Deep Learning for Visual Manipulation and Synthesis

Size: px
Start display at page:

Download "Deep Learning for Visual Manipulation and Synthesis"

Transcription

1 Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley VALSE

2 What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay close to the input. satisfy user s constraint. [Schaefer et al. 2006]

3 Sketch2Photo [Tao et al. 2009] What is Visual Synthesis? Image Generation Program user input result Desired output: satisfy user s constraint.

4 So far so good

5 Things can get really bad The lack of safety wheels

6 Adding the safety wheels Image Editing Program Input Photo User Input A desired output: stay close to the input. satisfy user s constraint. Lie on the natural image manifold Output Result Natural Image Manifold

7 Prior work: Heuristic-based Gradient [Perez et al. 2003] Bleeding artifacts [Tao et al. 2010] Color [Reinhard et al. 2004] Color and Texture [Johnson et al. 2011]

8 Prior work: Discriminative Learning Natural Human Motion (34 subjects) [Ren et al. 2005] Image Compositing (20 images) [Xue et al. 2012] Image Deblurring (40 images) [Liu et al. 2013]

9 Our Goal: - Learn the manifold of natural images without direct human annotations. - Improve visual manipulation and synthesis by constraining the result to lie on that learned manifold.

10 Why Deep Learning Methods? Impressive results on visual recognition. Classification, detection, segmentation,3d vision, videos, etc. No feature engineering. Recent development of generative models. (e.g. Generative Adversarial Networks)

11 Deep Learning trends: performance

12 Deep Learning trends: research AlexNet [Krizhevsky et al.] ImageNet [Jia et al.]

13 Discriminative Model M: {x P real x = 1} [ICCV 15 ] Realism CNN Predict Realism Improve Editing Image Editing Model Generative Model M: {x x = G z } [SIGGRAPH 14 ] Project Editing UI Edit Transfer [ECCV 16 ]

14 Discriminative Model M: {x P real x = 1} [ICCV 15 ] Realism CNN Predict Realism Improve Editing Image Editing Model Foreground Object F Background B Image Composite I

15 Learning Visual Realism CNN Training Composite images Classifying Natural Photos 25K natural photos vs. 25k composite images

16 How do we get composite images? Target Object Composite Images Object Mask Object Masks with Similar Shapes Object Mask: (1) Human Annotation (2) Object Proposal [Lalonde and Efros 2007]

17 Ranking of Training Composites Most realistic composites Least realistic composites

18 Evaluation Dataset [Lalonde and Efros 2007] Task: binary classification 360 realistic photos (natural images + realistic composites) 360 unrealistic photos Area under ROC Curve Methods without object mask Lalonde and Efros (no mask) 0.61 AlexNet + SVM 0.73 RealismCNN 0.84 RealismCNN + SVM Human 0.91 Methods using object mask Reinhard et al Lalonde and Efros (with mask) 0.81

19 Visual Realism Ranking Least Realistic Most Realistic Snowy Mountain Highway Ocean Red: unrealistic composite, Green: realistic composite, Blue: natural image

20 Our Pipeline Realism CNN Predict Realism Improve Composites Image Editing Model

21 Improving Visual Realism Editing model: Color adjustment g Foreground object F Realism CNN Original Composite (Realism score: 0.0) Improved Composite (Realism score: 0.8) E(g, F) = E CNN + E reg Quasi-Newton (L-BFGS)

22 Selecting Suitable Objects Best-fitting object selected by RealismCNN Object with most similar shape

23 Optimizing Color Compatibility Object mask Cut-n-paste Lalonde et al. Xue et al. Ours

24 Sanity Check: Real Photos Object mask Cut-n-paste Lalonde et al. Xue et al. Ours

25 E = Visualizing and Localizing Errors ( E I p ) Number of L-BFGS iterations Result Gradient Map

26 Discriminative Model {x P real x = 1} Pros: CNN is easy to train. Graphics programs often produce better images than generative models. General framework for many tasks (e.g. deblurring, retargeting, etc.) Cons: Task-specific: cannot apply pre-trained model to other tasks. Graphics programs are often non-parametric and non-differentiable. Graphics programs often require user in the loop: thus automatically generating results for CNN training is challenging. Code: github.com/junyanz/realismcnn Data: people.eecs.berkeley.edu/~junyanz/projects/realism/

