Supplementary Material: The Rotation Matrix

Size: px
Start display at page:

Download "Supplementary Material: The Rotation Matrix"

Transcription

1 Supplementary Material: The Rotation Matrix Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2014 COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

2 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

3 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

4 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

5 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: x = r cos φ y = r sin φ COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

6 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: x = r cos φ y = r sin φ Now the rotation by θ can be understood as an addition of angles: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

7 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: x = r cos φ y = r sin φ Now the rotation by θ can be understood as an addition of angles: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

8 Assume we have a vertex at (x, y) which is to be rotated counterclockwise about the origin by an angle θ In polar coordinates, this vertex is at (r, φ); We can express this in Cartesian coordinates: x = r cos φ y = r sin φ Now the rotation by θ can be understood as an addition of angles: y y r θ φ x r x COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

9 The coordinates of the rotated vertex are as follows:

10 The coordinates of the rotated vertex are as follows:

11 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ)

12 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities:

13 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities:

14 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities: cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + cos a sin b

15 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities: cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + cos a sin b After a few steps (COVERED ON BOARD) we obtain,

16 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities: cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + cos a sin b After a few steps (COVERED ON BOARD) we obtain,

17 The coordinates of the rotated vertex are as follows: x = r cos(θ + φ) y = r sin(θ + φ) We can now make use of the following trigonometric identities: cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + cos a sin b After a few steps (COVERED ON BOARD) we obtain, x = x cos θ y sin θ y = x sin θ + y cos θ

18 In vector form, this can be written as: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

19 In vector form, this can be written as: COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

20 In vector form, this can be written as: [ ] [ x cos θ sin θ y = sin θ cos θ ] [ x y ] COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

21 In vector form, this can be written as: [ ] [ x cos θ sin θ y = sin θ cos θ ] [ x y ] or v = R ccw (θ)v COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

22 In vector form, this can be written as: [ ] [ x cos θ sin θ y = sin θ cos θ ] [ x y ] or v = R ccw (θ)v COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

23 In vector form, this can be written as: [ ] [ x cos θ sin θ y = sin θ cos θ ] [ x y ] or v = R ccw (θ)v where v is the original vertex, v is the rotated vertex, and R ccw is the counter-clockwise (hence ccw ) rotation matrix COMP 4766/6778 (MUN) The Rotation Matrix January 16, / 4

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x Rotation Matrices and Rotated Coordinate Systems Robert Bernecky April, 2018 Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach 1. The following provides a simplified

More information

Coordinate transformations. 5554: Packet 8 1

Coordinate transformations. 5554: Packet 8 1 Coordinate transformations 5554: Packet 8 1 Overview Rigid transformations are the simplest Translation, rotation Preserve sizes and angles Affine transformation is the most general linear case Homogeneous

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9)

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) Name Date Directions: You may NOT use Right Triangle Trigonometry for any of these problems! Use your unit circle knowledge to solve these problems.

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

3.0 Trigonometry Review

3.0 Trigonometry Review 3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Spring 2007 PLOTTING LINE SEGMENTS Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Example 1: Suppose you wish to use MatLab to plot a line segment connecting two points in the xy-plane. Recall that

More information

Ch. 2 Trigonometry Notes

Ch. 2 Trigonometry Notes First Name: Last Name: Block: Ch. Trigonometry Notes.0 PRE-REQUISITES: SOLVING RIGHT TRIANGLES.1 ANGLES IN STANDARD POSITION 6 Ch..1 HW: p. 83 #1,, 4, 5, 7, 9, 10, 8. - TRIGONOMETRIC FUNCTIONS OF AN ANGLE

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Worksheet 5. 3 Less trigonometry and more dishonesty/linear algebra knowledge Less trigonometry, less dishonesty... 4

Worksheet 5. 3 Less trigonometry and more dishonesty/linear algebra knowledge Less trigonometry, less dishonesty... 4 Worksheet 5 Contents 1 Just look at the book, on page 74 1 2 Trigonometry and honesty 1 3 Less trigonometry and more dishonesty/linear algebra knowledge 3 3.1 Less trigonometry, less dishonesty...............................

