Geology 554 Environmental and Exploration Geophysics II Final Exam

Size: px
Start display at page:

Download "Geology 554 Environmental and Exploration Geophysics II Final Exam"

Transcription

1 Geology 554 Environmental and Exploration Geophysics II Final Exam In this exam, you are asked to apply some of the seismic interpretation skills you ve learned during the semester to the analysis of another 3D data set. We will spend some time in class introduction the data and getting our started on the analysis. This 3D data set is located near the near the training data set in east Texas that some of you are working on for your term report. This exercise includes a set of specific activities to undertake and complete. The extent that your efforts go beyond specified tasks will help reveal the depth of your understanding of 3D seismic interpretation issues. This study requests that you demonstrate capability to undertake basic horizon interpretation, perform depth conversion, spectral analysis, evaluate resolution limits and undertake attribute analysis an independent evaluation of an additional 3D data set. An important objective of the exam is to help reinforce basic interpretation concepts and procedures. This final interpretation effort will also help raise additional ideas and efforts that might be incorporated in your term report analysis. I will be helping you gain some familiarity with the data today and on Wednesday. For those working the Gulf Coast data set, consider that your team has completed the analysis of the initial data set and made their recommendations for potential drilling locations. In addition, you see the opportunity to expand exploration in the area and recommended acquisition of this additional 3D data set. For those working the Barents Sea this provides an opportunity to consolidate some of the in-class work we ve been doing in the east Texas area and may also point the way to additional work on your Barents Sea project. This work is to be done independently and without consultation with team mates. You will present your additional work as an appendix to your term report. The term report, including this appendix, is due the day of the final (1pm, May 8). To Begin> 1. Copy the 3D data set from the Common Drive (BEG folder) to your G Drive. 2. Bring up Kingdom and navigate to the BEG folder. 3. Bring up the project. Your project tree and base map should look similar to that shown below. 1

2 4. Your startup view may look different, so let s take a few minutes to explore the data. 5. Drop down the faults, formation tops, horizons and wells > All Wells lists in the project tree. 6. Note that there are several wells on the base map. 7. Bring up a cross line (EW line) through some of the wells in the center of the area. The line below (Figure 1) is EW line 53. Figure 1: Seismic from a different part of the Stratton field showing roll-over in the Vicksburg. 8. Note that logs are displayed next to each well. The red log responses are gamma ray logs. Also note that all your formation tops should be labeled. 9. If you want to turn off or turn on the log displays go to Logs > Settings and under the Scale and Style Setup move selected curves out of the displayed curves list (see display next page). 10. To move the logs back in for display you have to select them one at a time from the available logs list at left > click track1 or 2 and then click the right arrow (greater than sign). That will throw the log into the displayed curves list and in the specified track. 2

3 Evaluate the amplitude spectrum in the vicinity of your zone of interest. 1. Some of the wells in this survey appear to have sonic, however the range of values are altered and not usable for generating a synthetic. Thus a synthetic will not be constructed. However, you can calculate the amplitude spectrum and estimate the resolution limit. (Return to the Golden 3D and generate the necessary wavelet and calibration curves). A review of Horizon Interpretation Procedures 1. To review horizon interpretation and get you going, we will interpret one of the deeper horizons - From the Horizons dialog create a new horizon F Right click on the vertical seismic display line (Line 53) and select picking parameters. Make sure you are picking a peak. 3. Press the short cut key H to auto hunt this peak along the line. 4. You ll be picking the strong positive (see figure below) 5. Set your line skip interval at Pick all your crosslines (EW) 7. Don t worry about faults. 8. You should be able to pick this event using only autohunt, but you might have to click at more than one place along the line where the reflector is slightly discontinuous. 3

4 Polygon Hunt 1. Bring up your map view and drag your F11 times over to the map. You should get something like the following. 2. Now go to polygon hunt and select the entire area. 3. The area should fill from left to right 4

5 4. Notice the time-structural high running through the center of the prospect area. Velocity Map 1. Tools > Depth Conversion > Compute Average Velocity map (call it F11Depth). Make sure all wells are selected. 2. In the grid parameters window specify a projection distance of 2000 feet, low smoothing and extrapolate to the XY bounds > Apply 3. Your velocity map will appear. Do you need to adjust the projection distance? 4. Does the velocity trend is fairly uniform. 5. OK to exit and recreate the grid. Conversion to Depth 1. Tools > Depth Conversion > Depth May by Average Velocity Map 2. OK to create grid 3. View the structure map and ask yourself is there is closure on this horizon Flatten on the F11 and look at amplitudes on the F11 surface 1. Horizon > Flatten 2. Right click display and select Display Flattened Time Slice 3. Turn off the F11 4. Create a time slice view 5. Move your time-slice view up and down through time relative to the F11 and look for patterns in anomaly shapes that might be indicative of traps for hydrocarbon accumulation along a high, within channels (channels might contain accumulations of coarser sediment, higher porosity and permeability and thus represent a potential trap in which hydrocarbons could accumulate). Although significant faulting of the shallow section is not apparent, does you anomaly map reveal narrow roughly linear to 5

