Searching: Where it all begins...

Size: px
Start display at page:

Download "Searching: Where it all begins..."

Transcription

1 Searching: Where it all begins... CPSC 433 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary

2 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

3 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

4 Problem Solving by Searching 1. Introductory Concepts and Examples a. Problem space b. State space graphs

5 Problem Spaces A problem space is a complete set of possible states, generated by exploring a! possible steps, which may or may not lead from a given start state to a goal state.

6 Blocks Rearrangement Problem [Bratko, 2001]

7 State Space Graph

8 Components of a State Space Graph Start: description with which to label the start node Operators: functions that transform from one state to another, within the constraints of the search problem Goal condition: state description(s) that correspond(s) to goal state(s)

9 State Space Graph Start: Goal:

10 State Space Graph Start: Goal:

11 State Space Graph Start: Goal:

12 State Space Graph Start: Goal:

13 Eight Puzzle Problem Start Goal Start 1: 4 steps Start 2: 5 steps Start 3: 18 steps

14 Eight Puzzle Problem Start Goal

15 Rubik s Cube

16 Chess [Newborn 1997]

17 What it boils down to: Searching in Graphs

18 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

19 Basic Search Techniques a. Depth-first or backtracking search b. Iterative deepening search c. Breadth-first search

20 Depth-First Search

21 Depth First Search: Eight Puzzle Terminal depth = 5

22 Depth-First Search in Cyclic Graphs Add cycle detection!

23 Depth-First Search Evaluation Good: Since we don t expand all nodes at a level, space complexity is modest. For branching factor b and depth m, we require b" number of nodes to be stored in memory. However, the worst case is still O(b^m). That is when we are forced to search through the whole tree.

24 Depth-First Search Evaluation Bad: If you have deep search trees (or infinite!), DFS may end up running off to infinity and not be able to recover. DFS is neither optimal nor complete. - Complete: If there is a solution, it will find it. - Optimal: The best solution is found.

25 Depth-Limited Search DLS is a modified DFS to avoid its pitfalls: Impose a limit, l, on the maximum depth level. Little changes from DFS, but not optimal. DLS is complete if the limit l we impose is greater than or equal to the depth of our solution space. Time: O(b^l), Space: bl.

26 Basic Search Techniques a. Depth-first or backtracking search b. Iterative deepening search c. Breadth-first search

27 Iterative Deepening Search: A Variant of DLS Depth bound

28 Basic Search Techniques a. Depth-first or backtracking search b. Iterative deepening search c. Breadth-first search

29 Breadth-First Search

30 Eight Puzzle: BFS

31 BFS: Complexity BFS expands from the root, where it expands a fixed number of nodes, say b. On level d = 2 we expand b^2 nodes. On level d = 3 we expand b^3 nodes. Therefore: O(b^d) time complexity All leaf nodes need to be stored in memory. Hence, space complexity = time complexity.

32 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

33 Heuristic Search a. Greedy Search b. Best-First Heuristic Search A*

34 Greedy Search on a Graph Start 75 A 118 C B D E 80 G F H I Goal State h(n) A 366 B 374 C 329 D 244 E 253 F 178 G 193 H 98 I 0 h(n) = straight-line distance heuristic

35 Greedy Search 75 B State h(n) A 366 B 374 C 329 D 244 E 253 F 178 G 193 H 98 I 0 A E C B h= A 118 C 140 E 80 G 99 F D 97 H 101 I

36 Greedy Search B State h(n) A 366 B 374 C 329 D 244 E 253 F 178 G 193 H 98 I 0 Total distance = = 431 h=253 A E C B A F G 75 h = 366 h = 178 h = 193 A 118 C D E 80 G F H I A E F h = 253 h = 178

37 Greedy Search 75 A 118 C B D State E 80 h(n) A 366 B 374 C 329 D 244 E 253 F 178 G 193 H 98 I 0 G F Total distance = =431 H I A h = 253 E h =366 h=178 h=193 h = 253 E F h = 0 A E F I I A C G h = 253 h = 178 h = 0 B

38 Greedy Search: Optimal? State h(n) B A 366 B 374 C 329 D 244 E 253 F 178 G 193 H 98 I 0 Cost(A E F I )= 431 Cost(A E G H I) = A 118 C 140 E 80 G 99 F D 97 H 101 I

39 Greedy Search: Complete? Straight-line distance A B h(n) 6 5 A Greedy search is incomplete. C D 7 0 B Starting node Worst-case time complexity: O(b^m) Target node D C

