Limits and Continuity: section 12.2

Size: px
Start display at page:

Download "Limits and Continuity: section 12.2"

Transcription

1 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if (x,y) D and 0 < (x,y) (a,b) < δ, then f(x,y) L < ε. Note. To show f(x,y) = L we might equivalently show that f(x,y) L = 0 Algebraic Properties of the Limit Operator. [ ] (i) cf(x,y) = c (ii) (iii) [ f(x,y) ± g(x,y) f(x,y) [ ] f(x, y)g(x, y) = c being a constant ] = f(x,y) ± g(x,y) f(x,y) g(x,y) (iv) f(x,y) g(x,y) = f(x,y) g(x,y) Definition. If (a,b) is in the domain of f, then we say that f is continuous at (a,b) if the following holds: f (x,y) = f (a,b) Note. Sum, difference, and product of continuous functions is continuous. The quotient f(x,y) g(x,y) of two continuous functions at (a,b) is continuous at (a,b) provided that g(a,b) 0. Composite of continuous functions is continuous. Example. The function f(x,y) = sin(x y) x+y x + y > 0 : has the domain consisting of the points (x,y) satisfying { } D f = (x,y) x + y > 0 1

2 This function is continuous everywhere on its domain because it is the quotient of two continuous functions wit the denominator being nonzero on D. Therefore, one can write sin(x y) x 3 x+y = y 1 continuity sin(9 1) 3+1 = sin(8) Note. The functions f(x,y) = x y y and g(x,y) = x + y are examples of polynomials. The polynomial f is of degree 3, and g is of degree 1 (the largest degree present). In general, a polynomial is a combination of expressions x m y n where m 0 and n 0 are non-negative integers. Polynomials have the plane as their domain. Polynomials are continuous everywhere. Example. Find the it ( ) sin 1+x, or show that it does not exist. (x,y) (1,0) x +xy+1 Solution. ( ) sin 1+x (x,y) (1,0) x +xy+1 ( = sin = sin ( ) = sin(1) 1+x (x,y) (1,0) x +xy+1 ) the sine function is continuous so the it operator can go inside the sine function

3 Example. Find the it x+1 y+1, or show that it does not exist. (x,y) (3, 3) Solution. This is of the form 0 0. We rationalize it to find the answer: x+1 y+1 = x+1 y+1 (x,y) (3, 3) (x,y) (3, 3) x+1+ y+1 x+1+ y+1 (x+1) (y+1) (x,y) (3, 3) ()( x+1+ y+1) = (x,y) (3, 3) ()( x+1+ y+1) = = (x,y) (3, 3) 1 x+1+ y+1 drop x y = = 1 4 Example (section 1. exercise 35). Calculate the it Solution. This is of the form 0 0. By putting u = x + y, we have sin(x +y ) if it exists. x +y u = 0. so then sin(x + y ) sinu x + y = = 1 this it is proved in elementary Calculus u 0 u Example (section 1. exercise 6). Find all points of discontinuity of the function f(x,y) = Solution. We have f(x,y) = x + y xy(x + y). x+y x y+xy Note that the points (x,y) which satisfy either of xy = 0 or x + y = 0 are not in the domain of f so we cannot consider them as some points of discontinuity. So, the function is indeed continuous at any point of its domain. Note that the solution given in the Solution Manual is wrong. 3

4 [ ] Example (section 1. exercise 7). Evaluate the it (x,y) (a, a) cos(x + y) 1 sin (x + y) where 0 a π. Solution. [ ] (x,y) (a, a) cos(x + y) 1 sin (x + y) = cos(a + a) 1 sin (a + a) continuity of the functions sine and cosine = cos(a) 1 sin (a) = cos(a) cos (a) = cos(a) cos(a) = cos(a) cos(a) = 0 if 0 a π cos(a) + cos(a) = cos(a) if π a π Example (section 1. exercise 11). Calculate the it Solution. This is not of the form 0 0. x y (x,y) (, 1) x y = (x,y) (, 1) (x y)(x + y) x y Example (section 1. exercise 13). Evaluate the it x y if it exists. (x,y) (, 1) = (x + y) = 3 (x,y) (,1) x y if it exists. Solution. This it is of the indeterminate form 0 0 x y = ()(x+y) = (x + y) = 0 continuity of polynomials 4

