Adversarially Learned Inference

Size: px
Start display at page:

Download "Adversarially Learned Inference"

Transcription

1 Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro, Ben Poole, Alex Lamb, Martin Arjovsky Université de Sherbrooke, Feb. 2017

2 Two papers, one model ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro Ben Poole, Alex Lamb, Martin Arjovsky (2016) ADVERSARIALLY LEARNED INFERENCE, arxiv: BiGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL FEATURE LEARNING, arxiv:

3 Deep directed generative models Latent variables inference z z 2 x 2 z G G? x x 3 z 1 x 1 x Observed variables

4 Latent variable-based generative modeling VAE-based techniques Trained to maximize a variational lower bound on log-likelihood of x. Introduce approximate posterior q(z x) (encoder) and train it together with the generative model (decoder) tends to produce blurred samples.

5 vanilla VAE: blurry samples Labelled Faces in the Wild (LFW) ImageNet (small)

6 PixelVAE: not so bad! LSUN bedroom scenes ImageNet (small)

7 Latent variable-based generative modeling VAE-based techniques GAN-based techniques Trained to maximize a variational lower bound on log-likelihood of x. Discriminative network is trained to distinguish between the data and generative network samples. Introduce approximate posterior q(z x) (encoder) and train it together with the generative model (decoder) Generator is trained to produce samples that fool the generator. tends to produce blurred samples. Sample quality exceeds that of VAE. Lacks an efficient mechanism for inference.

8 GANs side-steps need for inference z ~ p(z) x ~ q(x) Data D(x) Discriminator Generator G(z) x ~ p(x z)

9 GAN samples MNIST CIFAR-10

10 memorization with SGD and a small learning rate. DCGAN samples (Radford, Metz and Chintala; 2016) LSUN bedroom scenes

11 Under review as a conference paper at ICLR 2016 DCGAN samples Z-space interpolations LSUN bedroom scenes (Radford, Metz and Chintala; 2016)

12 Cartoon of the Image manifold x2 x1

13 Image manifold: VAE - vs - GAN x2 x2 VAE x1 GAN x1

14 Deep directed generative models GANs have no inference mechanism Latent variables z z 2 x 2 z G G? x x 3 z 1 x 1 x Observed variables

15 Adversarially learned inference: Main idea Cast the learning of both an inference model (encoder) and a generative model (decoder) in a GAN-like adversarial framework. Discriminator is trained to discriminate between joint samples (x, z) from: - Encoder distribution q(x, z) = q(x) q(z x), or Data distribution Prior distribution - Decoder distribution p(x, z) = p(z) p(x z). Generator learns conditionals q(z x) and p(x z) to fool the discriminator.

16 ALI: model diagram z ~ q(z x) z ~ p(z) Gz(x) Encoder D(x, z) Decoder Gx(z) x ~ q(x) x ~ p(x z)

17 ALI: objective function min G max V (D, G) =E q(x)[log(d(x,g z (x)))] + E [log(1 D(G p(z) x (z), z))] D ZZ = q(x)q(z x) log(d(x, z))dxdz ZZ + p(z)p(x z) log(1 D(x, z))dxdz

18 ALI: implementation details Alternative generator objective function: maximize V 0 (D, G) =E q(x) [log(1 D(x,G z (x)))] + E p(z) [log(d(g x (z), z))]

19 Theoretical properties In analogy with GAN, under an ideal discriminator, the generator minimizes the Jensen-Shannon divergence between p(x, z) and q(x, z).

20 BiGAN: Encoder & Decoder are Inverses Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL FEATURE LEARNING: - In the case of a deterministic encoder & decoder, in order to fool an ideal discriminator, the encoder and decoder must invert each other.