More information

Chapter 2 Trigonometry

Chapter 2 Trigonometry Chapter 2 Trigonometry 1 Chapter 2 Trigonometry Angles in Standard Position Angles in Standard Position Any angle may be viewed as the rotation of a ray about its endpoint. The starting position of the

More information

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4 . If θ is in the second quadrant and sinθ =.6, find cosθ..7.... The angles with measures listed are all coterminal except: E. 6. The radian measure of an angle of is: 7. Use a calculator to find the sec

More information

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the.

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the. 2.0 Trigonometry Review Date: Key Ideas: The three angles in a triangle sum to. Pythagorean Theorem: where c is always the. In trigonometry problems, all vertices (corners or angles) of the triangle are

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Circular Trigonometry Notes April 24/25

Circular Trigonometry Notes April 24/25 Circular Trigonometry Notes April 24/25 First, let s review a little right triangle trigonometry: Imagine a right triangle with one side on the x-axis and one vertex at (0,0). We can write the sin(θ) and

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Lesson 5.6: Angles in Standard Position

Lesson 5.6: Angles in Standard Position Lesson 5.6: Angles in Standard Position IM3 - Santowski IM3 - Santowski 1 Fast Five Opening Exercises! Use your TI 84 calculator:! Evaluate sin(50 ) " illustrate with a diagram! Evaluate sin(130 ) " Q

More information

CHAPTER 40 CARTESIAN AND POLAR COORDINATES

CHAPTER 40 CARTESIAN AND POLAR COORDINATES CHAPTER 40 CARTESIAN AND POLAR COORDINATES EXERCISE 169 Page 462 1. Express (3, 5) as polar coordinates, correct to 2 decimal places, in both degrees and in From the diagram, r = 32 + 52 = 5.83 y and 5

More information

Common Core Standards Addressed in this Resource

Common Core Standards Addressed in this Resource Common Core Standards Addressed in this Resource N-CN.4 - Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular

More information

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL MATH 4R TRIGONOMETRY HOMEWORK NAME DATE HW#49: Inverse Trigonometric Functions (Packet pp. 5 6) ALL HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Functions and Transformations

Functions and Transformations Using Parametric Representations to Make Connections Richard Parr T 3 Regional, Stephenville, Texas November 7, 009 Rice University School Mathematics Project rparr@rice.edu If you look up parametric equations

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Mathematics for Computer Graphics. Trigonometry

Mathematics for Computer Graphics. Trigonometry Mathematics for Computer Graphics Trigonometry Trigonometry...????? The word trigonometry is derived from the ancient Greek language and means measurement of triangles. trigonon triangle + metron measure

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Supplementary Information. Design of Hierarchical Structures for Synchronized Deformations

Supplementary Information. Design of Hierarchical Structures for Synchronized Deformations Supplementary Information Design of Hierarchical Structures for Synchronized Deformations Hamed Seifi 1, Anooshe Rezaee Javan 1, Arash Ghaedizadeh 1, Jianhu Shen 1, Shanqing Xu 1, and Yi Min Xie 1,2,*

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

CS-321 Thursday 12 September 2002 Quiz (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)?

CS-321 Thursday 12 September 2002 Quiz (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)? Name CS-321 Thursday 12 September 2002 Quiz 1 1. (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)? 2. (7 pts.) For the same resolution in pixels (for example, 640x480), why does

More information

Semester 2 Review Units 4, 5, and 6

Semester 2 Review Units 4, 5, and 6 Precalculus Semester 2 Review Units 4, 5, and 6 NAME: Period: UNIT 4 Simplify each expression. 1) (sec θ tan θ)(1 + tan θ) 2) cos θ sin 2 θ 1 3) 1+tan θ 1+cot θ 4) cos 2θ cosθ sin θ 5) sec 2 x sec 2 x

More information

Computer Graphics Geometric Transformations

Computer Graphics Geometric Transformations Computer Graphics 2016 6. Geometric Transformations Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2016-10-31 Contents Transformations Homogeneous Co-ordinates Matrix Representations of Transformations

More information

Problem Possible Points Points Earned Problem Possible Points Points Earned Test Total 100

Problem Possible Points Points Earned Problem Possible Points Points Earned Test Total 100 MATH 1080 Test 2-Version A Fall 2015 Student s Printed Name: Instructor: Section # : You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or any technology on any portion of this test.

