Simulation of moving Particles in 3D with the Lattice Boltzmann Method

Size: px
Start display at page:

Download "Simulation of moving Particles in 3D with the Lattice Boltzmann Method"

Transcription

1 Simulation of moving Particles in 3D with the Lattice Boltzmann Method, Nils Thürey, Christian Feichtinger, Hans-Joachim Schmid Chair for System Simulation University Erlangen/Nuremberg Chair for Particle Technology University Erlangen/Nuremberg 1 ICMMES 2006

2 Outline The LBM particle simulation The moving particle simulation The rigid body simulation The LBM simulation Memory reduction techniques Grid refinement Grid compression Conclusion 2 ICMMES 2006

3 The moving Particle Simulation The Rigid Body Physics Simulation The Lattice Boltzmann Simulation The moving particle simulation Rigid body physics simulation CFD simulation: Lattice Boltzmann Method Lattice Boltzmann simulation with moving particles 3 ICMMES 2006

4 The moving Particle Simulation The Rigid Body Physics Simulation The Lattice Boltzmann Simulation The rigid body physics simulation Velocity-Störmer-Verlet time discretization Arbitrarily complex particle agglomerates (Frictionless) collision handling Calculation of contact forces and torques Different simulation worlds High performance C++ implementation Extendable framework 4 ICMMES 2006

5 The moving Particle Simulation The Rigid Body Physics Simulation The Lattice Boltzmann Simulation The Lattice Boltzmann simulation D3Q19i model Focus on laminar flows Treatment of the curved particle surfaces Second order boundary treatment (Yu et al) Momentum exchange method (Ladd) High performance C++ implementation References: D. Yu, R.Mei, W. Shyy, A unified boundary treatment in lattice Boltzmann, 2003 A. Ladd, Numerical simulation of particular suspensions via a discretized Boltzmann equation, ICMMES 2006

6 Memory requirements Example: Drag force calculations on sphere in channel flow Combination of two conflicting aspects: good approximation of the particles large domains high aspect ratios high memory requirements 6 ICMMES 2006

7 Memory requirements Example: Drag force calculations on sphere in channel flow Combination of two conflicting aspects: good approximation of the particles large domains high aspect ratios high memory requirements 7 ICMMES 2006

8 Memory requirements Example: Drag force calculations on sphere in channel flow Aspect ratio between sphere and domain: 1 : 100 Combination of two conflicting aspects: good approximation of the particles large domains high aspect ratios high memory requirements 8 ICMMES 2006

9 Grid refinement Low memory requirement Adaptive refinement around the particles Hierarchical approach Arbitrary refinement ratios High Performance Minimum block size of 20³ cells Fusion of stream and collide step (few conditionals) Negligible interpolation overhead Parallelization References: O. Filippova, D. Hänel, for Lattice-BGK Models, ICMMES 2006

10 Grid refinement 10 ICMMES 2006

11 Grid refinement 11 ICMMES 2006

12 Grid refinement 12 ICMMES 2006

13 Grid refinement Low memory requirement Adaptive refinement around the particles Hierarchical approach Arbitrary refinement ratios High Performance Minimum block size of 20³ cells Fusion of stream and collide step (few conditionals) Negligible interpolation overhead Parallelization References: O. Filippova, D. Hänel, for Lattice-BGK Models, ICMMES 2006

14 Grid refinement in combination with particles Each subgrid contains its own rigid body simulation world Decoupling of the different time step sizes 14 ICMMES 2006

15 Grid compression Memory reduction of nearly 50% (compared to two grids) Performance improvement (5-10%) Elegant C/C++ implementation possible Basic idea: data shifting within one grid 15 ICMMES 2006

16 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 16 ICMMES 2006

17 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 17 ICMMES 2006

18 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 18 ICMMES 2006

19 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 19 ICMMES 2006

20 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 20 ICMMES 2006

21 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 21 ICMMES 2006

22 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 22 ICMMES 2006

23 Memory reduction: grid compression Key: Unused Initial values (t=0) 1.Update (t=1) 2.Update (t=2) 23 ICMMES 2006

24 Conclusion Coupling between the LBM and a physics engine Simulation of arbitrarily complex agglomerates Calculation of the contact forces and torques Need for memory reduction techniques Current extension: Electrostatic forces Related work from Erlangen: N. Thürey, Adaptive Simulation of Open Water Free Surface Flows G. Wellein, Introducting a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method T. Zeiser, Microscale Flow Analysis in Trabecular Vertebral Bone 24 ICMMES 2006