21 BiGAN: Encoder & Decoder are Inverses Donahue, Krähenbühl and Darrell (2016) Intuition: Discriminator input pair (x, z) must satisfy at least one of the following two properties: (a) (b) x supp (p data (x)) G z (x) =z z supp (p prior (z)) G x (z) =x If only one of these properties is satisfied, a perfect discriminator can infer the source of (x, z) with certainty. Therefore, in order to fool an ideal discriminator, the encoder G z (x) and decoder G x (z) (x, z) must satisfy both (a) and (b) at

22 Toy Example Learning the Identity function: Encoder: X ~ N(0,1) Decoder: Z ~ N(0,1) Zihang Dai

23 SVHN Samples Data Recon Reconstructions

24 CIFAR-10 Samples Data Recon Reconstructions

25 Recon Samples Data CelebA Reconstructions

26 Recon Samples Data Tiny ImageNet Reconstructions

27 Interpolating in latent space

28 Interpolating in latent space Tom White CelebA - 128x128 Smile vector:

29 Conditional generation min G max D V (D, G) =E q(x) p(y)[log(d(x,g z (x, y), y))]+e p(z) p(y) [log(1 D(G x (z, y), z, y))] ALI can be extended to incorporate feature labels to perform conditional generation - Encoder: (x,y) -> z - Decoder (z,y) -> x - Discriminator (x,y,z) -> 0/1

30 Conditional generation: CelebA black hair blond, bangs blond, balding open smile, black, wavy hair glasses

31 Semi-supervised experiments Table 1: SVHN test set missclassification rate Model Misclassification rate. VAE (M1 + M2) (Kingma et al., 2014) SWWAE with dropout (Zhao et al., 2015) DCGAN + L2-SVM (Radford et al., 2015) SDGM (Maaløe et al., 2016) GAN (feature matching) (Salimans et al., 2016) 8.11 ± 1.3 ALI (ours, L2-SVM) ± 0.50 ALI (ours, no feature matching) 7.42 ± 0.65 Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation. Number of labeled examples Model Misclassification rate Ladder network (Rasmus et al., 2015) CatGAN (Springenberg, 2015) GAN (feature matching) (Salimans et al., 2016) ± ± ± ± 1.82 ALI (ours, no feature matching) ± ± ± ± 1.49

32 Alternative Inference Alternative inference mechanisms: Mechanisms (a) ALI (ours) (b) Learn encoder via z reconstruction (c) Post hoc encoder learning (ALI-style) (d) Variational Autoencoder (VAE)

33 Hierarchical ALI: model diagram z2 ~ q(z2 z1) z2 ~ p(z2) z1 ~ q(z1 x) D(x, z1, z2) Gz1(x) Encoder Gz2(z1) Gz1(z2) z1 ~ p(z1 z2) Decoder Gx(z1) x ~ q(x) x ~ p(x z1)

34 Hierarchical ALI: model diagram Input: x~p(x) Sample: x~p(x z 1 ) Decoder D(z 2 ;ψ) z 1 ~p(z 1 z 2 ) z 1 ~q(z 1 x) Encoder E(x; φ) Code: z 2 ~q(z 2 x) Prior: z 2 ~p(z) Discriminator D(x, z 1, z 2 ; θ)

35 Hierarchical ALI: SVHN Model samples Data Recon Data Recon Reconstructions given z1, z2 Reconstructions given z2

36 Reconstructions given z1, z2 Recon Data Recon Model samples Data Hierarchical ALI: CelebA Reconstructions given z2

37 Hierarchical ALI: CIFAR-10 Model samples Data Recon Data Recon Reconstructions given z1, z2 Reconstructions given z2

38 Recon Reconstructions given z1, z2 Data Recon Data Hierarchical ALI: ImageNet-128X128 Reconstructions given z2

39 Hierarchical ALI: ImageNet-128X128 Model samples

40 Acknowledgements Co-authors Vincent Dumoulin Ishmael Belghazi Ben Poole Alex Lamb HALI contributors ALI Animation Martin Arjovsky Olivier Mastropietro Sai Rajeshwar Negar Rostamzadeh Zihang Dai