More information

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or SM 2 Date: Section: Objective: The Pythagorean Theorem: In a triangle, or. It doesn t matter which leg is a and which leg is b. The hypotenuse is the side across from the right angle. To find the length

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

Representing 2D Transformations as Matrices

Representing 2D Transformations as Matrices Representing 2D Transformations as Matrices John E. Howland Department of Computer Science Trinity University One Trinity Place San Antonio, Texas 78212-7200 Voice: (210) 999-7364 Fax: (210) 999-7477 E-mail:

More information

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms Chapter IV Spaces and Transforms Scaling 2D scaling with the scaling factors, s x and s y, which are independent. Examples When a polygon is scaled, all of its vertices are processed by the same scaling

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

MAC Module 1 Trigonometric Functions. Rev.S08

MAC Module 1 Trigonometric Functions. Rev.S08 MAC 1114 Module 1 Trigonometric Functions Learning Objectives Upon completing this module, you should be able to: 1. Use basic terms associated with angles. 2. Find measures of complementary and supplementary

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Unit 3 Trigonometry. Topic: Review of Necessary Skills

Unit 3 Trigonometry. Topic: Review of Necessary Skills Lesson18.notebook Unit 3 Trigonometry Topic: Review of Necessary Skills Learning Goal: I can successfully use Pythagorean theorem and the primary trigonometric ratios and extend them to real world applications.

More information

Presented, and Compiled, By. Bryan Grant. Jessie Ross

Presented, and Compiled, By. Bryan Grant. Jessie Ross P a g e 1 Presented, and Compiled, By Bryan Grant Jessie Ross August 3 rd, 2016 P a g e 2 Day 1 Discovering Polar Graphs Days 1 & 2 Adapted from Nancy Stephenson - Clements High School, Sugar Land, Texas

More information

Game Engineering CS S-05 Linear Transforms

Game Engineering CS S-05 Linear Transforms Game Engineering CS420-2016S-05 Linear Transforms David Galles Department of Computer Science University of San Francisco 05-0: Matrices as Transforms Recall that Matrices are transforms Transform vectors

More information

DAY 1 - GEOMETRY FLASHBACK

DAY 1 - GEOMETRY FLASHBACK DAY 1 - GEOMETRY FLASHBACK Sine Opposite Hypotenuse Cosine Adjacent Hypotenuse sin θ = opp. hyp. cos θ = adj. hyp. tan θ = opp. adj. Tangent Opposite Adjacent a 2 + b 2 = c 2 csc θ = hyp. opp. sec θ =

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

CSC418 / CSCD18 / CSC2504

CSC418 / CSCD18 / CSC2504 5 5.1 Surface Representations As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are also explicit forms for 3D surfaces sometimes called height fields but we will

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Game Engineering: 2D

Game Engineering: 2D Game Engineering: 2D CS420-2010F-07 Objects in 2D David Galles Department of Computer Science University of San Francisco 07-0: Representing Polygons We want to represent a simple polygon Triangle, rectangle,

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

Trig/Math Anal Name No HW NO. SECTIONS ASSIGNMENT DUE TG 1. Practice Set J #1, 9*, 13, 17, 21, 22

Trig/Math Anal Name No HW NO. SECTIONS ASSIGNMENT DUE TG 1. Practice Set J #1, 9*, 13, 17, 21, 22 Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON NO GRAPHING CALCULATORS ALLOWED ON THIS TEST HW NO. SECTIONS ASSIGNMENT DUE TG (per & amp) Practice Set