40 Heuristic Search a. Greedy Search b. Best-First Heuristic Search A*

41 A* Best-First Heuristic Search f(n) = g(n) + h(n) g(n): cost so far up to node & h: heuristic estimator from node n to the goal '

42 A* Example start g h

43 A* Example start Activate-deactivate Process 1 Process 2

44 A* Example start Activate-deactivate Process 1 Process 2

45 A* Example start Activate-deactivate Process 1 Process 2

46 A* Example start Activate-deactivate Process 1 Process 2

47 A* Example start Activate-deactivate Process 1 Process 2

48 A* Example start Activate-deactivate Process 1 Process 2

49 A* Example start Activate-deactivate Process 1 Process 2

50 A* Example start Activate-deactivate Process 1 Process 2

51 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

52 AND/OR Graphs OR AND AND

53 AND/OR Solution Tree(s) Solution Tree T: OR AND The original problem P is the root node of T. If P is an OR node then exactly one of its successors (in the AND/OR graph), together with its own solution tree, is in T. If P is an AND node, then all of its successors (in the AND/OR graph), together with their solution trees, are in T.

54 Solution Tree: Example Solution Tree 1

55 Solution Tree: Example Solution Tree 2

56 Route Problem

57 Route Problem

58 Route Problem

59 Route Problem

60 Problem Solving by Searching 1. Introductory Concepts and Examples 2. Basic Search Techniques 3. Heuristic Search 4. Problem Decomposition and AND/OR Graphs 5. Searching in Games

61 Chess Us to move Opponent to move Us to move

62 Two-Person Game AND/OR Graph OR AND

63 Searching in Games a. Minimax Strategy b. Pruning c. Chance

64 Minimax Strategy Our possible configurations Opponent s possible configurations Evaluations of configurations

65 Minimax Strategy Our possible configurations Opponent s possible configurations

66 Minimax Strategy Our possible configurations Opponent s possible configurations

67 Chess Search Tree Structure

68 Searching in Games a. Minimax Strategy b. Pruning c. Chance

69 Speedup through Pruning

70 Speedup through Pruning

71 Speedup through Pruning 3... A2 is worth at most 2 to MAX

72 Speedup through Pruning A2 is worth at most 2 to MAX

73 Alpha-Beta Pruning A sophisticated pruning algorithm Introduced and explained in this week s lab!

74 Searching in Games a. Minimax Strategy b. Pruning c. Chance

75 Give Chance a Chance

76 Weighted Minimax Max Chance Weights Min Chance Max = 6 * *

77 References Bratko, I. (2001). PROLOG Programming for Artificial Inte!igence. New York, Addison-Wesley. Kurzweil, R. (1990). The Age of Inte!igent Machines. Cambridge, MA, MIT Press. Newborn, M. (1997). Kasparov versus Deep Blue. Berlin, Springer-Verlag. Nilsson, N. (1998). Artificial Inte!igence A New Synthesis. San Francisco, CA, Morgan Kaufmann. Russel, S., and Norvig, P. (1995). Artificial Inte!igence A Modern Approach. Upper Saddle River, NJ, Prentice Hall.

Efficient memory-bounded search methods

Efficient memory-bounded search methods Efficient memory-bounded search methods Mikhail Simin Arjang Fahim CSCE 580: Artificial Intelligence Fall 2011 Dr. Marco Voltorta Outline of The Presentation Motivations and Objectives Background - BFS

More information

Search. CS 3793/5233 Artificial Intelligence Search 1

Search. CS 3793/5233 Artificial Intelligence Search 1 CS 3793/5233 Artificial Intelligence 1 Basics Basics State-Space Problem Directed Graphs Generic Algorithm Examples Uninformed is finding a sequence of actions that achieve a goal from an initial state.

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Wednesday March, 00 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination Exam Date/Time: Tuesday, June 13, 2017, 8:30-9:50 pm Exam Hall:

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr. Malek Mouhoub Department of Computer Science University of Regina Fall 2005 Malek Mouhoub, CS820 Fall 2005 1 3. State-Space Search 3. State-Space Search Graph Theory Uninformed

More information

Downloaded from ioenotes.edu.np

Downloaded from ioenotes.edu.np Chapter- 3: Searching - Searching the process finding the required states or nodes. - Searching is to be performed through the state space. - Search process is carried out by constructing a search tree.

More information

Problem solving as Search (summary)

Problem solving as Search (summary) Problem solving as Search (summary) References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 (chapter 3) Nilsson, Artificial intelligence: A New synthesis.

