmented Convolutional Neural Network for Face Hallucination

Attribute Augmented Convolutional Neural Network for Face Hallucination Attribute Augmented Convolutional Neural Network for Face Hallucination Cheng-Han Lee 1 Kaipeng Zhang 1 Hu-Cheng Lee 1 Chia-Wen Cheng 2 Winston Hsu 1 1 National Taiwan University 2 The University of Texas

More information

De-mark GAN: Removing Dense Watermark With Generative Adversarial Network

De-mark GAN: Removing Dense Watermark With Generative Adversarial Network De-mark GAN: Removing Dense Watermark With Generative Adversarial Network Jinlin Wu, Hailin Shi, Shu Zhang, Zhen Lei, Yang Yang, Stan Z. Li Center for Biometrics and Security Research & National Laboratory

More information

Structured Face Hallucination

Structured Face Hallucination 2013 IEEE Conference on Computer Vision and Pattern Recognition Structured Face Hallucination Chih-Yuan Yang Sifei Liu Ming-Hsuan Yang Electrical Engineering and Computer Science University of California

More information

Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution

Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution Yan Huang 1 Wei Wang 1 Liang Wang 1,2 1 Center for Research on Intelligent Perception and Computing National Laboratory of

More information

Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders Xin Yu, Fatih Porikli Australian National University {xin.yu, fatih.porikli}@anu.edu.au Abstract

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

arxiv: v2 [cs.mm] 29 Oct 2016

arxiv: v2 [cs.mm] 29 Oct 2016 A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding Yuanying Dai, Dong Liu, and Feng Wu arxiv:1608.06690v2 [cs.mm] 29 Oct 2016 CAS Key Laboratory of Technology in Geo-Spatial

More information

Removing rain from single images via a deep detail network

Removing rain from single images via a deep detail network 207 IEEE Conference on Computer Vision and Pattern Recognition Removing rain from single images via a deep detail network Xueyang Fu Jiabin Huang Delu Zeng 2 Yue Huang Xinghao Ding John Paisley 3 Key Laboratory

More information

End-to-End Learning of Video Super-Resolution with Motion Compensation

End-to-End Learning of Video Super-Resolution with Motion Compensation End-to-End Learning of Video Super-Resolution with Motion Compensation Osama Makansi, Eddy Ilg, and Thomas Brox Department of Computer Science, University of Freiburg Abstract. Learning approaches have

More information

GUN: Gradual Upsampling Network for single image super-resolution

GUN: Gradual Upsampling Network for single image super-resolution 1 GUN: Gradual Upsampling Network for single image super-resolution Yang Zhao, Member, IEEE, Ronggang Wang, Member, IEEE, Weisheng Dong, Member, IEEE, Wei Jia, Member, IEEE, Jianchao Yang, Xiaoping Liu,

More information

Deep Residual Convolutional Neural Network for Hyperspectral Image Super-resolution

Deep Residual Convolutional Neural Network for Hyperspectral Image Super-resolution Deep Residual Convolutional Neural Network for Hyperspectral Image Super-resolution Chen Wang 1, Yun Liu 2, Xiao Bai 1, Wenzhong Tang 1, Peng Lei 3, and Jun Zhou 4 1 School of Computer Science and Engineering,

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

Single Image Super-Resolution via Sparse Representation over Directionally Structured Dictionaries Based on the Patch Gradient Phase Angle

Single Image Super-Resolution via Sparse Representation over Directionally Structured Dictionaries Based on the Patch Gradient Phase Angle 2014 UKSim-AMSS 8th European Modelling Symposium Single Image Super-Resolution via Sparse Representation over Directionally Structured Dictionaries Based on the Patch Gradient Phase Angle Mahmoud Nazzal,

More information