6 curvilinear zones that could be indicative of subtle faults and thus additional trapping mechanisms. Create Attribute Volumes 1. You are already familiar with the creation of standard attribute volumes. 2. Here we look at some additional capability provided in Tools> TracePak >Trace Calculator. 3. In the following Trace Calculator Window, I ve computed a volume of the peak-totrough ratio through the survey 4. Note that the procedures consist of: selecting the data volume (BEG in this case); clicking the > button to specify it as variable A; selecting a function from the function dropdown list (in this case PTRatio); Double click to insert this operator in the Fromula Line; Click A to insert the BEG 3D volume); Close off the right parenthesis (see below). 5. Select the survey/subset in the drop down list 6. specify the new data type PTRatio (i.e. click new data type and type it in) 7. Compute > 6

7 8. Yes to the message box and take the default storage location. 9. Close 10. Open up a line and select the new data type 11. Flatten on horizon 12. Display flattened time slice 13. Turn off horizon 14. Select a suitable color bar (This is a matter of personal preference. A color bar may help some see features that could be associated with traps, subtle faults, etc.) 15. The following shows the setup for computing the absolute value for the finite difference) 7

8 16. This derivative provides a sharper higher frequency view of some of the faults in the deeper section. 17. The vertical display such as that shown above or the map display (below) may provide you with some additional insights into the nature of the play and the potential existence of stratigraphic or structural traps (closure and subtle faults. 18. Since the normally scheduled exam time for MWF classes meeting at 3 or 3:30 is 11:00am to 1pm on Friday, May 8. Please turn your term report with exam supplement in to me by 1pm. 8

9 Final Exam (& Term Project Interpretation Supplement) Conduct an interpretation of the new data set. Present the interpretation supplement as an Appendix The Appendix should include the following efforts and illustrations with accompanying discussion. 1. Pick and interpret a horizon (other than the C38 and F11). Be sure to select the correct picking parameters (peak or trough) for the auto-picking process. 2. Continue your analysis by computing the amplitude spectrum of the data in the vicinity of your horizon of interest. 3. Specify the peak frequency and bandwidth. 4. Generate the calibration curves and discuss the vertical resolution limits. You can return to your Golden 3D and create an appropriate wavelet to use for generating the calibration curves. 5. Compare bandwidth and resolution limits associated with the spectral content in this data set to that from the Golden 3D used in the resolution exercise. 6. Illustrate the horizon you picked in vertical and map display. 7. Refer to both displays (vertical and map views) and discuss possible traps. 8. Convert your picked horizon to depth. 9. Re-evaluate your thoughts on possible traps within the context of the depth converted view of this horizon. Make sure you adjust the color bar to examine the depth converted map for possible closures. The quickest way to do this is just to grab and slide the color bar up and down. 10. Illustrate and discuss attributes you decided to use. Show vertical and map views of the attribute(s) and highlight or label features you think are of interest. 11. Did you see something in the attribute display that you didn t see or recognize as well in the amplitude display? Explain. 12. Prepare a summary and conclusions section for your analysis. The approach is up to you. Remember this kind of analysis results in an interpretation. It has to be plausible and consistent with the data and local geology. Putting interpretations to the test only happens when investors or division managers decide the risk is worth taking. I appreciate that the geological concepts and analytical approach is new to a lot of you, but don t let being unsure prevent you from suggesting possibilities. As long as interpretations are stated as such don t hesitate to make them. 13. Have fun with this! 14. As noted in the introduction to the problem This work is to be done independently without consultation with team mates. You will present your additional work as an appendix to your term report. The term report, including this appendix, is due the day of the final (1pm, May 8). 9

Part 1: Calculating amplitude spectra and seismic wavelets

Part 1: Calculating amplitude spectra and seismic wavelets Geology 554 Environmental and Exploration Geophysics II Generating synthetic seismograms The simple in-class exercise undertaken last time illustrates the relationship between wavelet properties, interval

More information

Geology 554 Interpretation Project Big Injun Sand, Trenton/Black River Plays, Central Appalachian Basin, WV

Geology 554 Interpretation Project Big Injun Sand, Trenton/Black River Plays, Central Appalachian Basin, WV Geology 554 Interpretation Project Big Injun Sand, Trenton/Black River Plays, Central Appalachian Basin, WV Lab Exercise- Horizon Interpretation and Correlation Wilson (2005) 1 Team effort on these interpretation

More information

Geology 554 3D Horizon/Fault Interpretation Labs 1 & 2 - Fault Interpretation and Correlation