More information

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th CIS 192: Artificial Intelligence Search and Constraint Satisfaction Alex Frias Nov. 30 th What is AI? Designing computer programs to complete tasks that are thought to require intelligence 4 categories

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING BY SEARCH Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Problem solving by searching Problem formulation Example problems Search

More information

State-Space Search. Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Solving Problems by Searching

State-Space Search. Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Solving Problems by Searching State-Space Search Computer Science E- Harvard Extension School David G. Sullivan, Ph.D. Solving Problems by Searching A wide range of problems can be formulated as searches. more precisely, as the process

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

Search Algorithms. Uninformed Blind search. Informed Heuristic search. Important concepts:

Search Algorithms. Uninformed Blind search. Informed Heuristic search. Important concepts: Uninformed Search Search Algorithms Uninformed Blind search Breadth-first uniform first depth-first Iterative deepening depth-first Bidirectional Branch and Bound Informed Heuristic search Greedy search,

More information

Problem Solving & Heuristic Search

Problem Solving & Heuristic Search 190.08 Artificial 2016-Spring Problem Solving & Heuristic Search Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University 190.08 Artificial (2016-Spring) http://www.cs.duke.edu/courses/fall08/cps270/

More information

An Appropriate Search Algorithm for Finding Grid Resources

An Appropriate Search Algorithm for Finding Grid Resources An Appropriate Search Algorithm for Finding Grid Resources Olusegun O. A. 1, Babatunde A. N. 2, Omotehinwa T. O. 3,Aremu D. R. 4, Balogun B. F. 5 1,4 Department of Computer Science University of Ilorin,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lesson 1 1 About Lecturer: Prof. Sarit Kraus TA: Galit Haim: haimga@cs.biu.ac.il (almost) All you need can be found on the course website: http://u.cs.biu.ac.il/~haimga/teaching/ai/

More information

Topic 1 Uninformed Search

Topic 1 Uninformed Search Topic 1 Uninformed Search [George F Luger. 2008. Artificial Intelligence Structures and Strategies for Complex Problem Solving. 6 th Ed. Pearson. ISBN: 0321545893.] 1 Contents 1. Depth-First Search (DFS)

More information

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY Monotonicity Admissible Search: That finds the shortest path to the Goal Monotonicity: local admissibility is called MONOTONICITY This property ensures consistently minimal path to each state they encounter

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Monday 9 March, 0 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Berlin Chen 2004 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3 1 Introduction Problem-Solving Agents vs. Reflex Agents Problem-solving

More information

Uninformed Search Methods

Uninformed Search Methods Uninformed Search Methods Search Algorithms Uninformed Blind search Breadth-first uniform first depth-first Iterative deepening depth-first Bidirectional Branch and Bound Informed Heuristic search Greedy

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Solving problems by searching

More information

Chapters 3-5 Problem Solving using Search

Chapters 3-5 Problem Solving using Search CSEP 573 Chapters 3-5 Problem Solving using Search First, they do an on-line search CSE AI Faculty Example: The 8-puzzle Example: The 8-puzzle 1 2 3 8 4 7 6 5 1 2 3 4 5 6 7 8 2 Example: Route Planning

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

Uninformed search strategies (Section 3.4) Source: Fotolia

Uninformed search strategies (Section 3.4) Source: Fotolia Uninformed search strategies (Section 3.4) Source: Fotolia Uninformed search strategies A search strategy is defined by picking the order of node expansion Uninformed search strategies use only the information

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig.

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig. Artificial Intelligence Chapters Reviews Readings: Chapters 3-8 of Russell & Norvig. Topics covered in the midterm Solving problems by searching (Chap. 3) How to formulate a search problem? How to measure

More information

Artificial Intelligence (part 4d)

Artificial Intelligence (part 4d) Artificial Intelligence (part 4d) BEHAVIOR OF HEURISTICS EVALUATIONS (USING HEURISTICS IN GAMES) HEURISTICS EVALUATIONS: (Admissibility,Monotonicity and Informedness) Admissibility Measures A search is

More information

HEURISTIC SEARCH. 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and References 4.6 Exercises

HEURISTIC SEARCH. 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and References 4.6 Exercises 4 HEURISTIC SEARCH Slide 4.1 4.0 Introduction 4.1 An Algorithm for Heuristic Search 4.2 Admissibility, Monotonicity, and Informedness 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and