25 Appendix 25 ICMMES 2006

26 The rigid body physics simulation 26 ICMMES 2006

27 Coupling between the two simulations for all time steps { //Mapping the particles into the LBM grid // and calculation of the hydrodynamic forces FlagForceStep //LBM stream- and collide step StreamCollideStep } //Moving the rigid bodies and treating //possible collisions RigidBodyStep 27 ICMMES 2006

28 Memory reduction: grid compression Memory reduction of nearly 50% (compared to two grids) Performance improvement Elegant C++ implementation possible Standard C++ approach: //Allocation of two full grids double* src = new double[cellsize*xsize*ysize*zsize]; double* dst = new double[cellsize*xsize*ysize*zsize]; //Data access to distribution function df of cell (i,j,k) src[((i*ysize+j)*xsize+k)*cellsize+df] =...; dst[((i*ysize+j)*xsize+k)*cellsize+df] =...; Basic idea: data shifting within one grid 28 ICMMES 2006

29 Memory reduction: grid compression C++ implementation: xsize += 1; //Increasing the original ysize += 1; // x-, y- and z-size by 1. zsize += 1; // //Allocation of only one (slighly larger) grid double* src = new double[cellsize*xsize*ysize*zsize]; double* dst = &src[((1*ysize+1)*xsize+1)*cellsize]; //Same data access as before src[((i*ysize+j)*xsize+k)*cellsize+df] =...; dst[((i*ysize+j)*xsize+k)*cellsize+df] =...; 29 ICMMES 2006

Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method

Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method June 21, 2011 Introduction Free Surface LBM Liquid-Gas-Solid Flows Parallel Computing Examples and More References Fig. Simulation

More information

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm March 17 March 21, 2014 Florian Schornbaum, Martin Bauer, Simon Bogner Chair for System Simulation Friedrich-Alexander-Universität

More information

Lattice Boltzmann with CUDA

Lattice Boltzmann with CUDA Lattice Boltzmann with CUDA Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Overview of LBM An usage of LBM Algorithm Implementation in CUDA and Optimization

More information

simulation framework for piecewise regular grids

simulation framework for piecewise regular grids WALBERLA, an ultra-scalable multiphysics simulation framework for piecewise regular grids ParCo 2015, Edinburgh September 3rd, 2015 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler

More information

Free Surface Flows with Moving and Deforming Objects for LBM

Free Surface Flows with Moving and Deforming Objects for LBM Free Surface Flows with Moving and Deforming Objects for LBM Nils Thürey, Klaus Iglberger, Ulrich Rüde Institute for System Simulation (LSS), University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen,

More information

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method G. Wellein, T. Zeiser, G. Hager HPC Services Regional Computing Center A. Nitsure, K. Iglberger, U. Rüde Chair for System

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla SIAM PP 2016, April 13 th 2016 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer,

More information

Massively Parallel Phase Field Simulations using HPC Framework walberla

Massively Parallel Phase Field Simulations using HPC Framework walberla Massively Parallel Phase Field Simulations using HPC Framework walberla SIAM CSE 2015, March 15 th 2015 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer, Harald Köstler and Ulrich

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

A New Approach to Reduce Memory Consumption in Lattice Boltzmann Method on GPU

A New Approach to Reduce Memory Consumption in Lattice Boltzmann Method on GPU Journal of Applied Fluid Mechanics, Vol. 10, No. 1, pp. 55-67, 2017. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.238.26431 A New Approach to Reduce

More information

Domain Decomposition for Colloid Clusters. Pedro Fernando Gómez Fernández

Domain Decomposition for Colloid Clusters. Pedro Fernando Gómez Fernández Domain Decomposition for Colloid Clusters Pedro Fernando Gómez Fernández MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2004 Authorship declaration I, Pedro Fernando

More information

Direct Numerical Simulation of Particulate Flows on Processor Cores

Direct Numerical Simulation of Particulate Flows on Processor Cores 1 Direct Numerical Simulation of Particulate Flows on 294 912 Processor Cores Jan Götz *, Klaus Iglberger *, Markus Stürmer *, and Ulrich Rüde *,** * Chair for System Simulation, University Erlangen-Nuremberg,

More information

Technical Report TR

Technical Report TR Technical Report TR-2015-09 Boundary condition enforcing methods for smoothed particle hydrodynamics Arman Pazouki 1, Baofang Song 2, Dan Negrut 1 1 University of Wisconsin-Madison, Madison, WI, 53706-1572,

More information

High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters

High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters SIAM PP 2014 High Scalability of Lattice Boltzmann Simulations with Turbulence Models using Heterogeneous Clusters C. Riesinger, A. Bakhtiari, M. Schreiber Technische Universität München February 20, 2014