Geology 554 3D Horizon/Fault Interpretation Labs 1 & 2 - Fault Interpretation and Correlation Geology 554 3D Horizon/Fault Interpretation Labs 1 & 2 - Fault Interpretation and Correlation Wilson (2005) *This workshop is based on procedural steps developed by Mike Enomoto of Seismic MicroTechnology

More information

Using Kingdom Suite for 3D Horizon/Fault Interpretation Parts 3 & 4 - Horizon Interpretation and Correlation

Using Kingdom Suite for 3D Horizon/Fault Interpretation Parts 3 & 4 - Horizon Interpretation and Correlation Using Kingdom Suite for 3D Horizon/Fault Interpretation Parts 3 & 4 - Horizon Interpretation and Correlation Wilson (2010) 1 A footnote to last week's exercise Double Vision? - Last week when you were

More information

PRODUCT HIGHLIGHTS. Velocity Modeling - Time/Depth Conversion A COMPLETE SEISMIC INTERPRETATION SOLUTION

PRODUCT HIGHLIGHTS. Velocity Modeling - Time/Depth Conversion A COMPLETE SEISMIC INTERPRETATION SOLUTION PRODUCT HIGHLIGHTS Velocity Modeling - Time/Depth Conversion Easily create reliable velocity models and depth convert seismic volumes and interpretation. Create multi-layer horizon top equivalences to

More information

3D Horizon/Fault Interpretation Exercise Using Seismic Micro-Technology s PC based 2d/3dPAK Seismic Interpretation Software

3D Horizon/Fault Interpretation Exercise Using Seismic Micro-Technology s PC based 2d/3dPAK Seismic Interpretation Software 3D Horizon/Fault Interpretation Exercise Using Seismic Micro-Technology s PC based 2d/3dPAK Seismic Interpretation Software Prepared by Tom Wilson, Appalachian Region Resource Center, Petroleum Technology

More information

Mapping the Subsurface in 3-D Using Seisworks Part 1 - Structure Mapping

Mapping the Subsurface in 3-D Using Seisworks Part 1 - Structure Mapping Mapping the Subsurface in 3-D Using Seisworks Part 1 - Structure Mapping The purpose of this exercise is to introduce you to the art of mapping geologic surfaces from 3-D seismic data using Seisworks.

More information

Exploring IX1D The Terrain Conductivity/Resistivity Modeling Software

Exploring IX1D The Terrain Conductivity/Resistivity Modeling Software Exploring IX1D The Terrain Conductivity/Resistivity Modeling Software You can bring a shortcut to the modeling program IX1D onto your desktop by right-clicking the program in your start > all programs

More information

7. Vertical Layering

7. Vertical Layering 7.1 Make Horizons 7. Vertical Layering The vertical layering process consists of 4 steps: 1. Make Horizons: Insert the input surfaces into the 3D Grid. The inputs can be surfaces from seismic or well tops,

More information

Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation

Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation Background on Kingdom Suite for the Imperial Barrel Competition 3D Horizon/Fault Interpretation Parts 1 & 2 - Fault Interpretation and Correlation Wilson (2010) 1 Fault/Horizon Interpretation Using Seismic

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM E&P SOLUTIONS Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Cropped & Flattened Volumes in *Petrel Geophysicists who use D volumes often want to work on a smaller part of the volume or they want

More information

Stepwise instructions for getting started

Stepwise instructions for getting started Multiparameter Numerical Medium for Seismic Modeling, Planning, Imaging & Interpretation Worldwide Tesseral Geo Modeling Tesseral 2D Tutorial Stepwise instructions for getting started Contents Useful information...1

More information

Geology Geomath Estimating the coefficients of various Mathematical relationships in Geology

Geology Geomath Estimating the coefficients of various Mathematical relationships in Geology Geology 351 - Geomath Estimating the coefficients of various Mathematical relationships in Geology Throughout the semester you ve encountered a variety of mathematical relationships between various geologic

More information

Geology Interpretation Project Big Injun Sand & Trenton-Black River plays, Central Appalachian Basin, WV

Geology Interpretation Project Big Injun Sand & Trenton-Black River plays, Central Appalachian Basin, WV Geology 554 - Interpretation Project Big Injun Sand & Trenton-Black River plays, Central Appalachian Basin, WV Part 1 - Access and Basic Interpretation of the Seismic Data Using Kingdom T. H. Wilson (2005)

More information

Image-guided 3D interpolation of borehole data Dave Hale, Center for Wave Phenomena, Colorado School of Mines

Image-guided 3D interpolation of borehole data Dave Hale, Center for Wave Phenomena, Colorado School of Mines Image-guided 3D interpolation of borehole data Dave Hale, Center for Wave Phenomena, Colorado School of Mines SUMMARY A blended neighbor method for image-guided interpolation enables resampling of borehole

More information

Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis

Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis GRAVITY COMPUTER LAB Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis During this lab your task will be to evaluate the accuracy