More information

Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search -

Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search - Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search - Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria 1 References Skriptum (TU Wien, Institut für Informationssysteme,

More information

Uninformed Search. Problem-solving agents. Tree search algorithms. Single-State Problems

Uninformed Search. Problem-solving agents. Tree search algorithms. Single-State Problems Uninformed Search Problem-solving agents Tree search algorithms Single-State Problems Breadth-First Search Depth-First Search Limited-Depth Search Iterative Deepening Extensions Graph search algorithms

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 3: Problem Solving and Search Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes The

More information

Uninformed Search. Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday

Uninformed Search. Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday Uninformed Search Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday 1 Uninformed Search through the space of possible solutions Use no knowledge about which path is likely to be best Exception: uniform

More information

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria 1 References Skriptum (TU Wien, Institut für Informationssysteme, Thomas Eiter

More information

State Space Search. Many problems can be represented as a set of states and a set of rules of how one state is transformed to another.

State Space Search. Many problems can be represented as a set of states and a set of rules of how one state is transformed to another. State Space Search Many problems can be represented as a set of states and a set of rules of how one state is transformed to another. The problem is how to reach a particular goal state, starting from

More information

Downloded from: CSITauthority.blogspot.com

Downloded from: CSITauthority.blogspot.com [Unit : Searching] (CSC 355) Central Department of Computer Science & Information Technology Tribhuvan University 1 Searching search problem Figure below contains a representation of a map. The nodes represent

More information

Lecture 3 of 42. Lecture 3 of 42

Lecture 3 of 42. Lecture 3 of 42 Search Problems Discussion: Term Projects 3 of 5 William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://snipurl.com/v9v3 Course web site: http://www.kddresearch.org/courses/cis730

More information

Search: Advanced Topics and Conclusion

Search: Advanced Topics and Conclusion Search: Advanced Topics and Conclusion CPSC 322 Lecture 8 January 24, 2007 Textbook 2.6 Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 1 Lecture Overview 1 Recap 2 Branch & Bound 3 A

More information

CS 188: Artificial Intelligence. Recap Search I

CS 188: Artificial Intelligence. Recap Search I CS 188: Artificial Intelligence Review of Search, CSPs, Games DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You

More information

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5 ARTIFICIAL INTELLIGENCE LECTURE 3 Ph. D. Lect. Horia Popa Andreescu 2012-2013 3 rd year, semester 5 The slides for this lecture are based (partially) on chapter 4 of the Stuart Russel Lecture Notes [R,

More information

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty)

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Informed search algorithms Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Intuition, like the rays of the sun, acts only in an inflexibly

More information

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3)

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.) Some slides adapted from Richard Lathrop, USC/ISI, CS 7 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always replies

More information

Artificial Intelligence (part 4d)

Artificial Intelligence (part 4d) Artificial Intelligence (part 4d) BEHAVIOR OF HEURISTICS EVALUATIONS (USING HEURISTICS IN GAMES) Course Contents Again..Selected topics for our course. Covering all of AI is impossible! Key topics include:

More information

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague

Informed search algorithms Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague Informed search algorithms Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/ae3b33kui/start precommended literature ::

More information

Parallel Programming. Parallel algorithms Combinatorial Search

Parallel Programming. Parallel algorithms Combinatorial Search Parallel Programming Parallel algorithms Combinatorial Search Some Combinatorial Search Methods Divide and conquer Backtrack search Branch and bound Game tree search (minimax, alpha-beta) 2010@FEUP Parallel

More information

Effective use of memory in linear space best first search

Effective use of memory in linear space best first search Effective use of memory in linear space best first search Marko Robnik-Šikonja University of Ljubljana, Faculty of Electrical Engineering and Computer Science, Tržaška 5, 00 Ljubljana, Slovenia e-mail:

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 Professor Dan Moldovan Section 4 Informed Search and Adversarial Search Outline Best-first search Greedy best-first search A* search Heuristics revisited Minimax search

More information

CAP 4630 Artificial Intelligence

CAP 4630 Artificial Intelligence CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 http://www.ultimateaiclass.com/ https://moodle.cis.fiu.edu/ 2 Solving problems by search 3 8-puzzle 4 8-queens 5 Search

More information

Chapter 3. A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states.

