INTERACTIVE VIRTUAL VIEW VIDEO FOR IMMERSIVE TV APPLICATIONS

Size: px
Start display at page:

Download "INTERACTIVE VIRTUAL VIEW VIDEO FOR IMMERSIVE TV APPLICATIONS"

Transcription

1 INTERACTIVE VIRTUAL VIEW VIDEO FOR IMMERSIVE TV APPLICATIONS C. Fehn, P. Kauff, O. Schreer and R. Schäfer Heinrich-Hertz-Institut, Germany ABSTRACT This paper presents an evolutionary approach on Immersive TV, an exciting new concept of future TV entertainment, where TV watchers get the impression of being present at a real event. Starting from a short-term solution which can be introduced with available hardware at reasonable costs, the paper particularly discusses thinkable extensions towards a longterm solution, called IVVV (Interactive Virtual View Video), targeting at a highly interactive TV system. The idea is based on an implicit 3D representation of the video scene supporting head motion parallax viewing, as well as user-guided navigation with a virtual camera. The concept distinguishes between accurate offline 3D analysis of static scene parts and online real-time processing of dynamic video objects. Static and dynamic 3D data are merged at the receiver and used, together with the transmitted video sequences, to create the desired intermediate views by means of image-based rendering. INTRODUCTION Being present at a live event is undeniably the most exciting way to experience any entertainment. It is therefore the mission of immersive media to bring this experience to those users who are not able to participate. The wide field of related immersive media applications can be classified into two main branches. One application branch is based on the natural audio-visual presentation well-known from conventional cinema. The best example is the successful story of the IMAX technology. Basically, it makes use of advanced audio-visual features of cinema, such as widescreen presentation, panoramic views and surround sound to provide the impression of being immersed. The second main branch is located in the domain of Virtual Reality (VR). In the past, most of the research on immersion had been focused on this branch because it is well suited to producing experiences for training, education, computer-aided design and game applications. The main advantage of VR is that it supports a high range of interactivity while users are immersed in the virtual scene. As a natural-looking distributed entertainment medium, however, VR has severe limitations. The quality of computer-generated imagery will for many years be inadequate to convince a user that he is actually viewing real-world scenes. In addition, there is no mechanism for full 3D capturing of large-scale live events in real-time.

2 Against this background, the idea of Immersive TV is to design a new broadcast medium which combines the natural experience of the first application branch with the functionality of interacting with the scene contents of the second branch. The ultimate goal is to provide a future experiential and sensory home entertainment which bridges the gap between audiovisual sensation of state-of-the art consumer electronics and real sensation of live events (see Fig. 1). Costs Football Rock concert Theatre VoD Cinema Immersive TV CD TV Interactive TV Intensity of Experience Figure 1 - Objective of Immersive TV (1) In this sense, the next section will present a description of a short-term solution which is achievable with available hardware at reasonable costs. Then, the paper will discuss thinkable extensions towards a long-term solution targeting at a highly interactive TV system. This so-called IVVV (Interactive Virtual View Video) is based on an implicit 3D representation of the video scene enabling a user-guided navigation with a virtual camera. High resolution view Viewer Figure 2 Short-term solution of Immersive TV

3 H2U-BOX High to Ultra DefinitionMerger Box SHORT-TERM SOLUTION A very attractive short-term concept of such an Immersive TV (ImTV) approach has recently been proposed in (1). Following this approach, a first hardware system of a ImTV receiver based on a set-top box architecture using available DVB and MPEG technology is currently under development at Heinrich-Hertz-Institut (HHI) (2). In this concept it is envisaged to capture, encode and broadcast wide-angle, high resolution views of live events combined with multi-channel audio, and to display these events in a way which accounts for an individual immersive viewing experience using a head-mounted system in combination with a headtracker as well as other multi-sensory devices like motion-seats (see Fig. 2). The most significant feature, however, is that it targets a one-way distribution service. This means that, in contrast to usual VR applications, the same signal can be sold to millions of viewers without the broadcasters having to handle costly interactive networks and servers. DVB Transmission 3 HD MPEG-2 Recorder Decoder (Hyperbox) UHDTV Merger Unit HD Projectors HMD Figure 3 Outline of ImTV receiver hardware Fig. 3 outlines the receiver system that is currently under development at HHI and which will be demonstrated the first time at the IFA 2001 fair in Berlin. It consists of a couple of so-called hyperboxes. Each hyperbox can decode, record and/or replay a DVB MPEG-2 HD stream. A particular feature of the hyberbox is the ability to cascade some of these devices (e.g. three in Fig. 3) such that multiple MPEG-4 HD streams taken from different sources (DVB transmission, local storage, etc.) can be synchronised and decoded simultaneously. Subsequently, a special UHDTV (Ultra High Definition TV) merger unit stitches the synchronised HDTV frames together to a high resolution view in which a ImTV user can look around while using a head mounted display (see Fig. 2). Optionally, for other applications like electronic cinema, the stitched HDTV frames can also be watched jointly by a small group of viewers as wide-screen UHDTV panorama projection. For this purpose a given number of HDTV projectors can be plugged into the UHDTV merger unit. The main restriction of this short-term solution is the key assumption that the viewer always remains at a fixed location. He can certainly look all around and even incline his head, but he is viewing as a stationary spectator, as he would do from a fixed seat at a life event. However, to enjoy a large-scale event in future Immersive TV in the most exciting manner, it would be