More information

Slope Stability Problem Session

Slope Stability Problem Session Slope Stability Problem Session Stability Analysis of a Proposed Soil Slope Using Slide 5.0 Tuesday, February 28, 2006 10:00 am - 12:00 pm GeoCongress 2006 Atlanta, GA software tools for rock and soil

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Well Sections in Petrel 2010 Geologists who use Petrel to create and use Well Sections have noticed a significant change in this area between Petrel

More information

GUIDE TO Pro4D TABLE OF CONTENTS. Pro4D Guide

GUIDE TO Pro4D TABLE OF CONTENTS. Pro4D Guide TL-Pro4D v3.0 1 GUIDE TO Pro4D TABLE OF CONTENTS Pro4D Guide Introduction to TL-Pro4D... 2 Using GeoView... 3 Starting Pro4D... 6 Modeling Well Logs/Systematic Changes... 8 Calibration and Analysis of

More information

Emerge Workflow CE8 SAMPLE IMAGE. Simon Voisey July 2008

Emerge Workflow CE8 SAMPLE IMAGE. Simon Voisey July 2008 Emerge Workflow SAMPLE IMAGE CE8 Simon Voisey July 2008 Introduction The document provides a step-by-step guide for producing Emerge predicted petrophysical volumes based on log data of the same type.

More information

Rubis (NUM) Tutorial #1

Rubis (NUM) Tutorial #1 Rubis (NUM) Tutorial #1 1. Introduction This example is an introduction to the basic features of Rubis. The exercise is by no means intended to reproduce a realistic scenario. It is assumed that the user

More information

Gravity Methods (VII) wrap up

Gravity Methods (VII) wrap up Environmental and Exploration Geophysics II Gravity Methods (VII) wrap up tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Items on the list

More information

By Tracy J. Stark 1. Search and Discovery Article #40133 (2004) Introduction

By Tracy J. Stark 1. Search and Discovery Article #40133 (2004) Introduction GC Value in Visualization* By Tracy J. Stark 1 Search and Discovery Article #40133 (2004) *Adapted from the Geophysical Corner column in AAPG Explorer, June, 2004, entitled Why Do We Need to Have Visualization?

More information

Techniques of Volume Blending for Aiding Seismic Data Interpretation

Techniques of Volume Blending for Aiding Seismic Data Interpretation P - 97 Techniques of Volume Blending for Aiding Seismic Data Interpretation Surender S. Manral*, Paradigm, Mumbai, Arthur E. Barnes, Paradigm, Malaysia, surenderm@paradigmgeo.com Summary Multi-attribute

More information

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation G. Yelin (Paradigm), B. de Ribet* (Paradigm), Y. Serfaty (Paradigm) & D. Chase

More information

Seismic Attributes on Frequency-enhanced Seismic Data

Seismic Attributes on Frequency-enhanced Seismic Data Seismic Attributes on Frequency-enhanced Seismic Data Satinder Chopra* Arcis Corporation, Calgary, Canada schopra@arcis.com Kurt J. Marfurt The University of Oklahoma, Norman, US and Somanath Misra Arcis

More information

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Muyi Kola-Ojo Launch Out Geophysical Services, Calgary, Alberta, Canada Summary Seismic attributes in the last two decades have

More information

Producing a Depth-Converted Seismic Horizon in Z-map

Producing a Depth-Converted Seismic Horizon in Z-map Producing a Depth-Converted Seismic Horizon in Z-map Summary This is a reference guide to creating a depth-converted seismic horizon in LGC s Z-Map Plus TM. The procedure followed is: 1. Approximately

More information

Jan-12

Jan-12 Model Building, Modeling & Processing using Well-log data -examples- www.tesseral-geo.com Jan-12 1 Thin-layered Model by 1 well -Example 1- Illustration of practical work with the Tesseral package for

More information

Th A4 11 Interpretational Aspects of Multispectral Coherence

Th A4 11 Interpretational Aspects of Multispectral Coherence Th A4 11 Interpretational Aspects of Multispectral oherence K.J. Marfurt* (University of Oklahoma) Summary Seismic coherence volumes are routinely used to delineate geologic features that might otherwise

More information

A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization

A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization March 18, 1999 M. Turhan (Tury) Taner, Ph.D. Chief Geophysicist Rock Solid Images 2600 South

More information

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data Th LHR5 08 Multi-modal Surface Wave Inversion and pplication to North Sea ON Data S. Hou (CGG), D. Zheng (CGG), X.G. Miao* (CGG) & R.R. Haacke (CGG) SUMMRY Surface-wave inversion (SWI) for S-wave velocity

More information

IHS Kingdom. Intuitive. Integrated. Interpretation.