More information

Dynamic Mode Decomposition analysis of flow fields from CFD Simulations

Dynamic Mode Decomposition analysis of flow fields from CFD Simulations Dynamic Mode Decomposition analysis of flow fields from CFD Simulations Technische Universität München Thomas Indinger Lukas Haag, Daiki Matsumoto, Christoph Niedermeier in collaboration with Agenda Motivation

More information

Introduction to the immersed boundary method

Introduction to the immersed boundary method Introduction to the immersed boundary method by Timm Krüger (info@timm-krueger.de), last updated on September 27, 20 Motivation. Hydrodynamics and boundary conditions The incompressible Navier-Stokes equations,

More information

A Python extension for the massively parallel framework walberla

A Python extension for the massively parallel framework walberla A Python extension for the massively parallel framework walberla PyHPC at SC 14, November 17 th 2014 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Matthias Markl, Daniela Anderl, Harald Köstler

More information

Performance and Software-Engineering Considerations for Massively Parallel Simulations

Performance and Software-Engineering Considerations for Massively Parallel Simulations Performance and Software-Engineering Considerations for Massively Parallel Simulations Ulrich Rüde (ruede@cs.fau.de) Ben Bergen, Frank Hülsemann, Christoph Freundl Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information

Lattice Boltzmann Liquid Simulation with Moving Objects on Graphics Hardware

Lattice Boltzmann Liquid Simulation with Moving Objects on Graphics Hardware Lattice Boltzmann Liquid Simulation with Moving Objects on Graphics Hardware Duncan Clough Supervised by: James Gain, Michelle Kuttel 1 Introduction Fluid simulation is a common element in recent feature

More information

Realistic Animation of Fluids

Realistic Animation of Fluids Realistic Animation of Fluids p. 1/2 Realistic Animation of Fluids Nick Foster and Dimitri Metaxas Realistic Animation of Fluids p. 2/2 Overview Problem Statement Previous Work Navier-Stokes Equations

More information

International Supercomputing Conference 2009

International Supercomputing Conference 2009 International Supercomputing Conference 2009 Implementation of a Lattice-Boltzmann-Method for Numerical Fluid Mechanics Using the nvidia CUDA Technology E. Riegel, T. Indinger, N.A. Adams Technische Universität

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS L. Mangani Maschinentechnik CC Fluidmechanik und Hydromaschinen Hochschule Luzern Technik& Architektur

More information

A Contact Angle Model for the Parallel Free Surface Lattice Boltzmann Method in walberla Stefan Donath (stefan.donath@informatik.uni-erlangen.de) Computer Science 10 (System Simulation) University of Erlangen-Nuremberg

More information

Lattice Boltzmann Method for Simulating Turbulent Flows

Lattice Boltzmann Method for Simulating Turbulent Flows Lattice Boltzmann Method for Simulating Turbulent Flows by Yusuke Koda A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science

More information

Lattice Boltzmann Method: A New Alternative for Loss Estimation Juan C. Díaz Cruz* a, Sergio E. Rodríguez a, Sergio A. Ordóñez b, Felipe Muñoz a a

Lattice Boltzmann Method: A New Alternative for Loss Estimation Juan C. Díaz Cruz* a, Sergio E. Rodríguez a, Sergio A. Ordóñez b, Felipe Muñoz a a 799 VOL. 31, 2013 CHEMICAL ENGINEERING TRANSACTIONS A publication of The Italian Association of Chemical Engineering Online at: www.aidic.it/cet Guest Editors: Eddy De Rademaeker, Bruno Fabiano, Simberto

More information

Forces on particles and bubbles Literature

Forces on particles and bubbles Literature Lecture 1: Forces on particles and bubbles In order to describe the motion of particles and bubbles in fluids it is necessary to consider all relevant forces, external and fluid dynamic forces. Starting

More information

BOUNDLESS FLUIDS USING THE LATTICE-BOLTZMANN METHOD. A Thesis. Presented to. the Faculty of California Polytechnic State University.