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

θ as rectangular coordinates)

θ as rectangular coordinates) Section 11.1 Polar coordinates 11.1 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are polar coordinates. see the relation between rectangular and polar

More information

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes Example Find all angles in the domain 0 θ that satisfy the given equation. Write the general solution. Primary Ratios Solving equations with the unit circle. a) b) c) 0 d) tan θ = www.math0.ca a) Example

More information

Higher. The Wave Equation. The Wave Equation 146

Higher. The Wave Equation. The Wave Equation 146 Higher Mathematics UNIT OUTCOME 4 The Wave Equation Contents The Wave Equation 146 1 Expressing pcosx + qsinx in the form kcos(x a 146 Expressing pcosx + qsinx in other forms 147 Multiple Angles 148 4

More information

2D TRANSFORMATIONS AND MATRICES

2D TRANSFORMATIONS AND MATRICES 2D TRANSFORMATIONS AND MATRICES Representation of Points: 2 x 1 matrix: x y General Problem: B = T A T represents a generic operator to be applied to the points in A. T is the geometric transformation

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

and how to label right triangles:

and how to label right triangles: Grade 9 IGCSE A1: Chapter 6 Trigonometry Items you need at some point in the unit of study: Graph Paper Exercise 2&3: Solving Right Triangles using Trigonometry Trigonometry is a branch of mathematics

More information

6.1 Polar Coordinates

6.1 Polar Coordinates 6.1 Polar Coordinates Introduction This chapter introduces and explores the polar coordinate system, which is based on a radius and theta. Students will learn how to plot points and basic graphs in this

More information

Trigonometric ratios provide relationships between the sides and angles of a right angle triangle. The three most commonly used ratios are:

Trigonometric ratios provide relationships between the sides and angles of a right angle triangle. The three most commonly used ratios are: TRIGONOMETRY TRIGONOMETRIC RATIOS If one of the angles of a triangle is 90º (a right angle), the triangle is called a right angled triangle. We indicate the 90º (right) angle by placing a box in its corner.)

More information

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities:

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities: Sec 4. Trigonometric Identities Basic Identities Name: Reciprocal Identities: Quotient Identities: sin csc cos sec csc sin sec cos sin tan cos cos cot sin tan cot cot tan Using the Reciprocal and Quotient

More information

Limits and Continuity: section 12.2

Limits and Continuity: section 12.2 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if

More information

Shape & Space Part C: Transformations

Shape & Space Part C: Transformations Name: Homeroom: Shape & Space Part C: Transformations Student Learning Expectations Outcomes: I can describe and analyze position and motion of objects and shapes by Checking for Understanding identifying

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 28, 2014 COMP 4766/6778 (MUN) Kinematics of

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

PLANE TRIGONOMETRY Exam I September 13, 2007

PLANE TRIGONOMETRY Exam I September 13, 2007 Name Rec. Instr. Rec. Time PLANE TRIGONOMETRY Exam I September 13, 2007 Page 1 Page 2 Page 3 Page 4 TOTAL (10 pts.) (30 pts.) (30 pts.) (30 pts.) (100 pts.) Below you will find 10 problems, each worth

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

3D Transformations and Complex Representations. Computer Graphics CMU /15-662, Fall 2016

3D Transformations and Complex Representations. Computer Graphics CMU /15-662, Fall 2016 3D Transformations and Complex Representations Computer Graphics CMU 15-462/15-662, Fall 2016 Quiz 4: Trees and Transformations Student solutions (beautiful!): Rotations in 3D What is a rotation, intuitively?

More information

1.2. Angle Relationships and Similar. Mrs. Poland January 23, Geometric Properties Triangles

1.2. Angle Relationships and Similar. Mrs. Poland January 23, Geometric Properties Triangles 1.1 Angles Basic Terminology Degree Measure Standard Position Coterminal Angles 1.2 Angle Relationships and Similar Triangles Geometric Properties Triangles Mrs. Poland January 23, 2013 Objectives Objective

More information

Content. Coordinate systems Orthographic projection. (Engineering Drawings)

Content. Coordinate systems Orthographic projection. (Engineering Drawings) Projection Views Content Coordinate systems Orthographic projection (Engineering Drawings) Graphical Coordinator Systems A coordinate system is needed to input, store and display model geometry and graphics.