IHS Kingdom. Intuitive. Integrated. Interpretation. IHS Kingdom Intuitive. Integrated. Interpretation. IHS Kingdom Overview The global demand for oil and gas is growing. Your company is under pressure to replace reserves and boost production. Management

More information

Key areas of updates in GeoTeric Volumetrics

Key areas of updates in GeoTeric Volumetrics Release notes GeoTeric 2018.2 Volumetrics calculation is an essential step for understanding and quantifying the size of plays, leads, prospects and fields to track changing hydrocarbon volumes over time.

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Using the Make Simple Grid Process to Build Un faulted Frameworks Un faulted reservoirs are relatively rare but do occur and provide a wonderful break

More information

Why do we need Visualization? By Tracy J. Stark STARK Research

Why do we need Visualization? By Tracy J. Stark STARK Research Why do we need Visualization? By Tracy J. Stark STARK Research tstark3@attglobal.net How do you convince a non believer, in a short article with only a few static figures, the need for visualization? Within

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

EMERGE Workflow CE8R2 SAMPLE IMAGE. Simon Voisey Hampson-Russell London Office

EMERGE Workflow CE8R2 SAMPLE IMAGE. Simon Voisey Hampson-Russell London Office EMERGE Workflow SAMPLE IMAGE CE8R2 Simon Voisey Hampson-Russell London Office August 2008 Introduction The document provides a step-by-step guide for producing Emerge-predicted petrophysical p volumes

More information

Engineering and Environmental Geophysics with terratem

Engineering and Environmental Geophysics with terratem Engineering and Environmental Geophysics with terratem (1) Geophysical Consultant Alpha Geosciences Pty. Ltd. Sydney NSW 2210 Australia Email: rhenderson@terratem.com Roger Henderson (1) ABSTRACT terratem

More information

Geogiga Seismic Pro 8.3 Release Notes

Geogiga Seismic Pro 8.3 Release Notes Geogiga Seismic Pro 8.3 Release Notes Copyright 2017, All rights reserved. Table of Contents Introduction...1 Part 1 Utility Modules...2 Part 2 Reflection Modules...4 Updates in SF Imager...5 Updates in

More information

Azimuthal binning for improved fracture delineation Gabriel Perez*, Kurt J. Marfurt and Susan Nissen

Azimuthal binning for improved fracture delineation Gabriel Perez*, Kurt J. Marfurt and Susan Nissen Azimuthal binning for improved fracture delineation Gabriel Perez*, Kurt J. Marfurt and Susan issen Abstract We propose an alternate way to define azimuth binning in Kirchhoff prestack migration. This

More information

Geometric Seismic Attribute Estimation using Data-adaptive Windows

Geometric Seismic Attribute Estimation using Data-adaptive Windows Geometric Seismic Attribute Estimation using Data-adaptive Windows Journal: Manuscript ID Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: Subject Areas: INT-0-0.R 0-0

More information

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery G. Apeland* (WesternGeco), P. Smith (WesternGeco), O. Lewis (WesternGeco), S. Way

More information

GUIDE TO AVO. Introduction

GUIDE TO AVO. Introduction AVO Guide Introduction... 1 1.0 Using GEOVIEW... 2 Reading Well Logs into GEOVIEW... 3 2.0 AVO Modeling... 8 Performing Fluid Replacement Modeling... 14 Loading Seismic Data... 20 Creating a Synthetic

More information

The Lesueur, SW Hub: Improving seismic response and attributes. Final Report

The Lesueur, SW Hub: Improving seismic response and attributes. Final Report The Lesueur, SW Hub: Improving seismic response and attributes. Final Report ANLEC R&D Project 7-0115-0241 Boris Gurevich, Stanislav Glubokovskikh, Marina Pervukhina, Lionel Esteban, Tobias M. Müller,

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM E&P SOLUTIONS Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Petrel Inspector The Petrel Inspector was introduced in Petrel 2012 and was augmented with new features in Petrel 2013. It contains a variety

More information

Stanford Exploration Project, Report 120, May 3, 2005, pages

Stanford Exploration Project, Report 120, May 3, 2005, pages Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 166 Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 Non-linear estimation of vertical delays with a quasi-newton

More information

Structurally oriented coherent noise filtering

Structurally oriented coherent noise filtering Structurally oriented coherent noise filtering Geoffrey A. Dorn 1* presents a novel post-stack structurally oriented coherent noise filter that removes footprint of any orientation and wavelength from

More information

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a a Published in Geophysical Prospecting, v. 63, 1246-1255, (2015) Parvaneh Karimi and Sergey Fomel ABSTRACT In certain

More information

MAXIMUM ENTROPY SPECTRAL ANALYSIS PROGRAM spec_max_entropy

MAXIMUM ENTROPY SPECTRAL ANALYSIS PROGRAM spec_max_entropy MAXIMUM ENTROPY SPECTRAL ANALYSIS PROGRAM spec_max_entropy Alternative Spectral Decomposition Algorithms Spectral decomposition methods can be divided into three classes: those that use quadratic forms,