Chapter 3. A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states. Chapter 3 A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states. A problem can be defined by four components : 1. The

More information

A4B36ZUI - Introduction ARTIFICIAL INTELLIGENCE

A4B36ZUI - Introduction ARTIFICIAL INTELLIGENCE A4B36ZUI - Introduction to ARTIFICIAL INTELLIGENCE https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start Michal Pechoucek, Branislav Bosansky, Jiri Klema & Olga Stepankova Department of Computer Science Czech

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART3) PROBLEM SOLVING AND SEARCH Searching algorithm Uninformed

More information

Search: Advanced Topics and Conclusion

Search: Advanced Topics and Conclusion Search: Advanced Topics and Conclusion CPSC 322 Lecture 8 January 20, 2006 Textbook 2.6 Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 1 Lecture Overview Recap Branch & Bound A Tricks

More information

Lecture 5 Heuristics. Last Time: A* Search

Lecture 5 Heuristics. Last Time: A* Search CSE 473 Lecture 5 Heuristics CSE AI Faculty Last Time: A* Search Use an evaluation function f(n) for node n. f(n) = estimated total cost of path thru n to goal f(n) = g(n) + h(n) g(n) = cost so far to

More information

Informed State Space Search B4B36ZUI, LS 2018

Informed State Space Search B4B36ZUI, LS 2018 Informed State Space Search B4B36ZUI, LS 2018 Branislav Bošanský, Martin Schaefer, David Fiedler, Jaromír Janisch {name.surname}@agents.fel.cvut.cz Artificial Intelligence Center, Czech Technical University

More information

DFS. Depth-limited Search

DFS. Depth-limited Search DFS Completeness? No, fails in infinite depth spaces or spaces with loops Yes, assuming state space finite. Time complexity? O(b m ), terrible if m is much bigger than d. can do well if lots of goals Space

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

Problem Solving and Searching

Problem Solving and Searching Problem Solving and Searching CS 171/ 271 (Chapter 3) Some text and images in these slides were drawn from Russel & Norvig s published material 1 Problem Solving Agent Function 2 Problem Solving Agent

More information

Search EECS 395/495 Intro to Artificial Intelligence

Search EECS 395/495 Intro to Artificial Intelligence Search EECS 395/495 Intro to Artificial Intelligence Doug Downey (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for

More information

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests Review Agents (2.1-2.3) Mid-term Review Chapters 2-6 Review State Space Search Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

Probabilistic Belief. Adversarial Search. Heuristic Search. Planning. Probabilistic Reasoning. CSPs. Learning CS121

Probabilistic Belief. Adversarial Search. Heuristic Search. Planning. Probabilistic Reasoning. CSPs. Learning CS121 CS121 Heuristic Search Planning CSPs Adversarial Search Probabilistic Reasoning Probabilistic Belief Learning Heuristic Search First, you need to formulate your situation as a Search Problem What is a

More information

Searching with Partial Information

Searching with Partial Information Searching with Partial Information Above we (unrealistically) assumed that the environment is fully observable and deterministic Moreover, we assumed that the agent knows what the effects of each action

More information

Problem Solving and Search in Artificial Intelligence

Problem Solving and Search in Artificial Intelligence Problem Solving and Search in Artificial Intelligence Uninformed Search Strategies Nysret Musliu Database and Artificial Intelligence Group Institut für Informationssysteme, TU-Wien Introduction Many classic

More information

Search EECS 348 Intro to Artificial Intelligence

Search EECS 348 Intro to Artificial Intelligence Search EECS 348 Intro to Artificial Intelligence (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for systematically

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

State Spaces

State Spaces Unit-2: CONTENT: Introduction to Search: Searching for solutions, Uninformed search strategies, Informed search strategies, Local search algorithms and optimistic problems, Adversarial Search, Search for

More information

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search CSE 473 Chapter 4 Informed Search CSE AI Faculty Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search Last Time 2 1 Repeated States Failure to detect repeated states can turn a linear

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, 2018 Chapter 3 Informed Searching Mustafa Jarrar University of Birzeit Jarrar 2018 1 Watch this lecture and download the slides

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching 1 Terminology State State Space Initial State Goal Test Action Step Cost Path Cost State Change Function State-Space Search 2 Formal State-Space Model Problem = (S, s, A,

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

Uninformed Search. Day 1 & 2 of Search. Russel & Norvig Chap. 3. Material in part from

Uninformed Search. Day 1 & 2 of Search. Russel & Norvig Chap. 3. Material in part from Uninformed Day & 2 of Russel & Norvig Chap. 3 Material in part from http://www.cs.cmu.edu/~awm/tutorials Examples of problems? The Oak Tree Informed versus Uninformed Heuristic versus Blind A Problem a