5 Note. we learned in elementary Calculus that if a it exists then the left-hand it and right-hand it exist and are equal. A similar result holds for multivariable functions: If a it f(x,y), then the it on any path ending at (a,b) must exist and these its all must be equal. Example (section 1. exercise 9). Evaluate the it Solution. We take the following two paths: x 6 y 3x 6 + y = y x 0 y = 1 on the path x=0 x 6 y 3x 6 + y = x 6 x 0 3x 6 = 1 3 on the path y=0 Since we get different values on different paths, the it Note. The next three examples use the concept of equivalence. Example. Evaluate the it x 6 y 3x 6 +y if it exists. x 6 y 3x 6 does not exist. + y x + sin y x + y or show that it does not exist. Solution. As we know form elementary Calculus, we have y 0 siny y = 1, therefore the expressions siny and y are equivalent as y 0, in the sense that as long as multiplication or division is concerned, x + sin y we can use y for siny. So now, instead of calculating the it x + y we may calculate x + y this it: x + y y=x x + y x + y = x 0 x + x x + x = x x 0 3x = 3 y=0 x + y x + y = x 0 x + 0 x + 0 = x 0 x = 1 x Conclusion: the it does not exists as we get different values on different paths. 5

6 Example. Evaluate the it xycosy 3x or show that it does not exist. + y Solution. We know that y 0 cosy = 1, therefore we may substitute 1 for cosy in evaluating the it (cosy and 1 are equivalent), and we may study the following it instead: xy 3x + y y=x xy 3x + y = x 0 x x 3x + x = x 0 4x = 1 4 y=0 xy 3x + y = x 0 0 3x + 0 = 0 Conclusion: the it does not exists as we get different values on different paths. 6

7 Here are two examples where changing to polar coordinates will help: Example. Show that Solution. x y x + y = 0 Method 1 (by changing to polar coordinates). We have: x = rcosθ y = rsinθ x + y = r and note that r is the distance of the point (x,y) from the origin, therefore when (x,y) 0 we have r 0 and vice versa. So: x y x + y = (r cosθ) (r sinθ) r 0 r Method. Since 0 x x + y, we have 0 bounded. Then: 0 x y x + y 0 = x y x + y = x y Then by the Sandwich Theorem, we have x y x + y = 0 Example. Evaluate the it Solution. ( x x + y = = r cosθ sinθ r 0 }{{} = 0 bounded x x 1, in other words, the term x + y x + y is ) x + y }{{ } is bounded y }{{} tends to zero = 0 x y x + y 0 = 0. Equivalently we have: x sin y x or show that it does not exist. + y 7

8 We substitute y for siny as y 0, and therefore we study the following it instead x y x + y Method 1 (by changing to polar coordinates). x y x + y = r 0 (r cos θ)(r sin θ) (r cos θ) + (r sin θ) = r 0 r ( = r cos ) θ r 0 cos θ + sin sin θ = see the next line θ cos θ cos θ+sin θ cos θ sin θ cos θ + sin θ But note that the quotient is bounded as the numerator is less than the denominator. On the ( ) other hand, the term sin θ is bounded, hence the product sin θ is bounded. So, we continue: = r r 0 }{{} tends to zero cos θ cos θ + sin θ sin θ }{{} is bounded Method. Since 0 x x + y, we have 0 bounded. Then: 0 x y x + y 0 = x y x + y = x y Then by the Sandwich Theorem, we have x y x + y = 0 ( x x + y = cos θ cos θ+sin θ x x + y 1, in other words, the term x x + y is ) x + y }{{ } is bounded y }{{} tends to zero = 0 x y x + y 0 = 0. Equivalently we have: 8

13.2 LIMITS AND CONTINUITY

13.2 LIMITS AND CONTINUITY 3.2 Limits and Continuity Contemporary Calculus 3.2 LIMITS AND CONTINUITY Our development of the properties and the calculus of functions z = f(x,y) of two (and more) variables parallels the development

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6.