More information

Stratigraphy Modeling Horizon Coverages

Stratigraphy Modeling Horizon Coverages GMS TUTORIALS Stratigraphy Modeling Horizon Coverages This tutorial builds on the concepts taught in the tutorial entitled Stratigraphy Modeling Horizons and Solids. In that tutorial, you created solids

More information

Seamless Pre-Stack Integration of Streamer Datasets with Q-Marine Dataset A Case Study from Eastern Coast of India

Seamless Pre-Stack Integration of Streamer Datasets with Q-Marine Dataset A Case Study from Eastern Coast of India P-247 Summary: Seamless Pre-Stack Integration of Streamer Datasets with Q-Marine Dataset A Case Study from Eastern Coast of India V P Singh*, D K Vishnoi, S Basu, Mrs S Mohapatra, Rajeev Mohan, A C Mandal

More information

Discover the Depths of Your Data!

Discover the Depths of Your Data! www.goldensoftware.cz Discover the Depths of Your Data! Golden Software Presents Powerful and Innovative Well Log and Borehole Plotting for Geoscientists Golden Software, Inc. From the developers of Surfer

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Residual Moveout Analysis in a 3D dataset from Amplitude Variations with Offfset

Residual Moveout Analysis in a 3D dataset from Amplitude Variations with Offfset P-270 Residual Moveout Analysis in a 3D dataset from Amplitude Variations with Offfset Summary Subhendu Dutta, ONGC The amplitude variations with offset (AVO) is a very useful tool which compliments the

More information

Azimuth Moveout Transformation some promising applications from western Canada

Azimuth Moveout Transformation some promising applications from western Canada Azimuth Moveout Transformation some promising applications from western Canada Satinder Chopra and Dan Negut Arcis Corporation, Calgary, Canada Summary Azimuth moveout (AMO) is a partial migration operator

More information

SUMMARY INTRODUCTION METHOD. Review of VMD theory

SUMMARY INTRODUCTION METHOD. Review of VMD theory Bin Lyu*, The University of Olahoma; Fangyu Li, The University of Georgia; Jie Qi, Tao Zhao, and Kurt J. Marfurt, The University of Olahoma SUMMARY The coherence attribute is a powerful tool to delineate

More information

Chapter 7: Importing Modeled or Gridded Data

Chapter 7: Importing Modeled or Gridded Data Chapter 7: Importing Modeled or Gridded Data SADA provides a suite of geospatial modeling and contouring tools that are flexible enough to handle a wide variety of applications. However, if you are more

More information

GIS LAB 8. Raster Data Applications Watershed Delineation

GIS LAB 8. Raster Data Applications Watershed Delineation GIS LAB 8 Raster Data Applications Watershed Delineation This lab will require you to further your familiarity with raster data structures and the Spatial Analyst. The data for this lab are drawn from

More information

Foolproof AvO. Abstract

Foolproof AvO. Abstract Foolproof AvO Dr. Ron Masters, Geoscience Advisor, Headwave, Inc Copyright 2013, The European Association of Geoscientists and Engineers This paper was prepared for presentation during the 75 th EAGE Conference

More information

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis M. Cogan* (WesternGeco), J. Gardner (WesternGeco) & N. Moldoveanu (WesternGeco) SUMMARY Upon completion of the final reverse-time migration

More information

DecisionSpace Seismic Interpretation Software

DecisionSpace Seismic Interpretation Software DATA SHEET DecisionSpace Seismic Interpretation Software DecisionSpace Geosciences Key Features Advanced auto-tracking tools Dynamic domain conversion to interpret in time, depth, or both Automated mapping,

More information

Kingdom Advanced Kingdom Wide Capabilities

Kingdom Advanced Kingdom Wide Capabilities Kingdom v8.7 Kingdom Core Kingdom Advanced Kingdom Wide Capabilities Help Center Integrated Well Planning Web-Mapping Services Kingdom Fault Systems Zooming Using the Mouse Wheel EarthPAK Dipmeter Tadpole

More information

Seismic Time Processing. The Basis for Modern Seismic Exploration

Seismic Time Processing. The Basis for Modern Seismic Exploration The Future of E&P Seismic Time Processing The Basis for Modern Seismic Exploration Fusion is a leading provider of Seismic Processing for the oil and gas industry from field tapes through final migration.