27 Discriminative Model M: {x P real x = 1} [ICCV 15 ] Realism CNN Predict Realism Improve Editing Image Editing Model Generative Model M: {x x = G z } [SIGGRAPH 14 ] Project Editing UI Edit Transfer [ECCV 16 ]

28 Learning Natural Image Manifold Deep generative models: Generative Adversarial Network (GAN) [Goodfellow et al. 2014] [Radford et al. 2015] [Denton et al 2015] Variational Auto-Encoder (VAE) [Kingma and Welling 2013] DRAW (Recurrent Neural Network) [Gregor et al 2015] Pixel RNN and Pixel CNN ([Oord et al 2016])

29 Image Classification via Neural Network Cat Input image I Slides credit: Andrew Owens

30 Can We Generate Images with Neural Networks? Gaussian noise Image or Random Distribution

31 Generative Adversarial Networks (GAN) Generative Model Synthesized image [Goodfellow et al. 2014]

32 Generative Adversarial Networks (GAN) Generative Model Discriminative Model real [Goodfellow et al. 2014]

33 Generative Adversarial Networks (GAN) Generative Model Discriminative Model fake [Goodfellow et al. 2014]

34 Cat Generation (w.r.t. training iterations

35 GAN as Manifold Approximation Sample training images from Amazon Shirts Random image samples from Generator G(z) [Radford et al. 2015]

36 Traverse on the GAN Manifold G(z 0 ) Linear Interpolation in z space: G(z 0 + t (z 1 z 0 )) G(z 1 ) Limitations: not photo-realistic enough, low resolution produce images randomly, no user control [Radford et al. 2015]

37 Overview original photo Project Editing UI different degree of image manipulation Edit Transfer projection on manifold transition between the original and edited projection

38 Overview original photo Project Editing UI different degree of image manipulation Edit Transfer projection on manifold transition between the original and edited projection

39 Projecting an Image onto the Manifold Input: real image x R Output: latent vector z Optimization Reconstruction loss L Generative model G(z)

40 Projecting an Image onto the Manifold Input: real image x R Output: latent vector z Optimization Inverting Network z = P x Auto-encoder with a fixed decoder G

41 Projecting an Image onto the Manifold Input: real image x R Output: latent vector z Optimization Inverting Network z = P x Hybrid Method Use the network as initialization for the optimization problem

42 Overview original photo Project Editing UI different degree of image manipulation Edit Transfer projection on manifold transition between the original and edited projection

43 Manipulating the Latent Vector constraint violation loss L g user guidance image Objective: Guidance v g G(z) z 0

44 Overview original photo Project Editing UI different degree of image manipulation Edit Transfer projection on manifold transition between the original and edited projection

45 Edit Transfer Motion (u, v)+ Color (A 3 4 ): estimate per-pixel geometric and color variation G(z 0 ) Linear Interpolation in z space G(z 1 ) Input

46 Edit Transfer Motion (u, v)+ Color (A 3 4 ): estimate per-pixel geometric and color variation G(z 0 ) Linear Interpolation in z space G(z 1 ) Input

47 Edit Transfer Motion (u, v)+ Color (A 3 4 ): estimate per-pixel geometric and color variation G(z 0 ) Linear Interpolation in z space G(z 1 ) Input Result

48 Image Manipulation Demo

49 Image Manipulation Demo

50 Designing Products

51

52 Interactive Image Generation

53 The Simplest Generative Model: Averaging AverageExplorer: {x x = n w n I n warp } Generative model: weighted average of warped images. Limitations: cannot synthesize novel content. [Zhu et al. 2014]

54 Generative Image Transformation

55 igan (aka. interactive GAN) Get the code: github.com/junyanz/igan Intelligent drawing tools via GAN. Debugging tools for understanding and visualizing deep generative networks. Work in progress: supporting more models (GAN, VAE, theano/tensorflow).

56 Generative Model {x x = G z, z Z} Pros: Task-independent: offline generative model training is independent of the graphics applications. Optimizing z is easier than optimizing x. Generative models are better and better. Cons: Low quality, low res => post-processing (still engineering work). Limitations of current generative models: cannot produce good texture.