4 desirable to be able to look at the scene from several viewpoints of interest. In such an extended system the functionality of interacting with the scene content would no longer be limited to looking around from a fixed default position. It would also allow the viewer to move his head, resulting in a different perspective, to look behind occluded areas or, in more futuristic scenarios, to walk through a natural video scene as it is known from virtual reality. This particular extension of Immersive TV fits very well into the current trend of digital TV to offer added value in terms of interactivity (e.g. the possibility to hop between several channels showing the same event from different camera positions). LONG-TERM SOLUTION In this context HHI has recently started a new research activity on such a long-term scenario, called IVVV (Interactive Virtual Viewpoint Video). The objective of IVVV is to develop new computer-vision based techniques, that extend the above mentioned short-term scenario, and allow the viewer to enjoy a large scale live event, such as a soccer game or a theatre play, from virtually every desired viewpoint with the quality of natural video. For this purpose the information is captured by a multi-baseline array of strongly convergent cameras arranged around the particular location of interest. The multi-view images will be analysed and all data are merged together to one compact image-based 3D representation of the scene which can then be transmitted via a broadcast channel. At the receiver the viewer has the opportunity to control a "virtual camera" providing intermediate virtual views interpolated from the real camera images. Operator Static scene parts Figure 4 Operator assisted offline analysis of static scene parts Basically, the concept of IVVV consists of two different phases, taking into account that the 3D geometry of the scene can be decomposed into static parts, such as a sports arena or a theatre stage, and dynamic objects, such as the soccer players or the actors. As sketched in Fig. 4, the static parts of the scene can be analysed during an offline phase without any realtime constraints and with the possibility of supervising the process and correcting it manually whenever necessary. The output, obtained during this initial offline process, carries information about the static 3D structure of the scene (static disparity maps, segmentation masks and further information about occlusions and depth layers). The texture images of the video sequences, however, are still transmitted online. Furthermore, the dynamic objects have to be analysed and processed in real-time during this online phase. Then, a 3D representation of the dynamic objects, including segmentation, disparities and depth layering, is transmitted jointly with the video sequences.

5 Broadcast Virtual camera Synthesis Download Control Viewer Figure 5 Selection of the desired viewpoint with remote-controlled virtual camera At the receiver, the 3D representation data of the dynamic objects are merged with the data from the offline phase, previously down-loaded and stored at a local disk (see Fig. 5). The result is a permanently updated 3D representation of the transmitted video scene which can then be used, together with the video images, to render the desired perspective view of the scene. virtual camera real cameras virtual view calculated by 3D warping Figure 6 Three camera test environment

6 First investigations on the algorithmic feasibility of the IVVV approach have been carried out on the basis of computer simulations. The experimental environment sketched in Fig. 6 has been used for this purpose. A toy racing scene is first captured by three real cameras representing a part of the convergent multi-baseline camera array used in IVVV. Then, after 3D analysis of static and dynamic parts of the scene, a novel view is synthesised in dependence of the 3D position of the virtual camera. The following sub-sections present some details of the algorithms which are required for both, offline- and online processing of 3D analysis and novel view synthesis. Weak Camera Calibration The first step during the offline phase is the weak calibration of the multi-baseline camera array. An automatic algorithm, based on a trifocal matching procedure, has been implemented for this purpose. At first, a robust feature extraction and matching algorithm selects a given number of reliable point correspondences between all three cameras. (see Fig. 7). It is modified version of the algorithm proposed by Zhang (3). Then, a robust estimation scheme proposed by Torr is applied to these pre-selected point correspondences to estimate the trifocal tensor (4). The estimation makes use of a robust RANSAC algorithm to eliminate outliers within the given set of point correspondences. To reduce the influence of Gaussian noise, the coefficients of the trifocal tensor found by RANSAC are subsequently refined by a suitable non-linear minimisation. Further weak calibration parameters like the fundamental matrices and the epipoles are finally extracted from the trifocal tensor. In its current stage, the algorithm is limited to a three camera test environment (see Fig. 6). However, it can easily be extended to configurations with more than three cameras, using Figure 7 Feature point correspondences for weak calibration of camera array registration of multiple image triplets and bundle adjustment, as proposed by Fitzgibbon (5). Analysis of Multi-View Images Analysing the 3D structure of the given multi-view images is obviously the most difficult task. However, during the offline analysis, some a-priori knowledge about the structure of the envisioned scenarios can be utilised to ease it. For example, it can be assumed that some parts of the scene consist of planar regions as they are typical for architectural buildings. This is an important model assumption which significantly simplifies the solution of the correspondence problem between different views. Following this philosophy and starting with the robust point correspondences from the weak calibration process, a region-growing technique guided by epiolar and trifocal constraints is used for an estimation of dense disparity fields of high precision. This approach is inspired by a proposal from Lhuillier (6) and has been extended towards implicit consistency checks, with respect to the epipolar and