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

GAN and Feature Representation. Hung-yi Lee

GAN and Feature Representation. Hung-yi Lee GAN and Feature Representation Hung-yi Lee Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

Implicit generative models: dual vs. primal approaches

Implicit generative models: dual vs. primal approaches Implicit generative models: dual vs. primal approaches Ilya Tolstikhin MPI for Intelligent Systems ilya@tue.mpg.de Machine Learning Summer School 2017 Tübingen, Germany Contents 1. Unsupervised generative

More information

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning Volodymyr Kuleshov 1 Stefano Ermon 1 Abstract We propose a framework for training deep probabilistic models that interpolate between discriminative and generative approaches. Unlike previously proposed

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

Auto-encoder with Adversarially Regularized Latent Variables

Auto-encoder with Adversarially Regularized Latent Variables Information Engineering Express International Institute of Applied Informatics 2017, Vol.3, No.3, P.11 20 Auto-encoder with Adversarially Regularized Latent Variables for Semi-Supervised Learning Ryosuke

More information

IMPLICIT AUTOENCODERS

IMPLICIT AUTOENCODERS IMPLICIT AUTOENCODERS Anonymous authors Paper under double-blind review ABSTRACT In this paper, we describe the implicit autoencoder (IAE), a generative autoencoder in which both the generative path and

More information

IVE-GAN: INVARIANT ENCODING GENERATIVE AD-

IVE-GAN: INVARIANT ENCODING GENERATIVE AD- IVE-GAN: INVARIANT ENCODING GENERATIVE AD- VERSARIAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Generative adversarial networks (GANs) are a powerful framework for generative tasks.

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

arxiv: v1 [cs.lg] 22 Sep 2016

arxiv: v1 [cs.lg] 22 Sep 2016 NEURAL PHOTO EDITING WITH INTROSPECTIVE AD- VERSARIAL NETWORKS Andrew Brock, Theodore Lim,& J.M. Ritchie School of Engineering and Physical Sciences Heriot-Watt University Edinburgh, UK {ajb5, t.lim, j.m.ritchie}@hw.ac.uk

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Generalized Loss-Sensitive Adversarial Learning with Manifold Margins

Generalized Loss-Sensitive Adversarial Learning with Manifold Margins Generalized Loss-Sensitive Adversarial Learning with Manifold Margins Marzieh Edraki and Guo-Jun Qi Laboratory for MAchine Perception and LEarning (MAPLE) http://maple.cs.ucf.edu/ University of Central

More information

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Modeling Density estimation Sample generation Training examples Model samples Next Video Frame

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P (Durk) Kingma, Max Welling University of Amsterdam Ph.D. Candidate, advised by Max Durk Kingma D.P. Kingma Max Welling Problem class Directed graphical model:

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

arxiv: v2 [cs.lg] 7 Feb 2019

arxiv: v2 [cs.lg] 7 Feb 2019 Implicit Autoencoders Alireza Makhzani Vector Institute for Artificial Intelligence University of Toronto makhzani@vectorinstitute.ai arxiv:1805.09804v2 [cs.lg 7 Feb 2019 Abstract In this paper, we describe

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Toward better reconstruction of style images with GANs

Toward better reconstruction of style images with GANs Toward better reconstruction of style images with GANs Alexander Lorbert, Nir Ben-Zvi, Arridhana Ciptadi, Eduard Oks, Ambrish Tyagi Amazon Lab126 [lorbert,nirbenz,ciptadia,oksed,ambrisht]@amazon.com ABSTRACT

More information

arxiv: v2 [cs.lg] 9 Jun 2017

arxiv: v2 [cs.lg] 9 Jun 2017 Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1 arxiv:1702.08396v2 [cs.lg] 9 Jun 2017 Abstract Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

Deep generative models of natural images

Deep generative models of natural images Spring 2016 1 Motivation 2 3 Variational autoencoders Generative adversarial networks Generative moment matching networks Evaluating generative models 4 Outline 1 Motivation 2 3 Variational autoencoders