57 Related work on GAN Goodfellow s NIPS 2016 Tutorial: [arxiv], [slides] Early work: [Tu 07 ], [Gutmann and Hyvarinen 10 ], etc. New models: InfoGAN, SSGAN, VAE-GAN, LAPGAN, BiGAN, CoGAN, PPGAN, etc. Training techniques: DCGAN, Improved-GAN, EBGAN, Unrolling. Image: Inpainting, Inverting features, Style Transfer, Text-To- Image, super-resolution, etc. Video: Frame Prediction, Tiny Videos, etc.

58 Image-to-Image Translation arxiv 2016 code: github.com/phillipi/pix2pix Image-to-Image Translation with Conditional Adversarial Nets Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Arxiv 2016

59 Image-to-Image Problems

60 Conditional Adversarial Networks (cgan) Loss: L1+GAN G:U-Net D: PatchGAN (70 70) U-Net [Ronneberger et al. 15 ]

61 Conditional GAN

62 Network and Loss Function Loss function: L1 + GAN Generator G: U-Net Discriminator D: PatchGAN (FCN) U-Net [Ronneberger et al. 15 ]

63 Different Losses

64 Architectures for Generator G

65 Patch Size of PatchGAN

66 Applications

67 Label Facade

68 Label Street View

69 Map Generation

70 Day night

71 Edge Handbag HED [Xie and Tu. 15 ]

72 Edge Shoe HED [Xie and Tu. 15 ]

73 User Sketch Photo

74 Automatic Colorization

75 Failure Cases - Sparse input image. - Unusual input image.

76 Summary: Image-to-Image Problems

77 Cat Paper Collection GitHub: github.com/junyanz/catpapers 90% data is visual; most of visual data are about Cats. 60+ vision, learning and graphics papers.

78

79 Thank You! Eli Yong Jae Philipp Alyosha Philipp Tinghui

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Learning to Generate Images

Learning to Generate Images Learning to Generate Images Jun-Yan Zhu Ph.D. at UC Berkeley Postdoc at MIT CSAIL Computer Vision before 2012 Cat Features Clustering Pooling Classification [LeCun et al, 1998], [Krizhevsky et al, 2012]

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

GAN and Feature Representation. Hung-yi Lee

GAN and Feature Representation. Hung-yi Lee GAN and Feature Representation Hung-yi Lee Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar

More information

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

Introduction to GANs

Introduction to GANs MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan Introduction to GANs IAN SAGAN McGAN Ian Goodfellow, Staff Research Scientist, Google Brain

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr.

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr. Two Routes for Image to Image Translation: Rule based vs. Learning based Minglun Gong, Memorial Univ. Collaboration with Mr. Zili Yi Introduction A brief history of image processing Image to Image translation

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Adversarial Machine Learning

Adversarial Machine Learning MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN BIM LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN ATN FGSM igan IAN Adversarial Machine Learning McGAN Ian Goodfellow, Staff Research Scientist,

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

arxiv: v1 [cs.cv] 12 Sep 2016

arxiv: v1 [cs.cv] 12 Sep 2016 arxiv:1609.03552v1 [cs.cv] 12 Sep 2016 Generative Visual Manipulation on the Natural Image Manifold Jun-Yan Zhu 1, Philipp Krähenbühl 1, Eli Shechtman 2, and Alexei A. Efros 1 University of California,

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Toward Multimodal Image-to-Image Translation

Toward Multimodal Image-to-Image Translation Toward Multimodal Image-to-Image Translation Jun-Yan Zhu UC Berkeley Richard Zhang UC Berkeley Deepak Pathak UC Berkeley Trevor Darrell UC Berkeley Alexei A. Efros UC Berkeley Oliver Wang Adobe Research

More information

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang Unsupervised Deep Learning James Hays slides from Carl Doersch and Richard Zhang Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With object detection,

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models [Supplemental Materials] 1. Network Architecture b ref b ref +1 We now describe the architecture of the networks

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

arxiv: v1 [cs.cv] 1 Nov 2018

arxiv: v1 [cs.cv] 1 Nov 2018 Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data Dichao Hu College of Computing, Georgia Institute of Technology, 801 Atlantic Dr