7 Figure 8 Generation of multi-label mask for disparity regularisation by homography fitting trifocal constraints. Then, to meet the above model of planar patches, the disparity maps are regularised by socalled homography fitting. For this purpose the images are first segmented as shown in Fig. 8. Depending on the complexity of the scene, this segmentation process is automatic, semiautomatic or even manual. The result of segmentation is a mask labelling different depth layers and planes. Subsequently, the regions which represent a planar patch in the scene are identified by a RANSAC algorithm estimating and testing corresponding homography parameters. As soon as a region has been linked to a valid homography, the disparities within this region are fitted to this supplementary condition. Thus, the related homography parameters are exploited for further improvements towards robustness and accuracy of the dense disparity fields. For the online process, the disparities of the dynamic foreground objects are estimated by an object-oriented algorithm which is more suitable for real-time applications. It is based on a hybrid pixel- and block-recursive matching technique that has been developed at HHI in the context of immersive tele-conferencing (7). Due to its object-oriented structures it presumes that dynamic objects are reliably detected by means of segmentation and tracking. Figure 9 Trajectory samples of virtual camera moving through test scene Synthesis of Virtual Views Exploiting the joint disparity maps, merged from both, offline- and online estimation, new virtual views can be generated from the available reference views. To meet real-time constraints, only techniques based on trilinear warping and image based rendering are used for this purpose (8)(9). Self-occlusions appearing during the movement of the virtual camera are handled by an occlusion-compatible warp order, guided by the weak calibration data. The composition of the virtual views out of the reference frames is controlled by coplanarity checks, image segmentation and confidence measures, in order to use the reference image with best spatial resolution and to cope with exposed areas in the most efficient manner. Finally, the texture in those exposed areas, for which no information is available in any of the reference views, is extrapolated by suitable hole filling algorithms. Fig. 9 shows results for various positions of the virtual camera in the test environment from Fig. 6.

8 CONCLUSION & OUTLOOK Starting from a discussion on new concepts of immersive entertainment in general, this paper has particularly introduced an evolutionary approach on immersive television. This approach is based on a short-term solution (ImTV), already suitable to be implemented in first prototypes with available technology, and a long-term solution, called IVVV (Interactive Virtual Viewpoint Video), that allows the user to watch a large scale live event from virtually every desired viewpoint. First key components for the IVVV concept, such as weak camera calibration, offline analysis of the 3D scene geometry and image-based rendering for view synthesis, have already been developed on the basis of computer simulations and show promising results. Further investigations will mainly focus on the following two issues. The first one concerns the development of a suitable navigation model which assists the user's movement through the scene. This is mainly a matter of calibration, focusing on a suitable trade-off between expensive full-calibration, providing a real Euclidian world for navigation, and a pragmatic approximation based on the less complex techniques of weak calibration. A second issue is the exploitation of redundancies for transmission purposes. At the moment, it is assumed that the video data from all camera views are transmitted simultaneously, resulting in an overwhelming need of bandwidth. Here, the objective is to limit the visual data that have to be encoded such that for the whole scene, each area that is visible within more than one camera view is encoded only once with the highest possible resolution. REFERENCES 1. Lodge, N. and Harrison, D., Being Part of the Action - Immersive Television! Proceedings of International Broadcasting Convention. September, Kauff, P., Höfker, U. and Gölz, U., Immersive TV - The TV Experience of the Future? Proceedings of 19 th Annual Conference of FKTG. May, Zhang, Z., Deriche, R., Faugeras, O. D. and Luong, Q.-T., A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry. Research Report 2273, INRIA. May, Torr, P.H.S. and Zisserman, A., Robust Parameterization and Computation of the Trifocal Tensor. Image and Vision Computing. 15(8)., August, pp. 591 to Fitzgibbon, A. W. and Zisserman, A., Automatic Camera Recovery for Closed or Open Image Sequences. Proceedings of European Conference on Computer Vision. June, pp. 311 to Lhuillier, M., Towards Automatic Interpolation for Real and Distant Image Pairs. Research Report 3619, INRIA. February, Kauff, P., Brandenburg, N., Karl, M. and Schreer O., Fast Hybrid Block- and Pixel- Recursive Disparity Analysis for Real-Time Applications in Immersive Tele-Conference Scenarios. In Proceedings of 9 th International Conference in Central Europe on Computer Graphics Visualization and Computer Vision. February, pp. 198 to Avidan, S. and Shashua, A., Novel View Synthesis by Cascading Trilinear Tensors. IEEE Transactions on Visualisation and Computer Graphics. 4(4); October-December,1998. pp. 293 to Oliveira, M., Bishop, G. and McAllister, D., Relief Texture Mapping. In Proceedings of SIGGRAPH. July, pp. 259 to 268.