More information

Autoencoding Beyond Pixels Using a Learned Similarity Metric

Autoencoding Beyond Pixels Using a Learned Similarity Metric Autoencoding Beyond Pixels Using a Learned Similarity Metric International Conference on Machine Learning, 2016 Anders Boesen Lindbo Larsen, Hugo Larochelle, Søren Kaae Sønderby, Ole Winther Technical

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Adversarial Symmetric Variational Autoencoder

Adversarial Symmetric Variational Autoencoder Adversarial Symmetric Variational Autoencoder Yunchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li and Lawrence Carin Department of Electrical and Computer Engineering, Duke University

More information

arxiv: v1 [stat.ml] 4 Feb 2018 ABSTRACT

arxiv: v1 [stat.ml] 4 Feb 2018 ABSTRACT HIERARCHICAL ADVERSARIALLY LEARNED INFERENCE Mohamed Ishmael Belghazi 1, Sai Rajeswar 1, Olivier Mastropietro 1, Negar Rostamzadeh 2, Jovana Mitrovic 2 and Aaron Courville 1 1 MILA, Université de Montréal,

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

arxiv: v3 [cs.ne] 6 Dec 2016

arxiv: v3 [cs.ne] 6 Dec 2016 Sampling Generative Networks arxiv:1609.04468v3 [cs.ne] 6 Dec 2016 Tom White School of Design Victoria University of Wellington Wellington, New Zealand tom.white@vuw.ac.nz Abstract We introduce several

More information

Symmetric Variational Autoencoder and Connections to Adversarial Learning

Symmetric Variational Autoencoder and Connections to Adversarial Learning Symmetric Variational Autoencoder and Connections to Adversarial Learning Liqun Chen 1 Shuyang Dai 1 Yunchen Pu 1 Erjin Zhou 4 Chunyuan Li 1 Qinliang Su 2 Changyou Chen 3 Lawrence Carin 1 1 Duke University,

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

Variational Autoencoders. Sargur N. Srihari

Variational Autoencoders. Sargur N. Srihari Variational Autoencoders Sargur N. srihari@cedar.buffalo.edu Topics 1. Generative Model 2. Standard Autoencoder 3. Variational autoencoders (VAE) 2 Generative Model A variational autoencoder (VAE) is a

More information

ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching Chunyuan Li 1, Hao Liu 2, Changyou Chen 3, Yunchen Pu 1, Liqun Chen 1, Ricardo Henao 1 and Lawrence Carin 1 1 Duke University

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Denoising Adversarial Autoencoders

Denoising Adversarial Autoencoders Denoising Adversarial Autoencoders Antonia Creswell BICV Imperial College London Anil Anthony Bharath BICV Imperial College London Email: ac2211@ic.ac.uk arxiv:1703.01220v4 [cs.cv] 4 Jan 2018 Abstract

More information

Multi-view Generative Adversarial Networks

Multi-view Generative Adversarial Networks Multi-view Generative Adversarial Networks Mickaël Chen and Ludovic Denoyer Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France mickael.chen@lip6.fr, ludovic.denoyer@lip6.fr

More information

Supplementary Material of ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

Supplementary Material of ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching Supplementary Material of ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching Chunyuan Li, Hao Liu, Changyou Chen, Yunchen Pu, Liqun Chen, Ricardo Henao and Lawrence Carin

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

Global versus Localized Generative Adversarial Nets

Global versus Localized Generative Adversarial Nets Global versus Localized Generative Adversarial Nets Guo-Jun Qi, Liheng Zhang, Hao Hu, Marzieh Edraki guojun.qi@ucf.edu, {lihengzhang1993,hao hu,m.edraki}@knights.ucf.edu Jingdong Wang, and Xian-Sheng Hua

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Deep Generative Models and a Probabilistic Programming Library