More information

Chapter 4. Uninformed Search Strategies

Chapter 4. Uninformed Search Strategies Chapter 4. Uninformed Search Strategies An uninformed (a.k.a. blind, brute-force) search algorithm generates the search tree without using any domain specific knowledge. The two basic approaches differ

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

Midterm Examination CS 540-2: Introduction to Artificial Intelligence

Midterm Examination CS 540-2: Introduction to Artificial Intelligence Midterm Examination CS 54-2: Introduction to Artificial Intelligence March 9, 217 LAST NAME: FIRST NAME: Problem Score Max Score 1 15 2 17 3 12 4 6 5 12 6 14 7 15 8 9 Total 1 1 of 1 Question 1. [15] State

More information

4. Solving Problems by Searching

4. Solving Problems by Searching COMP9414/9814/3411 15s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence 4. Solving Problems by Searching Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions

More information

Announcements. Today s Menu

Announcements. Today s Menu Announcements 1 Today s Menu Finish up (Chapter 9) IDA, IDA* & RBFS Search Efficiency 2 Related Algorithms Bi-Directional Search > Breadth-First may expand less nodes bidirectionally than unidirectionally

More information

Topic 1 Uninformed Search (Updates: Jan. 30, 2017)

Topic 1 Uninformed Search (Updates: Jan. 30, 2017) Topic 1 Uninformed Search (Updates: Jan. 30, 2017) Uninformed search is brute-force search. Uninformed search is also called blind search. 1. Depth-First Search (DFS) 2. Breadth-First Search (BFS) 3. Depth-Limited

More information

CPS 170: Artificial Intelligence Search

CPS 170: Artificial Intelligence   Search CPS 170: Artificial Intelligence http://www.cs.duke.edu/courses/spring09/cps170/ Search Instructor: Vincent Conitzer Search We have some actions that can change the state of the world Change resulting

More information

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3.

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3. COMP9414/9814/3411 17s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence Week 3: Path Search Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions based only

More information

COMP3702/7702 Artificial Intelligence Week2: Search (Russell & Norvig ch. 3)" Hanna Kurniawati"

COMP3702/7702 Artificial Intelligence Week2: Search (Russell & Norvig ch. 3) Hanna Kurniawati COMP3702/7702 Artificial Intelligence Week2: Search (Russell & Norvig ch. 3)" Hanna Kurniawati" Last week" What is Artificial Intelligence?" Some history" Agent defined" The agent design problem" Search:

More information

Route planning / Search Movement Group behavior Decision making

Route planning / Search Movement Group behavior Decision making Game AI Where is the AI Route planning / Search Movement Group behavior Decision making General Search Algorithm Design Keep a pair of set of states: One, the set of states to explore, called the open

More information

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Informed Search CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Outline Using knowledge Heuristics Bestfirst search Greedy bestfirst search A* search Variations of A* Back to heuristics

More information

mywbut.com Informed Search Strategies-II

mywbut.com Informed Search Strategies-II Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

More information

Distributed Tree Searc and its Application to Alpha-Beta Pruning*

Distributed Tree Searc and its Application to Alpha-Beta Pruning* From: AAAI-88 Proceedings. Copyright 1988, AAAI (www.aaai.org). All rights reserved. Distributed Tree Searc and its Application to Alpha-Beta Pruning* Chris Ferguson and Richard E. Korf Computer Science

More information

Blind (Uninformed) Search (Where we systematically explore alternatives)

Blind (Uninformed) Search (Where we systematically explore alternatives) Blind (Uninformed) Search (Where we systematically explore alternatives) R&N: Chap. 3, Sect. 3.3 5 Slides from Jean-Claude Latombe at Stanford University (used with permission) Simple Problem-Solving-Agent

More information

CS 520: Introduction to Artificial Intelligence. Lectures on Search

CS 520: Introduction to Artificial Intelligence. Lectures on Search CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture : uninformed search uninformed search Review Lectures on Search Formulation of search problems. State Spaces Uninformed (blind)

More information

Informed Search CS457 David Kauchak Fall 2011

Informed Search CS457 David Kauchak Fall 2011 Admin Informed Search CS57 David Kauchak Fall 011 Some material used from : Sara Owsley Sood and others Q3 mean: 6. median: 7 Final projects proposals looked pretty good start working plan out exactly

More information

Lecture 4: Informed/Heuristic Search

Lecture 4: Informed/Heuristic Search Lecture 4: Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* RBFS SMA* Techniques

More information