Challenges and solutions for real-time immersive video communication

Challenges and solutions for real-time immersive video communication Challenges and solutions for real-time immersive video communication Part III - 15 th of April 2005 Dr. Oliver Schreer Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institut, Berlin, Germany

More information

Image Transfer Methods. Satya Prakash Mallick Jan 28 th, 2003

Image Transfer Methods. Satya Prakash Mallick Jan 28 th, 2003 Image Transfer Methods Satya Prakash Mallick Jan 28 th, 2003 Objective Given two or more images of the same scene, the objective is to synthesize a novel view of the scene from a view point where there

More information

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE Naho INAMOTO and Hideo SAITO Keio University, Yokohama, Japan {nahotty,saito}@ozawa.ics.keio.ac.jp Abstract Recently there has been great deal of interest

More information

NEW CONCEPT FOR JOINT DISPARITY ESTIMATION AND SEGMENTATION FOR REAL-TIME VIDEO PROCESSING

NEW CONCEPT FOR JOINT DISPARITY ESTIMATION AND SEGMENTATION FOR REAL-TIME VIDEO PROCESSING NEW CONCEPT FOR JOINT DISPARITY ESTIMATION AND SEGMENTATION FOR REAL-TIME VIDEO PROCESSING Nicole Atzpadin 1, Serap Askar, Peter Kauff, Oliver Schreer Fraunhofer Institut für Nachrichtentechnik, Heinrich-Hertz-Institut,

More information

Realtime View Adaptation of Video Objects in 3-Dimensional Virtual Environments

Realtime View Adaptation of Video Objects in 3-Dimensional Virtual Environments Contact Details of Presenting Author Edward Cooke (cooke@hhi.de) Tel: +49-30-31002 613 Fax: +49-30-3927200 Summation Abstract o Examination of the representation of time-critical, arbitrary-shaped, video

More information

Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies

Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies M. Lourakis, S. Tzurbakis, A. Argyros, S. Orphanoudakis Computer Vision and Robotics Lab (CVRL) Institute of

More information

ASIAGRAPH 2008 The Intermediate View Synthesis System For Soccer Broadcasts

ASIAGRAPH 2008 The Intermediate View Synthesis System For Soccer Broadcasts ASIAGRAPH 2008 The Intermediate View Synthesis System For Soccer Broadcasts Songkran Jarusirisawad, Kunihiko Hayashi, Hideo Saito (Keio Univ.), Naho Inamoto (SGI Japan Ltd.), Tetsuya Kawamoto (Chukyo Television

More information

Invariant Features from Interest Point Groups

Invariant Features from Interest Point Groups Invariant Features from Interest Point Groups Matthew Brown and David Lowe {mbrown lowe}@cs.ubc.ca Department of Computer Science, University of British Columbia, Vancouver, Canada. Abstract This paper

More information

WATERMARKING FOR LIGHT FIELD RENDERING 1

WATERMARKING FOR LIGHT FIELD RENDERING 1 ATERMARKING FOR LIGHT FIELD RENDERING 1 Alper Koz, Cevahir Çığla and A. Aydın Alatan Department of Electrical and Electronics Engineering, METU Balgat, 06531, Ankara, TURKEY. e-mail: koz@metu.edu.tr, cevahir@eee.metu.edu.tr,

More information

Multiview Image Compression using Algebraic Constraints

Multiview Image Compression using Algebraic Constraints Multiview Image Compression using Algebraic Constraints Chaitanya Kamisetty and C. V. Jawahar Centre for Visual Information Technology, International Institute of Information Technology, Hyderabad, INDIA-500019

More information

DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO

DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO P. Kauff, A. Smolic, P. Eisert, C. Fehn. K. Müller, R. Schäfer Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut (FhG/HHI), Berlin, Germany

More information

Automatic Line Matching across Views

Automatic Line Matching across Views Automatic Line Matching across Views Cordelia Schmid and Andrew Zisserman Department of Engineering Science, University of Oxford Parks Road, Oxford, UK OX1 3PJ Abstract This paper presents a new method

More information

Player Viewpoint Video Synthesis Using Multiple Cameras

Player Viewpoint Video Synthesis Using Multiple Cameras Player Viewpoint Video Synthesis Using Multiple Cameras Kenji Kimura *, Hideo Saito Department of Information and Computer Science Keio University, Yokohama, Japan * k-kimura@ozawa.ics.keio.ac.jp, saito@ozawa.ics.keio.ac.jp

More information

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India Keshav Mahavidyalaya, University of Delhi, Delhi, India Abstract

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Video Communication Ecosystems. Research Challenges for Immersive. over Future Internet. Converged Networks & Services (CONES) Research Group

Video Communication Ecosystems. Research Challenges for Immersive. over Future Internet. Converged Networks & Services (CONES) Research Group Research Challenges for Immersive Video Communication Ecosystems over Future Internet Tasos Dagiuklas, Ph.D., SMIEEE Assistant Professor Converged Networks & Services (CONES) Research Group Hellenic Open