Deep Generative Models and a Probabilistic Programming Library Deep Generative Models and a Probabilistic Programming Library Discriminative (Deep) Learning Learn a (differentiable) function mapping from input to output x f(x; θ) y Gradient back-propagation Generative

More information

EFFICIENT GAN-BASED ANOMALY DETECTION

EFFICIENT GAN-BASED ANOMALY DETECTION EFFICIENT GAN-BASED ANOMALY DETECTION Houssam Zenati 1, Chuan-Sheng Foo 2, Bruno Lecouat 3 Gaurav Manek 4, Vijay Ramaseshan Chandrasekhar 2,5 1 CentraleSupélec, houssam.zenati@student.ecp.fr. 2 Institute

More information

arxiv: v2 [cs.lg] 17 Dec 2018

arxiv: v2 [cs.lg] 17 Dec 2018 Lu Mi 1 * Macheng Shen 2 * Jingzhao Zhang 2 * 1 MIT CSAIL, 2 MIT LIDS {lumi, macshen, jzhzhang}@mit.edu The authors equally contributed to this work. This report was a part of the class project for 6.867

More information

arxiv: v2 [stat.ml] 21 Oct 2017

arxiv: v2 [stat.ml] 21 Oct 2017 Variational Approaches for Auto-Encoding Generative Adversarial Networks arxiv:1706.04987v2 stat.ml] 21 Oct 2017 Mihaela Rosca Balaji Lakshminarayanan David Warde-Farley Shakir Mohamed DeepMind {mihaelacr,balajiln,dwf,shakir}@google.com

More information

arxiv: v2 [cs.cv] 27 Mar 2018

arxiv: v2 [cs.cv] 27 Mar 2018 Global versus Localized Generative Adversarial Nets Guo-Jun Qi, Liheng Zhang, Hao Hu, Marzieh Edraki guojun.qi@ucf.edu, {lihengzhang1993,hao hu,m.edraki}@knights.ucf.edu arxiv:1711.06020v2 [cs.cv] 27 Mar

More information

Mode Regularized Generative Adversarial Networks

Mode Regularized Generative Adversarial Networks Mode Regularized Generative Adversarial Networks Tong Che 1 Yanran Li 2 Athul Paul Jacob 3 Yoshua Bengio 1 Wenjie Li 2 1 Montreal Institute for Learning Algorithms, Universite de Montreal, Montreal, Canada

More information

DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 17

DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 17 DEEP LEARNING PART THREE - DEEP GENERATIVE MODELS CS/CNS/EE 155 - MACHINE LEARNING & DATA MINING - LECTURE 17 GENERATIVE MODELS DATA 3 DATA 4 example 1 DATA 5 example 2 DATA 6 example 3 DATA 7 number of

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Dist-GAN: An Improved GAN using Distance Constraints

Dist-GAN: An Improved GAN using Distance Constraints Dist-GAN: An Improved GAN using Distance Constraints Ngoc-Trung Tran [0000 0002 1308 9142], Tuan-Anh Bui [0000 0003 4123 262], and Ngai-Man Cheung [0000 0003 0135 3791] ST Electronics - SUTD Cyber Security

More information

arxiv: v1 [stat.ml] 19 Aug 2017

arxiv: v1 [stat.ml] 19 Aug 2017 Semi-supervised Conditional GANs Kumar Sricharan 1, Raja Bala 1, Matthew Shreve 1, Hui Ding 1, Kumar Saketh 2, and Jin Sun 1 1 Interactive and Analytics Lab, Palo Alto Research Center, Palo Alto, CA 2

More information

Generating Images with Perceptual Similarity Metrics based on Deep Networks

Generating Images with Perceptual Similarity Metrics based on Deep Networks Generating Images with Perceptual Similarity Metrics based on Deep Networks Alexey Dosovitskiy and Thomas Brox University of Freiburg {dosovits, brox}@cs.uni-freiburg.de Abstract We propose a class of