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6. Q. Right Angle Trigonometry Trigonometry is an integral part of AP calculus. Students must know the basic trig function definitions in terms of opposite, adjacent and hypotenuse as well as the definitions

More information

Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7

Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Using Fundamental Identities. Fundamental Trigonometric Identities. Reciprocal Identities. sin u 1 csc u. sec u. sin u Quotient Identities

Using Fundamental Identities. Fundamental Trigonometric Identities. Reciprocal Identities. sin u 1 csc u. sec u. sin u Quotient Identities 3330_050.qxd /5/05 9:5 AM Page 374 374 Chapter 5 Analytic Trigonometry 5. Using Fundamental Identities What you should learn Recognize and write the fundamental trigonometric identities. Use the fundamental

More information

5.2 Verifying Trigonometric Identities

5.2 Verifying Trigonometric Identities 360 Chapter 5 Analytic Trigonometry 5. Verifying Trigonometric Identities Introduction In this section, you will study techniques for verifying trigonometric identities. In the next section, you will study

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities:

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities: Sec 4. Trigonometric Identities Basic Identities Name: Reciprocal Identities: Quotient Identities: sin csc cos sec csc sin sec cos sin tan cos cos cot sin tan cot cot tan Using the Reciprocal and Quotient

More information

Function f. Function f -1

Function f. Function f -1 Page 1 REVIEW (1.7) What is an inverse function? Do all functions have inverses? An inverse function, f -1, is a kind of undoing function. If the initial function, f, takes the element a to the element

More information

Pre Calculus Worksheet: Fundamental Identities Day 1

Pre Calculus Worksheet: Fundamental Identities Day 1 Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

Lecture 2: Continuous functions

Lecture 2: Continuous functions Lecture 2: Continuous functions Rafikul Alam Department of Mathematics IIT Guwahati Continuous functions Task: Analyze continuity of the functions: Case I: f : A R n R Case II: f : A R R n Case III: f

More information

PreCalculus Summer Assignment

PreCalculus Summer Assignment PreCalculus Summer Assignment Welcome to PreCalculus! We are excited for a fabulous year. Your summer assignment is available digitally on the Lyman website. You are expected to print your own copy. Expectations:

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)?

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)? CLEP Pre-Calculus Section : Time 0 Minutes 50 Questions For each question below, choose the best answer from the choices given. An online graphing calculator (non-cas) is allowed to be used for this section..

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. Summer Review for Students Entering Pre-Calculus with Trigonometry 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios

More information

6.3 Converting Between Systems

6.3 Converting Between Systems www.ck1.org Chapter 6. The Polar System 6. Converting Between Systems Learning Objectives Convert rectangular coordinates to polar coordinates. Convert equations given in rectangular form to equations

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: - Systems of DEs (8.5) - The Phase Plane (8.6) - Solutions in the Phase Plane (8.7) In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several

More information

1.6 Applying Trig Functions to Angles of Rotation

1.6 Applying Trig Functions to Angles of Rotation wwwck1org Chapter 1 Right Triangles and an Introduction to Trigonometry 16 Applying Trig Functions to Angles of Rotation Learning Objectives Find the values of the six trigonometric functions for angles

More information

MATH 19520/51 Class 15

MATH 19520/51 Class 15 MATH 19520/51 Class 15 Minh-Tam Trinh University of Chicago 2017-11-01 1 Change of variables in two dimensions. 2 Double integrals via change of variables. Change of Variables Slogan: An n-variable substitution

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 March 31, 2009 Problem 1. Let (a) f(x,y,z) = ln(z x 2 y 2 ). Evaluate f(1, 1, 2 + e). f(1, 1, 2 + e) = ln(2 + e 1 1) = lne = 1 (b) Find the domain of f. dom(f)

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities 40 Chapter Analytic Trigonometry. f x sec x Sketch the graph of y cos x Amplitude: Period: One cycle: first. The x-intercepts of y correspond to the vertical asymptotes of f x. cos x sec x 4 x, x 4 4,...

More information

Sections 1.3 Computation of Limits

Sections 1.3 Computation of Limits 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is

More information

Chapter 3: Trigonometric Identities

Chapter 3: Trigonometric Identities Chapter 3: Trigonometric Identities Chapter 3 Overview Two important algebraic aspects of trigonometric functions must be considered: how functions interact with each other and how they interact with their

More information

CYLINDRICAL COORDINATES

CYLINDRICAL COORDINATES CHAPTER 11: CYLINDRICAL COORDINATES 11.1 DEFINITION OF CYLINDRICAL COORDINATES A location in 3-space can be defined with (r, θ, z) where (r, θ) is a location in the xy plane defined in polar coordinates

More information

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9)

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) Name Date Directions: You may NOT use Right Triangle Trigonometry for any of these problems! Use your unit circle knowledge to solve these problems.