More information

A virtual tour of free viewpoint rendering

A virtual tour of free viewpoint rendering A virtual tour of free viewpoint rendering Cédric Verleysen ICTEAM institute, Université catholique de Louvain, Belgium cedric.verleysen@uclouvain.be Organization of the presentation Context Acquisition

More information

Model Refinement from Planar Parallax

Model Refinement from Planar Parallax Model Refinement from Planar Parallax A. R. Dick R. Cipolla Department of Engineering, University of Cambridge, Cambridge, UK {ard28,cipolla}@eng.cam.ac.uk Abstract This paper presents a system for refining

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

But First: Multi-View Projective Geometry

But First: Multi-View Projective Geometry View Morphing (Seitz & Dyer, SIGGRAPH 96) Virtual Camera Photograph Morphed View View interpolation (ala McMillan) but no depth no camera information Photograph But First: Multi-View Projective Geometry

More information

An Algorithm for Seamless Image Stitching and Its Application

An Algorithm for Seamless Image Stitching and Its Application An Algorithm for Seamless Image Stitching and Its Application Jing Xing, Zhenjiang Miao, and Jing Chen Institute of Information Science, Beijing JiaoTong University, Beijing 100044, P.R. China Abstract.

More information

Real-time Video Surveillance for Large Scenes

Real-time Video Surveillance for Large Scenes Real-time Video Surveillance for Large Scenes Hanyu Liu Technical Report Abstract Video surveillance provides security monitoring of target scenes. As the public safety is confronted of more and more neoteric

More information

Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments

Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments Nikos Komodakis and Georgios Tziritas Computer Science Department, University of Crete E-mails: {komod,

More information

Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen?

Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen? Neue Verfahren der Bildverarbeitung auch zur Erfassung von Schäden in Abwasserkanälen? Fraunhofer HHI 13.07.2017 1 Fraunhofer-Gesellschaft Fraunhofer is Europe s largest organization for applied research.

More information

Feature Transfer and Matching in Disparate Stereo Views through the Use of Plane Homographies

Feature Transfer and Matching in Disparate Stereo Views through the Use of Plane Homographies IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 2, FEBRUARY 2003 271 Feature Transfer and Matching in Disparate Stereo Views through the Use of Plane Homographies Manolis I.A.

More information

Hierarchical Matching Techiques for Automatic Image Mosaicing

Hierarchical Matching Techiques for Automatic Image Mosaicing Hierarchical Matching Techiques for Automatic Image Mosaicing C.L Begg, R Mukundan Department of Computer Science, University of Canterbury, Christchurch, New Zealand clb56@student.canterbury.ac.nz, mukund@cosc.canterbury.ac.nz

More information

View Synthesis by Trinocular Edge Matching and Transfer

View Synthesis by Trinocular Edge Matching and Transfer View Synthesis by Trinocular Edge Matching and Transfer S. Pollard, M. Pilu, S. Hayes and A. Lorusso Hewlett-Packard Laboratories Bristol (UK) BS12 6QZ [stp mp esh lorusso]@hplb.hpl.hp.com Abstract This

More information

Stereo Image Rectification for Simple Panoramic Image Generation

Stereo Image Rectification for Simple Panoramic Image Generation Stereo Image Rectification for Simple Panoramic Image Generation Yun-Suk Kang and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 Korea Email:{yunsuk,

More information

Visualization 2D-to-3D Photo Rendering for 3D Displays

Visualization 2D-to-3D Photo Rendering for 3D Displays Visualization 2D-to-3D Photo Rendering for 3D Displays Sumit K Chauhan 1, Divyesh R Bajpai 2, Vatsal H Shah 3 1 Information Technology, Birla Vishvakarma mahavidhyalaya,sumitskc51@gmail.com 2 Information

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

1-2 Feature-Based Image Mosaicing

1-2 Feature-Based Image Mosaicing MVA'98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chibq Japan 1-2 Feature-Based Image Mosaicing Naoki Chiba, Hiroshi Kano, Minoru Higashihara, Masashi Yasuda, and Masato

More information

Video Alignment. Final Report. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin

Video Alignment. Final Report. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Final Report Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Omer Shakil Abstract This report describes a method to align two videos.

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Camera Calibration for a Robust Omni-directional Photogrammetry System

Camera Calibration for a Robust Omni-directional Photogrammetry System Camera Calibration for a Robust Omni-directional Photogrammetry System Fuad Khan 1, Michael Chapman 2, Jonathan Li 3 1 Immersive Media Corporation Calgary, Alberta, Canada 2 Ryerson University Toronto,

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation

Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation Fast Outlier Rejection by Using Parallax-Based Rigidity Constraint for Epipolar Geometry Estimation Engin Tola 1 and A. Aydın Alatan 2 1 Computer Vision Laboratory, Ecóle Polytechnique Fédéral de Lausanne

More information

1D camera geometry and Its application to circular motion estimation. Creative Commons: Attribution 3.0 Hong Kong License