More information

Triple Generative Adversarial Nets

Triple Generative Adversarial Nets Triple Generative Adversarial Nets Chongxuan Li, Kun Xu, Jun Zhu, Bo Zhang Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab of Intell. Tech. & Sys., Center for Bio-Inspired Computing Research, Tsinghua

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

arxiv: v4 [cs.lg] 1 May 2018

arxiv: v4 [cs.lg] 1 May 2018 Controllable Generative Adversarial Network arxiv:1708.00598v4 [cs.lg] 1 May 2018 Minhyeok Lee School of Electrical Engineering Korea University Seoul, Korea 02841 suam6409@korea.ac.kr Abstract Junhee

More information

arxiv: v3 [cs.cv] 3 Jul 2018

arxiv: v3 [cs.cv] 3 Jul 2018 Improved Training of Generative Adversarial Networks using Representative Features Duhyeon Bang 1 Hyunjung Shim 1 arxiv:1801.09195v3 [cs.cv] 3 Jul 2018 Abstract Despite the success of generative adversarial

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

When Variational Auto-encoders meet Generative Adversarial Networks

When Variational Auto-encoders meet Generative Adversarial Networks When Variational Auto-encoders meet Generative Adversarial Networks Jianbo Chen Billy Fang Cheng Ju 14 December 2016 Abstract Variational auto-encoders are a promising class of generative models. In this

More information

arxiv: v4 [cs.lg] 5 Nov 2017

arxiv: v4 [cs.lg] 5 Nov 2017 Triple Generative Adversarial Nets Chongxuan Li, Kun Xu, Jun Zhu, Bo Zhang Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab of Intell. Tech. & Sys., Center for Bio-Inspired Computing Research, Tsinghua

More information

EFFICIENT GAN-BASED ANOMALY DETECTION

EFFICIENT GAN-BASED ANOMALY DETECTION EFFICIENT GAN-BASED ANOMALY DETECTION Houssam Zenati 1,2, Chuan-Sheng Foo 2, Bruno Lecouat 2,3 Gaurav Manek 4, Vijay Ramaseshan Chandrasekhar 2,5 1 CentraleSupélec,houssam.zenati@student.ecp.fr. 2 Institute

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, 2016-12-4 Generative Modeling Density estimation Sample generation Training examples Model

More information

SEMI-SUPERVISED LEARNING WITH GANS:

SEMI-SUPERVISED LEARNING WITH GANS: SEMI-SUPERVISED LEARNING WITH GANS: REVISITING MANIFOLD REGULARIZATION Bruno Lecouat,1,2 Chuan-Sheng Foo,2, Houssam Zenati 2,3, Vijay R. Chandrasekhar 2,4 1 Télécom ParisTech, bruno.lecouat@gmail.com.

More information

COVERAGE AND QUALITY DRIVEN TRAINING

COVERAGE AND QUALITY DRIVEN TRAINING COVERAGE AND QUALITY DRIVEN TRAINING OF GENERATIVE IMAGE MODELS Anonymous authors Paper under double-blind review ABSTRACT Generative modeling of natural images has been extensively studied in recent years,

More information

Optimizing the Latent Space of Generative Networks

Optimizing the Latent Space of Generative Networks Piotr Bojanowski 1 Armand Joulin 1 David Lopez Paz 1 Arthur Szlam 1 Abstract Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images.

More information

arxiv: v1 [stat.ml] 18 Jul 2017

arxiv: v1 [stat.ml] 18 Jul 2017 Optimizing the Latent Space of Generative Networks Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam Facebook AI Research {bojanowski, ajoulin, dlp, aszlam}@fb.com arxiv:1707.05776v1 [stat.ml]

More information

Triangle Generative Adversarial Networks

Triangle Generative Adversarial Networks Triangle Generative Adversarial Networks Zhe Gan, Liqun Chen, Weiyao Wang, Yunchen Pu, Yizhe Zhang, Hao Liu, Chunyuan Li, Lawrence Carin Duke University zhe.gan@duke.edu Abstract A Triangle Generative