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios and Pythagorean Theorem 4. Multiplying and Dividing Rational Expressions

More information

1. (a) = tanθ (as required) AG A1 cso 2. Note

1. (a) = tanθ (as required) AG A1 cso 2. Note sinθ cosθ. (a) + cos θ sinθ cosθ cosθ cosθ Note tanθ (as required) AG A cso : Uses both a correct identity for sin θ and a correct identityfor cosθ. Also allow a candidate writing +cosθ cos θ on the denominator.

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a)

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a) Smmer 2017 MATH2010 1 Sggested Soltion to Exercise 6 1 Find the tangent hyperplane passing the given point P on each of the graphs: (a) z = x 2 y 2 ; y = z log x z P (2, 3, 5), P (1, 1, 1), (c) w = sin(x

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy.

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy. gri (rg38778) Homework 11 gri (11111) 1 This print-out should have 3 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Find lim (x,y) (,) 1

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Proving Trigonometric Identities

Proving Trigonometric Identities MHF 4UI Unit 7 Day Proving Trigonometric Identities An identity is an epression which is true for all values in the domain. Reciprocal Identities csc θ sin θ sec θ cos θ cot θ tan θ Quotient Identities

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

Section 1: Section 2: Section 3: Section 4:

Section 1: Section 2: Section 3: Section 4: Announcements Topics: In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several Variables (Basic Definitions and Notation) - Section 2: Graphs, Level Curves + Contour

More information

Algebra II Chapter 6: Rational Exponents and Radical Functions

Algebra II Chapter 6: Rational Exponents and Radical Functions Algebra II Chapter 6: Rational Exponents and Radical Functions Chapter 6 Lesson 1 Evaluate nth Roots and Use Rational Exponents Vocabulary 1 Example 1: Find nth Roots Note: and Example 2: Evaluate Expressions

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Page 1 of 14 Multiplying and Dividing Rational Expressions Attendance Problems. Simplify each expression. Assume all variables are nonzero. x 6 y 2 1. x 5 x 2 2. y 3 y 3 3. 4. x 2 y 5 Factor each expression.

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 October 26, 2010 Problem 1. True or false: (check one of the box, and briefly explain why) (1) If a twice differentiable f(x,y) satisfies f x (a,b) = f y (a,b)

More information

A Brief Introduction to Mathematica

A Brief Introduction to Mathematica A Brief Introduction to Mathematica Objectives: (1) To learn to use Mathematica as a calculator. (2) To learn to write expressions in Mathematica, and to evaluate them at given point. (3) To learn to plot

More information

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15 Chapter 7 Exercise 7A. I will use the intelligent guess method for this question, but my preference is for the rearranging method, so I will use that for most of the questions where one of these approaches

More information

Trigonometry Curriculum Guide Scranton School District Scranton, PA

Trigonometry Curriculum Guide Scranton School District Scranton, PA Trigonometry Scranton School District Scranton, PA Trigonometry Prerequisite: Algebra II, Geometry, Algebra I Intended Audience: This course is designed for the student who has successfully completed Algebra

More information

Common Core Standards Addressed in this Resource

Common Core Standards Addressed in this Resource Common Core Standards Addressed in this Resource N-CN.4 - Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum.

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum. Problem Solving Drill 05: Exponents and Radicals Question No. 1 of 10 Question 1. Simplify: 7u v 4u 3 v 6 Question #01 (A) 11u 5 v 7 (B) 8u 6 v 6 (C) 8u 5 v 7 (D) 8u 3 v 9 To simplify this expression you

More information

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes Example Find all angles in the domain 0 θ that satisfy the given equation. Write the general solution. Primary Ratios Solving equations with the unit circle. a) b) c) 0 d) tan θ = www.math0.ca a) Example

More information

1 Programs for double integrals

1 Programs for double integrals > restart; Double Integrals IMPORTANT: This worksheet depends on some programs we have written in Maple. You have to execute these first. Click on the + in the box below, then follow the directions you