1D camera geometry and Its application to circular motion estimation. Creative Commons: Attribution 3.0 Hong Kong License Title D camera geometry and Its application to circular motion estimation Author(s Zhang, G; Zhang, H; Wong, KKY Citation The 7th British Machine Vision Conference (BMVC, Edinburgh, U.K., 4-7 September

More information

Efficient Stereo Image Rectification Method Using Horizontal Baseline

Efficient Stereo Image Rectification Method Using Horizontal Baseline Efficient Stereo Image Rectification Method Using Horizontal Baseline Yun-Suk Kang and Yo-Sung Ho School of Information and Communicatitions Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro,

More information

Automatically Synthesising Virtual Viewpoints by Trinocular Image Interpolation

Automatically Synthesising Virtual Viewpoints by Trinocular Image Interpolation Automatically Synthesising Virtual Viewpoints by Trinocular Image Interpolation Stephen Pollard, Sean Hayes, Maurizio Pilu, Adele Lorusso Digital Media Department HP Laboratories Bristol HPL-98-05 January,

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Jinshi Cui, Yasushi Yagi, Hongbin Zha, Yasuhiro Mukaigawa, and Kazuaki Kondo State Key Lab on Machine Perception, Peking University, China {cjs,zha}@cis.pku.edu.cn

More information

PanoMOBI: Panoramic Mobile Entertainment System

PanoMOBI: Panoramic Mobile Entertainment System PanoMOBI: Panoramic Mobile Entertainment System Barnabas Takacs 1,2 1 MTA SZTAKI, Virtual Human Interface Group, Hungarian Academy of Sciences, Kende u. 11-13, 1111 Budapest, Hungary 2 Digital Elite Inc.

More information

EXPERIMENTAL RESULTS ON THE DETERMINATION OF THE TRIFOCAL TENSOR USING NEARLY COPLANAR POINT CORRESPONDENCES

EXPERIMENTAL RESULTS ON THE DETERMINATION OF THE TRIFOCAL TENSOR USING NEARLY COPLANAR POINT CORRESPONDENCES EXPERIMENTAL RESULTS ON THE DETERMINATION OF THE TRIFOCAL TENSOR USING NEARLY COPLANAR POINT CORRESPONDENCES Camillo RESSL Institute of Photogrammetry and Remote Sensing University of Technology, Vienna,

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

5LSH0 Advanced Topics Video & Analysis

5LSH0 Advanced Topics Video & Analysis 1 Multiview 3D video / Outline 2 Advanced Topics Multimedia Video (5LSH0), Module 02 3D Geometry, 3D Multiview Video Coding & Rendering Peter H.N. de With, Sveta Zinger & Y. Morvan ( p.h.n.de.with@tue.nl

More information

Image Base Rendering: An Introduction

Image Base Rendering: An Introduction Image Base Rendering: An Introduction Cliff Lindsay CS563 Spring 03, WPI 1. Introduction Up to this point, we have focused on showing 3D objects in the form of polygons. This is not the only approach to

More information

CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS

CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS Luat Do 1, Svitlana Zinger 1, and Peter H. N. de With 1,2 1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,

More information

Recent Trend for Visual Media Synthesis and Analysis

Recent Trend for Visual Media Synthesis and Analysis 1 AR Display for Observing Sports Events based on Camera Tracking Using Pattern of Ground Akihito Enomoto, Hideo Saito saito@hvrl.ics.keio.ac.jp www.hvrl.ics.keio.ac.jp HVRL: Hyper Vision i Research Lab.

More information

Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering

Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering Cédric Verleysen¹, T. Maugey², P. Frossard², C. De Vleeschouwer¹ ¹ ICTEAM institute, UCL (Belgium) ; ² LTS4 lab,

More information

Estimation of common groundplane based on co-motion statistics

Estimation of common groundplane based on co-motion statistics Estimation of common groundplane based on co-motion statistics Zoltan Szlavik, Laszlo Havasi 2, Tamas Sziranyi Analogical and Neural Computing Laboratory, Computer and Automation Research Institute of

More information

Video Alignment. Literature Survey. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin

Video Alignment. Literature Survey. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Literature Survey Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Omer Shakil Abstract This literature survey compares various methods

More information

The Light Field and Image-Based Rendering

The Light Field and Image-Based Rendering Lecture 11: The Light Field and Image-Based Rendering Visual Computing Systems Demo (movie) Royal Palace: Madrid, Spain Image-based rendering (IBR) So far in course: rendering = synthesizing an image from

More information

RENDERING AND ANALYSIS OF FACES USING MULTIPLE IMAGES WITH 3D GEOMETRY. Peter Eisert and Jürgen Rurainsky

RENDERING AND ANALYSIS OF FACES USING MULTIPLE IMAGES WITH 3D GEOMETRY. Peter Eisert and Jürgen Rurainsky RENDERING AND ANALYSIS OF FACES USING MULTIPLE IMAGES WITH 3D GEOMETRY Peter Eisert and Jürgen Rurainsky Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute Image Processing Department