More information

Unsupervised Image-to-Image Translation Networks

Unsupervised Image-to-Image Translation Networks Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz NVIDIA {mingyul,tbreuel,jkautz}@nvidia.com Abstract Unsupervised image-to-image translation aims at learning a joint

More information

IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS

IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS IMPROVING SAMPLING FROM GENERATIVE AUTOENCODERS WITH MARKOV CHAINS Antonia Creswell, Kai Arulkumaran & Anil A. Bharath Department of Bioengineering Imperial College London London SW7 2BP, UK {ac2211,ka709,aab01}@ic.ac.uk

More information

arxiv: v1 [cs.lg] 10 Nov 2016

arxiv: v1 [cs.lg] 10 Nov 2016 Disentangling factors of variation in deep representations using adversarial training arxiv:1611.03383v1 [cs.lg] 10 Nov 2016 Michael Mathieu, Junbo Zhao, Pablo Sprechmann, Aditya Ramesh, Yann LeCun 719

More information

Active Decision Boundary Annotation with Deep Generative Models

Active Decision Boundary Annotation with Deep Generative Models Active Decision Boundary Annotation with Deep Generative Models Miriam Huijser Aiir Innovations Amsterdam, The Netherlands https://aiir.nl/ Jan C. van Gemert Delft University of Technology Delft, The Netherlands

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

arxiv: v1 [cs.lg] 28 Feb 2017

arxiv: v1 [cs.lg] 28 Feb 2017 Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1 arxiv:1702.08658v1 cs.lg] 28 Feb 2017 Abstract We propose a new family of optimization criteria for variational auto-encoding models, generalizing the standard

More information

Composable Unpaired Image to Image Translation

Composable Unpaired Image to Image Translation Composable Unpaired Image to Image Translation Laura Graesser New York University lhg256@nyu.edu Anant Gupta New York University ag4508@nyu.edu Abstract There has been remarkable recent work in unpaired

More information

arxiv: v1 [cs.cv] 1 May 2018

arxiv: v1 [cs.cv] 1 May 2018 Conditional Image-to-Image Translation Jianxin Lin 1 Yingce Xia 1 Tao Qin 2 Zhibo Chen 1 Tie-Yan Liu 2 1 University of Science and Technology of China 2 Microsoft Research Asia linjx@mail.ustc.edu.cn {taoqin,

More information

arxiv: v2 [cs.lg] 25 May 2016

arxiv: v2 [cs.lg] 25 May 2016 Adversarial Autoencoders Alireza Makhzani University of Toronto makhzani@psi.toronto.edu Jonathon Shlens & Navdeep Jaitly Google Brain {shlens,ndjaitly}@google.com arxiv:1511.05644v2 [cs.lg] 25 May 2016

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

Smooth Neighbors on Teacher Graphs for Semi-supervised Learning

Smooth Neighbors on Teacher Graphs for Semi-supervised Learning Smooth Neighbors on Teacher Graphs for Semi-supervised Learning Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, Bo Zhang Department of Computer Science & Technology, Tsinghua University, Beijing, China Department

More information

Generative Models in Deep Learning. Sargur N. Srihari

Generative Models in Deep Learning. Sargur N. Srihari Generative Models in Deep Learning Sargur N. Srihari srihari@cedar.buffalo.edu 1 Topics 1. Need for Probabilities in Machine Learning 2. Representations 1. Generative and Discriminative Models 2. Directed/Undirected

More information

arxiv: v2 [cs.lg] 29 Sep 2018

arxiv: v2 [cs.lg] 29 Sep 2018 Featurized Bidirectional GAN: Adversarial Defense via Adversarially Learned Semantic Inference Ruying Bao 1, Sihang Liang 2, and Qingcan Wang 1 arxiv:1805.07862v2 [cs.lg] 29 Sep 2018 1 Program in Applied