BOUNDLESS FLUIDS USING THE LATTICE-BOLTZMANN METHOD. A Thesis. Presented to. the Faculty of California Polytechnic State University. BOUNDLESS FLUIDS USING THE LATTICE-BOLTZMANN METHOD A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree

More information

Reconstruction of Trees from Laser Scan Data and further Simulation Topics

Reconstruction of Trees from Laser Scan Data and further Simulation Topics Reconstruction of Trees from Laser Scan Data and further Simulation Topics Helmholtz-Research Center, Munich Daniel Ritter http://www10.informatik.uni-erlangen.de Overview 1. Introduction of the Chair

More information

Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid

Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid Journal of Computational Physics 181, 675 704 (2002) doi:10.1006/jcph.2002.7151 Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid Zhenyu Lu, Ying Liao, Dongying

More information

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Jan Treibig, Simon Hausmann, Ulrich Ruede Zusammenfassung The Lattice Boltzmann method (LBM) is a well established algorithm

More information

Particle-based Fluid Simulation

Particle-based Fluid Simulation Simulation in Computer Graphics Particle-based Fluid Simulation Matthias Teschner Computer Science Department University of Freiburg Application (with Pixar) 10 million fluid + 4 million rigid particles,

More information

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method D. Ricot 1, E. Foquet 2, H. Touil 3, E. Lévêque 3, H. Machrouki 4, F. Chevillotte 5, M. Meldi 6 1: Renault 2: CS 3:

More information

Parallelization of Scientific Applications (II)

Parallelization of Scientific Applications (II) Parallelization of Scientific Applications (II) Parallelization of Particle Based Methods Russian-German School on High Performance Computer Systems, June, 27 th until July, 6 th 2005, Novosibirsk 4. Day,

More information

walberla: Developing a Massively Parallel HPC Framework

walberla: Developing a Massively Parallel HPC Framework walberla: Developing a Massively Parallel HPC Framework SIAM CS&E 2013, Boston February 26, 2013 Florian Schornbaum*, Christian Godenschwager*, Martin Bauer*, Matthias Markl, Ulrich Rüde* *Chair for System

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

LARGE-SCALE FREE-SURFACE FLOW SIMULATION USING LATTICE BOLTZMANN METHOD ON MULTI-GPU CLUSTERS

LARGE-SCALE FREE-SURFACE FLOW SIMULATION USING LATTICE BOLTZMANN METHOD ON MULTI-GPU CLUSTERS ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Foster s Methodology: Application Examples

Foster s Methodology: Application Examples Foster s Methodology: Application Examples Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 19, 2011 CPD (DEI / IST) Parallel and

More information

Deforming meshes that split and merge

Deforming meshes that split and merge Deforming meshes that split and merge Chris Wojtan Nils Th urey Markus Gross Greg Turk Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Introduction ž Presents a method for accurately tracking the moving

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

HIGH PERFORMANCE COMPUTATION (HPC) FOR THE

HIGH PERFORMANCE COMPUTATION (HPC) FOR THE HIGH PERFORMANCE COMPUTATION (HPC) FOR THE DEVELOPMENT OF FLUIDIZED BED TECHNOLOGIES FOR BIOMASS GASIFICATION AND CO2 CAPTURE P. Fede, H. Neau, O. Simonin Université de Toulouse; INPT, UPS ; IMFT ; 31400

More information

Introduction to the immersed boundary method

Introduction to the immersed boundary method Introduction to the immersed boundary method Motivation. Hydrodynamics and boundary conditions The incompressible Navier-Stokes equations, ( ) u ρ + (u )u = p + ρν 2 u + f, () t are partial differential

More information

Technical report: How to implement your DdQq dynamics with only q variables per node (instead of 2q)

Technical report: How to implement your DdQq dynamics with only q variables per node (instead of 2q) Technical report: How to implement your DdQq dynamics with only q variables per node (instead of 2q) Jonas Latt Tufts University Medford, USA jonas.latt@gmail.com June 2007 1 Overview Naive implementations

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES November 20, 2018 WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES Bishal Bhattarai and Nikolai V. Priezjev Department of Mechanical and Materials Engineering

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

Peta-Scale Simulations with the HPC Software Framework walberla:

Peta-Scale Simulations with the HPC Software Framework walberla: Peta-Scale Simulations with the HPC Software Framework walberla: Massively Parallel AMR for the Lattice Boltzmann Method SIAM PP 2016, Paris April 15, 2016 Florian Schornbaum, Christian Godenschwager,

More information

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number Individual task Objective To derive the drag coefficient for a 2D object, defined as where D (N/m) is the aerodynamic drag force (per unit length in the third direction) acting on the object. The object

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth

Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth Bohumir Jelinek Mohsen Eshraghi Sergio Felicelli CAVS, Mississippi State University March 3-7, 2013 San Antonio, Texas US Army Corps of