More information

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara COMPUTER VISION IN THE ARTISTIC DOMAIN The effectiveness of Computer Vision

More information

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm Mandikal Vikram National Institute of Technology Karnataka, India 15it217.vikram@nitk.edu.in Steffen Wolf HCI/IWR, University

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

Learning a Discriminative Model for the Perception of Realism in Composite Images

Learning a Discriminative Model for the Perception of Realism in Composite Images Learning a Discriminative Model for the Perception of Realism in Composite Images Jun-Yan Zhu UC Berkeley Philipp Krähenbühl UC Berkeley Eli Shechtman Adobe Research Alexei A. Efros UC Berkeley Abstract

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

arxiv: v2 [cs.cv] 13 Jun 2017

arxiv: v2 [cs.cv] 13 Jun 2017 Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN arxiv:1706.03319v2 [cs.cv] 13 Jun 2017 Lvmin Zhang, Yi Ji and Xin Lin School of Computer Science and Technology,

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Deep generative models of natural images

Deep generative models of natural images Spring 2016 1 Motivation 2 3 Variational autoencoders Generative adversarial networks Generative moment matching networks Evaluating generative models 4 Outline 1 Motivation 2 3 Variational autoencoders

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays Single Image Super-resolution Slides from Libin Geoffrey Sun and James Hays Cs129 Computational Photography James Hays, Brown, fall 2012 Types of Super-resolution Multi-image (sub-pixel registration) Single-image

More information

Bridging Theory and Practice of GANs

Bridging Theory and Practice of GANs MedGAN ID-CGAN Progressive GAN LR-GAN CGAN IcGAN b-gan LS-GAN AffGAN LAPGAN LSGAN InfoGAN CatGAN SN-GAN DiscoGANMPM-GAN AdaGAN AMGAN igan IAN CoGAN Bridging Theory and Practice of GANs McGAN Ian Goodfellow,

More information

arxiv: v1 [eess.sp] 23 Oct 2018

arxiv: v1 [eess.sp] 23 Oct 2018 Reproducing AmbientGAN: Generative models from lossy measurements arxiv:1810.10108v1 [eess.sp] 23 Oct 2018 Mehdi Ahmadi Polytechnique Montreal mehdi.ahmadi@polymtl.ca Mostafa Abdelnaim University de Montreal

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Introduction to Generative Models (and GANs)

Introduction to Generative Models (and GANs) Introduction to Generative Models (and GANs) Haoqiang Fan fhq@megvii.com Nov. 2017 Figures adapted from NIPS 2016 Tutorial Generative Adversarial Networks Generative Models: Learning the Distributions

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong TABLE I CLASSIFICATION ACCURACY OF DIFFERENT PRE-TRAINED MODELS ON THE TEST DATA

More information

Amortised MAP Inference for Image Super-resolution. Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017

Amortised MAP Inference for Image Super-resolution. Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017 Amortised MAP Inference for Image Super-resolution Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017 Super Resolution Inverse problem: Given low resolution representation

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

arxiv: v2 [cs.cv] 23 Dec 2017

arxiv: v2 [cs.cv] 23 Dec 2017 TextureGAN: Controlling Deep Image Synthesis with Texture Patches Wenqi Xian 1 Patsorn Sangkloy 1 Varun Agrawal 1 Amit Raj 1 Jingwan Lu 2 Chen Fang 2 Fisher Yu 3 James Hays 1 1 Georgia Institute of Technology

More information

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference Information Engineering Express International Institute of Applied Informatics 2017, Vol.3, No.4, P.55-66 Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang Centre for Vision, Speech and Signal Processing University of Surrey, Guildford,

More information

DCGANs for image super-resolution, denoising and debluring

DCGANs for image super-resolution, denoising and debluring DCGANs for image super-resolution, denoising and debluring Qiaojing Yan Stanford University Electrical Engineering qiaojing@stanford.edu Wei Wang Stanford University Electrical Engineering wwang23@stanford.edu

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Multi-view 3D Models from Single Images with a Convolutional Network

Multi-view 3D Models from Single Images with a Convolutional Network Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko University of Freiburg Skoltech - 2nd Christmas Colloquium on Computer Vision Humans have prior knowledge about 3D