More information

arxiv: v1 [cs.cv] 8 Feb 2017

arxiv: v1 [cs.cv] 8 Feb 2017 An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks Mateusz Koziński Loïc Simon Frédéric Jurie Groupe de recherche en Informatique, Image, Automatique et Instrumentation

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

song2vec: Determining Song Similarity using Deep Unsupervised Learning

song2vec: Determining Song Similarity using Deep Unsupervised Learning song2vec: Determining Song Similarity using Deep Unsupervised Learning CS229 Final Project Report (category: Music & Audio) Brad Ross (bross35), Prasanna Ramakrishnan (pras1712) 1 Introduction Humans are

More information

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel UC Berkeley, Department

More information

arxiv: v1 [cs.cv] 4 Nov 2018

arxiv: v1 [cs.cv] 4 Nov 2018 Improving GAN with neighbors embedding and gradient matching Ngoc-Trung Tran, Tuan-Anh Bui, Ngai-Man Cheung ST Electronics - SUTD Cyber Security Laboratory Singapore University of Technology and Design

More information

arxiv: v1 [stat.ml] 11 Feb 2018

arxiv: v1 [stat.ml] 11 Feb 2018 Paul K. Rubenstein Bernhard Schölkopf Ilya Tolstikhin arxiv:80.0376v [stat.ml] Feb 08 Abstract We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation

More information

Multi-Modal Generative Adversarial Networks

Multi-Modal Generative Adversarial Networks Multi-Modal Generative Adversarial Networks By MATAN BEN-YOSEF Under the supervision of PROF. DAPHNA WEINSHALL Faculty of Computer Science and Engineering THE HEBREW UNIVERSITY OF JERUSALEM A thesis submitted

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Towards Principled Methods for Training Generative Adversarial Networks. Martin Arjovsky & Léon Bottou

Towards Principled Methods for Training Generative Adversarial Networks. Martin Arjovsky & Léon Bottou Towards Principled Methods for Training Generative Adversarial Networks Martin Arjovsky & Léon Bottou Unsupervised learning - We have samples from an unknown distribution Unsupervised learning - We have

More information

Lecture 3 GANs and Their Applications in Image Generation

Lecture 3 GANs and Their Applications in Image Generation Lecture 3 GANs and Their Applications in Image Generation Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2017 Outline Introduction Theoretical Part Application Part Existing Implementations

More information

Introduction to Generative Models (and GANs)

Introduction to Generative Models (and GANs) Introduction to Generative Models (and GANs) Haoqiang Fan fhq@megvii.com Nov. 2017 Figures adapted from NIPS 2016 Tutorial Generative Adversarial Networks Generative Models: Learning the Distributions

More information

Structured Generative Adversarial Networks

Structured Generative Adversarial Networks Structured Generative Adversarial Networks 1 Zhijie Deng, 2,3 Hao Zhang, 2 Xiaodan Liang, 2 Luona Yang, 1,2 Shizhen Xu, 1 Jun Zhu, 3 Eric P. Xing 1 Tsinghua University, 2 Carnegie Mellon University, 3

More information

Semi-Supervised Learning via Compact Latent Space Clustering

Semi-Supervised Learning via Compact Latent Space Clustering Semi-Supervised Learning via Compact Latent Space Clustering Konstantinos Kamnitsas 1 2 Daniel C. Castro 1 2 Loic Le Folgoc 2 Ian Walker 2 Ryutaro Tanno 1 3 Daniel Rueckert 2 Ben Glocker 2 Antonio Criminisi

More information

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference Information Engineering Express International Institute of Applied Informatics 2017, Vol.3, No.4, P.55-66 Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

More information

arxiv: v3 [cs.cv] 18 Jun 2018

arxiv: v3 [cs.cv] 18 Jun 2018 Learning to Write Stylized Chinese Characters by Reading a Handful of Examples Danyang Sun, Tongzheng Ren, Chongxuan Li, Hang Su, Jun Zhu Department of Computer Science and Technology, Tsinghua Lab of

More information