More information

The Virtual Meeting Room

The Virtual Meeting Room Contact Details of Presenting Authors Stefan Rauthenberg (rauthenberg@hhi.de), Peter Kauff (kauff@hhi.de) Tel: +49-30-31002 266, +49-30-31002 615 Fax: +49-30-3927200 Summation Brief explaination of the

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,

More information

Image-Based Rendering Methods

Image-Based Rendering Methods Image-Based Rendering Methods for 3D Video-communications Andrea Fusiello http://profs.sci.univr.it/~fusiello Brixen, July 5 2007 c Copyright by Andrea Fusiello. This work is licensed under the Creative

More information

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION Mr.V.SRINIVASA RAO 1 Prof.A.SATYA KALYAN 2 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING PRASAD V POTLURI SIDDHARTHA

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Georgios Tziritas Computer Science Department

Georgios Tziritas Computer Science Department New Video Coding standards MPEG-4, HEVC Georgios Tziritas Computer Science Department http://www.csd.uoc.gr/~tziritas 1 MPEG-4 : introduction Motion Picture Expert Group Publication 1998 (Intern. Standardization

More information

A New Data Format for Multiview Video

A New Data Format for Multiview Video A New Data Format for Multiview Video MEHRDAD PANAHPOUR TEHRANI 1 AKIO ISHIKAWA 1 MASASHIRO KAWAKITA 1 NAOMI INOUE 1 TOSHIAKI FUJII 2 This paper proposes a new data forma that can be used for multiview

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

An Overview of Matchmoving using Structure from Motion Methods

An Overview of Matchmoving using Structure from Motion Methods An Overview of Matchmoving using Structure from Motion Methods Kamyar Haji Allahverdi Pour Department of Computer Engineering Sharif University of Technology Tehran, Iran Email: allahverdi@ce.sharif.edu

More information

The Projective Vision Toolkit

The Projective Vision Toolkit The Projective Vision Toolkit ANTHONY WHITEHEAD School of Computer Science Carleton University, Ottawa, Canada awhitehe@scs.carleton.ca Abstract: Projective vision research has recently received a lot

More information

Combining Appearance and Topology for Wide

Combining Appearance and Topology for Wide Combining Appearance and Topology for Wide Baseline Matching Dennis Tell and Stefan Carlsson Presented by: Josh Wills Image Point Correspondences Critical foundation for many vision applications 3-D reconstruction,

More information

Synthesis of Novel Views of Moving Objects in Airborne Video

Synthesis of Novel Views of Moving Objects in Airborne Video Synthesis of Novel Views of Moving Objects in Airborne Video Zhanfeng Yue and Rama Chellappa Center for Automation Research University of Maryland College Park, MD, USA, 20742 {zyue,rama}@cfar.umd.edu

More information

Perception and Action using Multilinear Forms

Perception and Action using Multilinear Forms Perception and Action using Multilinear Forms Anders Heyden, Gunnar Sparr, Kalle Åström Dept of Mathematics, Lund University Box 118, S-221 00 Lund, Sweden email: {heyden,gunnar,kalle}@maths.lth.se Abstract

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 12 130228 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Panoramas, Mosaics, Stitching Two View Geometry

More information

Stereo pair 1 H23 I. Stereo pair 2 R M. l r. e C C (A) (B) (B) (C) Match planes between stereo pairs and compute homographies H 23 and U 23

Stereo pair 1 H23 I. Stereo pair 2 R M. l r. e C C (A) (B) (B) (C) Match planes between stereo pairs and compute homographies H 23 and U 23 Feature Transfer and Matching in Disparate Stereo Views through the Use of Plane Homographies Manolis I.A. Lourakis, Stavros V. Tzurbakis, Antonis A. Argyros, Stelios C. Orphanoudakis Abstract Many vision

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

The Video Z-buffer: A Concept for Facilitating Monoscopic Image Compression by exploiting the 3-D Stereoscopic Depth map

The Video Z-buffer: A Concept for Facilitating Monoscopic Image Compression by exploiting the 3-D Stereoscopic Depth map The Video Z-buffer: A Concept for Facilitating Monoscopic Image Compression by exploiting the 3-D Stereoscopic Depth map Sriram Sethuraman 1 and M. W. Siegel 2 1 David Sarnoff Research Center, Princeton,

More information

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a 96 Chapter 7 Model-Based Stereo 7.1 Motivation The modeling system described in Chapter 5 allows the user to create a basic model of a scene, but in general the scene will have additional geometric detail

More information

Natural Viewing 3D Display

Natural Viewing 3D Display We will introduce a new category of Collaboration Projects, which will highlight DoCoMo s joint research activities with universities and other companies. DoCoMo carries out R&D to build up mobile communication,

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking

Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking Manolis I.A. Lourakis and Antonis A. Argyros Institute of Computer Science, Foundation for Research and Technology - Hellas Vassilika

More information

Remote Reality Demonstration

Remote Reality Demonstration Remote Reality Demonstration Terrance E. Boult EECS Dept., 19 Memorial Drive West Lehigh Univ., Bethlehem, PA 18015 tboult@eecs.lehigh.edu Fax: 610 758 6279 Contact Author: T.Boult Submission category:

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

INTERNATIONAL ORGANISATION FOR STANDARISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO

INTERNATIONAL ORGANISATION FOR STANDARISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO INTERNATIONAL ORGANISATION FOR STANDARISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO ISO/IEC JTC1/SC29/WG11 MPEG/M15672 July 2008, Hannover,

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking

Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking Manolis I.A. Lourakis and Antonis A. Argyros Institute of Computer Science, Foundation for Research and Technology - Hellas Vassilika

More information

Multiple View Geometry. Frank Dellaert

Multiple View Geometry. Frank Dellaert Multiple View Geometry Frank Dellaert Outline Intro Camera Review Stereo triangulation Geometry of 2 views Essential Matrix Fundamental Matrix Estimating E/F from point-matches Why Consider Multiple Views?

More information

Live Video Integration for High Presence Virtual World

Live Video Integration for High Presence Virtual World Live Video Integration for High Presence Virtual World Tetsuro OGI, Toshio YAMADA Gifu MVL Research Center, TAO IML, The University of Tokyo 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan Michitaka HIROSE

More information

Surface Normal Aided Dense Reconstruction from Images

Surface Normal Aided Dense Reconstruction from Images Computer Vision Winter Workshop 26, Ondřej Chum, Vojtěch Franc (eds.) Telč, Czech Republic, February 6 8 Czech Pattern Recognition Society Surface Normal Aided Dense Reconstruction from Images Zoltán Megyesi,

More information

IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS

IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS Xiaoyong Sun A Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for

More information

Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations

Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations Prashant Ramanathan and Bernd Girod Department of Electrical Engineering Stanford University Stanford CA 945

More information

Shape as a Perturbation to Projective Mapping

Shape as a Perturbation to Projective Mapping Leonard McMillan and Gary Bishop Department of Computer Science University of North Carolina, Sitterson Hall, Chapel Hill, NC 27599 email: mcmillan@cs.unc.edu gb@cs.unc.edu 1.0 Introduction In the classical

More information

Object Shape Reconstruction and Pose Estimation by a Camera Mounted on a Mobile Robot

Object Shape Reconstruction and Pose Estimation by a Camera Mounted on a Mobile Robot Object Shape Reconstruction and Pose Estimation by a Camera Mounted on a Mobile Robot Kimitoshi Yamazaki, Masahiro Tomono, Takashi Tsubouchi and Shin ichi Yuta Intelligent Robot Laboratry, Institute of

More information

The Geometry of Dynamic Scenes On Coplanar and Convergent Linear Motions Embedded in 3D Static Scenes

The Geometry of Dynamic Scenes On Coplanar and Convergent Linear Motions Embedded in 3D Static Scenes EXTENDED VERSION SHORT VERSION APPEARED IN THE 13TH BMVC, CARDIFF, SEPTEMBER 2002. The Geometry of Dynamic Scenes On Coplanar and Convergent Linear Motions Embedded in 3D Static Scenes Adrien Bartoli,

More information

Bluray (

Bluray ( Bluray (http://www.blu-ray.com/faq) MPEG-2 - enhanced for HD, also used for playback of DVDs and HDTV recordings MPEG-4 AVC - part of the MPEG-4 standard also known as H.264 (High Profile and Main Profile)

More information

3DPRESENCE A SYSTEM CONCEPT FOR MULTI-USER AND MULTI-PARTY IMMERSIVE 3D VIDEOCONFERENCING

3DPRESENCE A SYSTEM CONCEPT FOR MULTI-USER AND MULTI-PARTY IMMERSIVE 3D VIDEOCONFERENCING 3DPRESENCE A SYSTEM CONCEPT FOR MULTI-USER AND MULTI-PARTY IMMERSIVE 3D VIDEOCONFERENCING O. Schreer, I. Feldmann, N. Atzpadin, P. Eisert, P. Kauff, H.J.W. Belt* Fraunhofer Institute for Telecommunications/Heinrich-Hertz

More information

Multiview Depth-Image Compression Using an Extended H.264 Encoder Morvan, Y.; Farin, D.S.; de With, P.H.N.

Multiview Depth-Image Compression Using an Extended H.264 Encoder Morvan, Y.; Farin, D.S.; de With, P.H.N. Multiview Depth-Image Compression Using an Extended H.264 Encoder Morvan, Y.; Farin, D.S.; de With, P.H.N. Published in: Proceedings of the 9th international conference on Advanced Concepts for Intelligent

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression

A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression Qifa Ke and Takeo Kanade December 2001 CMU-CS-01-168 School of Computer Science Carnegie Mellon University Pittsburgh, PA

More information

Object and Motion Recognition using Plane Plus Parallax Displacement of Conics

Object and Motion Recognition using Plane Plus Parallax Displacement of Conics Object and Motion Recognition using Plane Plus Parallax Displacement of Conics Douglas R. Heisterkamp University of South Alabama Mobile, AL 6688-0002, USA dheister@jaguar1.usouthal.edu Prabir Bhattacharya

More information