More information

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang GAN Related Works CVPR 2018 & Selective Works in ICML and NIPS Zhifei Zhang Generative Adversarial Networks (GANs) 9/12/2018 2 Generative Adversarial Networks (GANs) Feedforward Backpropagation Real? z

More information

Pixel-level Generative Model

Pixel-level Generative Model Pixel-level Generative Model Generative Image Modeling Using Spatial LSTMs (2015NIPS) L. Theis and M. Bethge University of Tübingen, Germany Pixel Recurrent Neural Networks (2016ICML) A. van den Oord,

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Texture. CS 419 Slides by Ali Farhadi

Texture. CS 419 Slides by Ali Farhadi Texture CS 419 Slides by Ali Farhadi What is a Texture? Texture Spectrum Steven Li, James Hays, Chenyu Wu, Vivek Kwatra, and Yanxi Liu, CVPR 06 Texture scandals!! Two crucial algorithmic points Nearest

More information

TextureGAN: Controlling Deep Image Synthesis with Texture Patches

TextureGAN: Controlling Deep Image Synthesis with Texture Patches TextureGAN: Controlling Deep Image Synthesis with Texture Patches Wenqi Xian 1 Patsorn Sangkloy 1 Varun Agrawal 1 Amit Raj 1 Jingwan Lu 2 Chen Fang 2 Fisher Yu 3 James Hays 1,4 1 Georgia Institute of Technology

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

arxiv: v3 [cs.cv] 30 Mar 2018

arxiv: v3 [cs.cv] 30 Mar 2018 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong Wenhan Luo Lin Ma Wei Liu Jiebo Luo Tencent AI Lab University of Rochester {wxiong5,jluo}@cs.rochester.edu

More information

Image Composition. COS 526 Princeton University

Image Composition. COS 526 Princeton University Image Composition COS 526 Princeton University Modeled after lecture by Alexei Efros. Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez. Image Composition Jurassic Park

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

arxiv: v2 [cs.cv] 2 Dec 2017

arxiv: v2 [cs.cv] 2 Dec 2017 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo Department of Computer Science, University of Rochester,

More information

arxiv: v1 [cs.cv] 16 Nov 2017

arxiv: v1 [cs.cv] 16 Nov 2017 Two Birds with One Stone: Iteratively Learn Facial Attributes with GANs arxiv:1711.06078v1 [cs.cv] 16 Nov 2017 Dan Ma, Bin Liu, Zhao Kang University of Electronic Science and Technology of China {madan@std,

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

arxiv: v2 [cs.cv] 1 Dec 2017

arxiv: v2 [cs.cv] 1 Dec 2017 Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation Chao Wang Haiyong Zheng Zhibin Yu Ziqiang Zheng Zhaorui Gu Bing Zheng Ocean University of China Qingdao,

More information

Generating Images from Captions with Attention. Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov

Generating Images from Captions with Attention. Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov Generating Images from Captions with Attention Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov Reasoning, Attention, Memory workshop, NIPS 2015 Motivation To simplify the image modelling

More information

arxiv: v2 [cs.cv] 26 Mar 2017

arxiv: v2 [cs.cv] 26 Mar 2017 TAC-GAN Text Conditioned Auxiliary Classifier Generative Adversarial Network arxiv:1703.06412v2 [cs.cv] 26 ar 2017 Ayushman Dash 1 John Gamboa 1 Sheraz Ahmed 3 arcus Liwicki 14 uhammad Zeshan Afzal 12

More information

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Modeling Density estimation Sample generation Training examples Model samples Next Video Frame

More information

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt Energy Based Models, Restricted Boltzmann Machines and Deep Networks Jesse Eickholt ???? Who s heard of Energy Based Models (EBMs) Restricted Boltzmann Machines (RBMs) Deep Belief Networks Auto-encoders

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Generative Face Completion

Generative Face Completion Generative Face Completion Yijun Li 1, Sifei Liu 1, Jimei Yang 2, and Ming-Hsuan Yang 1 1 University of California, Merced 2 Adobe Research {yli62,sliu32,mhyang}@ucmerced.edu jimyang@adobe.com Abstract

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information