More information

3. Input Data Editing

3. Input Data Editing 3. Input Data Editing There are few editing steps that must be completed before a 3D geological model is created. The steps include: 1. Creating Reservoir Boundary 2. Creating 3D Surfaces 3. Editing the

More information

Data Acquisition. Chapter 2

Data Acquisition. Chapter 2 Data Acquisition Chapter 2 1 st step: get data Data Acquisition Usually data gathered by some geophysical device Most surveys are comprised of linear traverses or transects Typically constant data spacing

More information

Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller

Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller Table of Contents Introduction!... 1 Part 1: Entering Data!... 2 1.a: Typing!... 2 1.b: Editing

More information

Interactive interpretation of 2D seismic data

Interactive interpretation of 2D seismic data Geol. Soc. Malaysia Bulletin 21. December 1987; pp 23-35 Interactive interpretation of 2D seismic data ALISTAIR BROWN Geophysical Service Inc. Abstract: Interactive interpretation first became possible

More information

3-D vertical cable processing using EOM

3-D vertical cable processing using EOM Carlos Rodriguez-Suarez, John C. Bancroft, Yong Xu and Robert R. Stewart ABSTRACT Three-dimensional seismic data using vertical cables was modeled and processed using equivalent offset migration (EOM),

More information

SoilMate Import results and view

SoilMate Import results and view Contents 1. Overview... 1 2. Import Results... 1 2.1 Download results in SoilMate program... 1 2.2 From email file... 2 3. Lab Results Page orientation... 4 4. Preview Results... 5 5. Help please!... 6

More information

REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE

REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE GEOSPEC INSTRUMENTS (PTY) LTD REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE PREPARED FOR MINXCOM (Pty) Ltd and Galileo Resources PLC BY

More information

PowerPoint Lessons for Pastors By: Anthony D. Coppedge, CTS for Oxygen Ministries

PowerPoint Lessons for Pastors By: Anthony D. Coppedge, CTS for Oxygen Ministries PowerPoint Lessons for Pastors By: Anthony D. Coppedge, CTS for Oxygen Ministries According to the surveys I ve read and those that I have conducted myself, over 80% of churches use Microsoft s PowerPoint

More information

IXRefraX Shootout Tutorial. Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited

IXRefraX Shootout Tutorial. Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited IXRefraX Shootout Tutorial Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited Description There was a special Blind Test refraction tomography

More information

Selection of an optimised multiple attenuation scheme for a west coast of India data set

Selection of an optimised multiple attenuation scheme for a west coast of India data set P-391 Selection of an optimised multiple attenuation scheme for a west coast of India data set Summary R Pathak*, PC Kalita, CPS Rana, Dr. S. Viswanathan, ONGC In recent years a number of new algorithms

More information

CHAPTER 1 COPYRIGHTED MATERIAL. Finding Your Way in the Inventor Interface

CHAPTER 1 COPYRIGHTED MATERIAL. Finding Your Way in the Inventor Interface CHAPTER 1 Finding Your Way in the Inventor Interface COPYRIGHTED MATERIAL Understanding Inventor s interface behavior Opening existing files Creating new files Modifying the look and feel of Inventor Managing

More information

Petrel TIPS&TRICKS from SCM

Petrel TIPS&TRICKS from SCM E&P SOLUTIONS Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Petrel Studio Part 1 The Petrel Studio was new to Petrel 2011, was augmented with new features in Petrel 2012 and contains a variety of

More information

Volumetric Curvature-Attribute Applications for Detection of Fracture Lineaments and their Calibration

Volumetric Curvature-Attribute Applications for Detection of Fracture Lineaments and their Calibration Volumetric Curvature-ttribute pplications for Detection of Fracture Lineaments and their Calibration By Satinder Chopra, Kurt J. Marfurt rcis Corporation, Calgary; University of Houston, Houston Introduction

More information

Volumetric flattening: an interpretation tool

Volumetric flattening: an interpretation tool Volumetric flattening: an interpretation tool Jesse Lomask and Antoine Guitton *Stanford Exploration Project, Mitchell Bldg., Department of Geophysics, Stanford University, Stanford, CA 94305-2215 3DGeo

More information

Attribute combinations for image segmentation

Attribute combinations for image segmentation Attribute combinations for image segmentation Adam Halpert and Robert G. Clapp ABSTRACT Seismic image segmentation relies upon attributes calculated from seismic data, but a single attribute (usually amplitude)

More information

GUIDE TO EMERGE. Each example is independent and may be performed without doing the others.

GUIDE TO EMERGE. Each example is independent and may be performed without doing the others. EMERGE Guide Introduction to EMERGE... 1 Part 1: Estimating P-wave Velocity from Seismic Attributes... 2 Starting EMERGE... 4 Performing Single-Attribute Analysis... 23 Performing Multi-Attribute Analysis...