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information

2. Determine the indicated angle. a) b) c) d) e) f)

2. Determine the indicated angle. a) b) c) d) e) f) U4L1 Review of Necessary Skills 1. Determine the length of x.. Determine the indicated angle. a) b) c) d) e) f) 3. From the top of a cliff 300m high, the angle of depression of a boat is o. Calculate the

More information

Lesson 28: When Can We Reverse a Transformation?

Lesson 28: When Can We Reverse a Transformation? Lesson 8 M Lesson 8: Student Outcomes Students determine inverse matrices using linear systems. Lesson Notes In the final three lessons of this module, students discover how to reverse a transformation

More information

Inverse Trigonometric Functions:

Inverse Trigonometric Functions: Inverse Trigonometric Functions: Trigonometric functions can be useful models for many real life phenomena. Average monthly temperatures are periodic in nature and can be modeled by sine and/or cosine

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

1.6 Applying Trig Functions to Angles of Rotation

1.6 Applying Trig Functions to Angles of Rotation wwwck1org Chapter 1 Right Triangles and an Introduction to Trigonometry 16 Applying Trig Functions to Angles of Rotation Learning Objectives Find the values of the six trigonometric functions for angles

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

Adding vectors. Let s consider some vectors to be added.

Adding vectors. Let s consider some vectors to be added. Vectors Some physical quantities have both size and direction. These physical quantities are represented with vectors. A common example of a physical quantity that is represented with a vector is a force.

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

MCR3U UNIT #6: TRIGONOMETRY

MCR3U UNIT #6: TRIGONOMETRY MCR3U UNIT #6: TRIGONOMETRY SECTION PAGE NUMBERS HOMEWORK Prerequisite p. 0 - # 3 Skills 4. p. 8-9 #4, 5, 6, 7, 8, 9,, 4. p. 37 39 #bde, acd, 3, 4acde, 5, 6ace, 7, 8, 9, 0,, 4.3 p. 46-47 #aef,, 3, 4, 5defgh,

More information

SNAP Centre Workshop. Introduction to Trigonometry

SNAP Centre Workshop. Introduction to Trigonometry SNAP Centre Workshop Introduction to Trigonometry 62 Right Triangle Review A right triangle is any triangle that contains a 90 degree angle. There are six pieces of information we can know about a given

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

Midterm Review January 2018 Honors Precalculus/Trigonometry

Midterm Review January 2018 Honors Precalculus/Trigonometry Midterm Review January 2018 Honors Precalculus/Trigonometry Use the triangle below to find the exact value of each of the trigonometric functions in questions 1 6. Make sure your answers are completely

More information

Multimedia Signals and Systems Virtual Reality and VRML

Multimedia Signals and Systems Virtual Reality and VRML Multimedia Signals and Systems Virtual Reality and VRML Kunio Takaya Electrical and Computer Engineering University of Saskatchewan January 16, 2008 ** Go to full-screen mode now by hitting CTRL-L 1 Contents

More information

CORDIC-based Numerically Controlled Oscillator (NCO) Jie Qin, Charles Stroud, Foster Dai Auburn University

CORDIC-based Numerically Controlled Oscillator (NCO) Jie Qin, Charles Stroud, Foster Dai Auburn University CORDIC-based Numerically Controlled Oscillator (NCO) Jie Qin, Charles Stroud, Foster Dai Auburn University Outline Overview of traditional NCO Introduction to traditional CORDIC Hybrid CORDIC with partial

More information

Supplementary information

Supplementary information Modern Structural Analysis - Introduction to Modelling Supplementary information Chapter 3 Section 5.10 Equivalent beam for parallel chord trusses The cross references in the form n.m or n.m.p are to sub-sections

More information