More information

Double Integration: Non-Rectangular Domains

Double Integration: Non-Rectangular Domains Double Integration: Non-Rectangular Domains Thomas Banchoff and Associates June 18, 2003 1 Introduction In calculus of one variable, all domains are intervals which are subsets of the line. In calculus

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Ganado Unified School District Pre-Calculus 11 th /12 th Grade

Ganado Unified School District Pre-Calculus 11 th /12 th Grade Ganado Unified School District Pre-Calculus 11 th /12 th Grade PACING Guide SY 2016-2017 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to highlight

More information

11.2 Techniques for Evaluating Limits

11.2 Techniques for Evaluating Limits 11.2 Techniques for Evaluating Limits Copyright Cengage Learning. All rights reserved. What You Should Learn Use the dividing out technique to evaluate limits of functions. Use the rationalizing technique

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

Math Precalculus (12H/4H) Review. CHSN Review Project

Math Precalculus (12H/4H) Review. CHSN Review Project Math Precalculus (12H/4H) Review CHSN Review Project Contents Functions 3 Polar and Complex Numbers 9 Sequences and Series 15 This review guide was written by Dara Adib. Prateek Pratel checked the Polar

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.4 Rational Expressions Copyright Cengage Learning. All rights reserved. Objectives The Domain of an Algebraic Expression Simplifying Rational

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Multiplying and Dividing Rational Expressions Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 Factor each expression. 2. y 3 y 3 y 6 x 4 4. y 2 1 y 5 y 3 5.

More information

Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade)

Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade) Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade) PACING Guide SY 2018-2019 Timeline & Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to highlight a quantity

More information

EXAMPLE 1. Change each of the following fractions into decimals.

EXAMPLE 1. Change each of the following fractions into decimals. CHAPTER 1. THE ARITHMETIC OF NUMBERS 1.4 Decimal Notation Every rational number can be expressed using decimal notation. To change a fraction into its decimal equivalent, divide the numerator of the fraction

More information

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade PACING Guide SY 2014-2015 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Functions of Several Variables, Limits and Derivatives

Functions of Several Variables, Limits and Derivatives Functions of Several Variables, Limits and Derivatives Introduction and Goals: The main goal of this lab is to help you visualize surfaces in three dimensions. We investigate how one can use Maple to evaluate

More information

Presented, and Compiled, By. Bryan Grant. Jessie Ross

Presented, and Compiled, By. Bryan Grant. Jessie Ross P a g e 1 Presented, and Compiled, By Bryan Grant Jessie Ross August 3 rd, 2016 P a g e 2 Day 1 Discovering Polar Graphs Days 1 & 2 Adapted from Nancy Stephenson - Clements High School, Sugar Land, Texas

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

4.2.1 directional derivatives and the gradient in R 2

4.2.1 directional derivatives and the gradient in R 2 4.2. PARTIAL DIFFERENTIATION IN R 2 161 4.2.1 directional derivatives and the gradient in R 2 Now that we have a little experience in partial differentiation let s return to the problem of the directional

More information

Digital Image Fundamentals II

Digital Image Fundamentals II Digital Image Fundamentals II 1. Image modeling and representations 2. Pixels and Pixel relations 3. Arithmetic operations of images 4. Image geometry operation 5. Image processing with Matlab - Image

More information

Section 1.8. Simplifying Expressions

Section 1.8. Simplifying Expressions Section 1.8 Simplifying Expressions But, first Commutative property: a + b = b + a; a * b = b * a Associative property: (a + b) + c = a + (b + c) (a * b) * c = a * (b * c) Distributive property: a * (b

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Warm Up Simplify each expression. Assume all variables are nonzero.

Warm Up Simplify each expression. Assume all variables are nonzero. Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 x 4 Factor each expression. 2. y 3 y 3 y 6 4. y 2 1 y 5 y 3 5. x 2 2x 8 (x 4)(x + 2) 6. x 2 5x x(x 5) 7. x

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before.

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

Analytic Spherical Geometry:

Analytic Spherical Geometry: Analytic Spherical Geometry: Begin with a sphere of radius R, with center at the origin O. Measuring the length of a segment (arc) on a sphere. Let A and B be any two points on the sphere. We know that

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information

Supplementary Material: The Rotation Matrix

Supplementary Material: The Rotation Matrix Supplementary Material: The Rotation Matrix Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2014 COMP 4766/6778 (MUN) The Rotation Matrix January

More information