More information

Integrating 2-D, 3-D Yields New Insights

Integrating 2-D, 3-D Yields New Insights JULY 2007 The Better Business Publication Serving the Exploration / Drilling / Production Industry Integrating 2-D, 3-D Yields New Insights By Tony Rebec and Tony Marsh automatic fault tracking on sections,

More information

Anatomy of a Depth Survey Part III The Re-survey. Tom O Donnell, AP Miles River Squadron

Anatomy of a Depth Survey Part III The Re-survey. Tom O Donnell, AP Miles River Squadron 1 Anatomy of a Depth Survey Part III The Re-survey Tom O Donnell, AP Miles River Squadron 2 As mentioned in Part I, the real purpose of depth surveys is to detect previously uncharted shoaling which might

More information

Appendix E: Software

Appendix E: Software Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos) is a powerful tool for understanding how objects move. Like most forms of data, video is most easily analyzed using a

More information

We N Depth Domain Inversion Case Study in Complex Subsalt Area

We N Depth Domain Inversion Case Study in Complex Subsalt Area We N104 12 Depth Domain Inversion Case Study in Complex Subsalt Area L.P. Letki* (Schlumberger), J. Tang (Schlumberger) & X. Du (Schlumberger) SUMMARY Geophysical reservoir characterisation in a complex

More information

v MODPATH GMS 10.3 Tutorial The MODPATH Interface in GMS Prerequisite Tutorials MODFLOW Conceptual Model Approach I

v MODPATH GMS 10.3 Tutorial The MODPATH Interface in GMS Prerequisite Tutorials MODFLOW Conceptual Model Approach I v. 10.3 GMS 10.3 Tutorial The Interface in GMS Objectives Setup a simulation in GMS and view the results. Learn about assigning porosity, creating starting locations, displaying pathlines in different

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

v SMS 12.2 Tutorial Observation Prerequisites Requirements Time minutes

v SMS 12.2 Tutorial Observation Prerequisites Requirements Time minutes v. 12.2 SMS 12.2 Tutorial Observation Objectives This tutorial will give an overview of using the observation coverage in SMS. Observation points will be created to measure the numerical analysis with

More information

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Summary In this paper, we review the near-surface challenges

More information

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin.

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin. Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT August Lau and Chuan Yin January 6, 2017 Abstract The goal of seismic processing is to convert input data

More information

v. 9.0 GMS 9.0 Tutorial MODPATH The MODPATH Interface in GMS Prerequisite Tutorials None Time minutes

v. 9.0 GMS 9.0 Tutorial MODPATH The MODPATH Interface in GMS Prerequisite Tutorials None Time minutes v. 9.0 GMS 9.0 Tutorial The Interface in GMS Objectives Setup a simulation in GMS and view the results. Learn about assigning porosity, creating starting locations, different ways to display pathlines,

More information

PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging

PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging A Publication of Petroleum Geo-Services Vol. 10 No. 4 April 2010 PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging Introduction Depth imaging is now established as a key

More information

CS1110 Lab 1 (Jan 27-28, 2015)

CS1110 Lab 1 (Jan 27-28, 2015) CS1110 Lab 1 (Jan 27-28, 2015) First Name: Last Name: NetID: Completing this lab assignment is very important and you must have a CS 1110 course consultant tell CMS that you did the work. (Correctness

More information

PLEASE NOTE THAT THERE ARE QUESTIONS IN SOME OF THESE SECTIONS THAT ARE TO BE TURNED IN AS HOMEWORK.

PLEASE NOTE THAT THERE ARE QUESTIONS IN SOME OF THESE SECTIONS THAT ARE TO BE TURNED IN AS HOMEWORK. Seismic Reflection Lab for Geology 594 BEFORE YOU DO ANYTHING INSERT THE DONGLE ON THE LEFT SIDE OF THE KEYBOARD (LIGHT SIDE UP). The little green light will come on showing the dongle is activated. You

More information

GPRS Guide for EMI Processing Using Surfer. Prepared by: Jamie Althauser, September 2016

GPRS Guide for EMI Processing Using Surfer. Prepared by: Jamie Althauser, September 2016 GPRS Guide for EMI Processing Using Surfer Prepared by: Jamie Althauser, September 2016 1 Transfer the Data to your computer. We will refer to GSSI s handbook for the data transfer steps. There should

More information

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction τ-p domain converted-wave processing Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction Raul Cova and Kris Innanen ABSTRACT The asymmetry of the converted-wave

More information

The Attraction of Complexity

The Attraction of Complexity The Attraction of Complexity Carlo Bottiglieri December 10, 2017 1 Introduction How is complexity distributed through a codebase? Does this distribution present similarities across different projects?

More information

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design Chapter 5 3D data examples In this chapter I will demonstrate the e ectiveness of the methodologies developed in the previous chapters using 3D data examples. I will first show inversion results of a realistically

More information

H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography

H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography M. Cavalca* (Schlumberger - Westerngeco) & R.P. Fletcher (Schlumberger - Westerngeco) SUMMARY Estimation of the

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

TRAINEE WORKBOOK. Atlas 5.0 for Microsoft Dynamics AX 2012 Reporting system

TRAINEE WORKBOOK. Atlas 5.0 for Microsoft Dynamics AX 2012 Reporting system TRAINEE WORKBOOK Atlas 5.0 for Microsoft Dynamics AX 2012 Reporting system COPYRIGHT NOTICE Copyright 2011, Globe Software Pty Ltd, All rights reserved. Trademarks Dynamics AX, IntelliMorph, and X++ have

More information