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

GAME PROGRAMMING ON HYBRID CPU-GPU ARCHITECTURES TAKAHIRO HARADA, AMD DESTRUCTION FOR GAMES ERWIN COUMANS, AMD

GAME PROGRAMMING ON HYBRID CPU-GPU ARCHITECTURES TAKAHIRO HARADA, AMD DESTRUCTION FOR GAMES ERWIN COUMANS, AMD GAME PROGRAMMING ON HYBRID CPU-GPU ARCHITECTURES TAKAHIRO HARADA, AMD DESTRUCTION FOR GAMES ERWIN COUMANS, AMD GAME PROGRAMMING ON HYBRID CPU-GPU ARCHITECTURES Jason Yang, Takahiro Harada AMD HYBRID CPU-GPU

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Webinar #3 Lattice Boltzmann method for CompBioMed (incl. Palabos)

Webinar #3 Lattice Boltzmann method for CompBioMed (incl. Palabos) Webinar series A Centre of Excellence in Computational Biomedicine Webinar #3 Lattice Boltzmann method for CompBioMed (incl. Palabos) 19 March 2018 The webinar will start at 12pm CET / 11am GMT Dr Jonas

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

LATTICE-BOLTZMANN AND COMPUTATIONAL FLUID DYNAMICS

LATTICE-BOLTZMANN AND COMPUTATIONAL FLUID DYNAMICS LATTICE-BOLTZMANN AND COMPUTATIONAL FLUID DYNAMICS NAVIER-STOKES EQUATIONS u t + u u + 1 ρ p = Ԧg + ν u u=0 WHAT IS COMPUTATIONAL FLUID DYNAMICS? Branch of Fluid Dynamics which uses computer power to approximate

More information

Lehrstuhl für Informatik 10 (Systemsimulation)

Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) On the Resource Requirements of

More information

Real-Time Volumetric Smoke using D3D10. Sarah Tariq and Ignacio Llamas NVIDIA Developer Technology

Real-Time Volumetric Smoke using D3D10. Sarah Tariq and Ignacio Llamas NVIDIA Developer Technology Real-Time Volumetric Smoke using D3D10 Sarah Tariq and Ignacio Llamas NVIDIA Developer Technology Smoke in NVIDIA s DirectX10 SDK Sample Smoke in the game Hellgate London Talk outline: Why 3D fluid simulation

More information

Virtual EM Inc. Ann Arbor, Michigan, USA

Virtual EM Inc. Ann Arbor, Michigan, USA Functional Description of the Architecture of a Special Purpose Processor for Orders of Magnitude Reduction in Run Time in Computational Electromagnetics Tayfun Özdemir Virtual EM Inc. Ann Arbor, Michigan,

More information

Flow Simulation with Locally-Refined LBM

Flow Simulation with Locally-Refined LBM Flow Simulation with Locally-Refined LBM Ye Zhao Kent State University Feng Qiu Stony Brook University Zhe Fan Stony Brook University Arie Kaufman Stony Brook University Abstract We simulate 3D fluid flow

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 3 Common Elements of a Molecular Simulation David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Boundary Conditions Impractical

More information

MULTIPHYSICS SIMULATION USING GPU

MULTIPHYSICS SIMULATION USING GPU MULTIPHYSICS SIMULATION USING GPU Arman Pazouki Simulation-Based Engineering Laboratory Department of Mechanical Engineering University of Wisconsin - Madison Acknowledgements Prof. Dan Negrut Dr. Radu

More information

Parallel Computing. Parallel Algorithm Design

Parallel Computing. Parallel Algorithm Design Parallel Computing Parallel Algorithm Design Task/Channel Model Parallel computation = set of tasks Task Program Local memory Collection of I/O ports Tasks interact by sending messages through channels

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

MASSIVELY-PARALLEL MULTI-GPU SIMULATIONS FOR FAST AND ACCURATE AUTOMOTIVE AERODYNAMICS

MASSIVELY-PARALLEL MULTI-GPU SIMULATIONS FOR FAST AND ACCURATE AUTOMOTIVE AERODYNAMICS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) -5 June 28, Glasgow, UK MASSIVELY-PARALLEL MULTI-GPU SIMULATIONS FOR FAST AND

More information

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Introduction Company STAR-CCM+ Agenda Wind engineering at CD-adapco STAR-CCM+ & EnviroWizard Developments for Offshore Simulation CD-adapco:

More information

Implementation and Optimization of the Lattice Boltzmann Method for the Jackal DSM System

Implementation and Optimization of the Lattice Boltzmann Method for the Jackal DSM System Implementation and Optimization of the Lattice Boltzmann Method for the Jackal DSM System Bachelor Thesis im Fach Mathematik vorgelegt von Alexander Dreweke angefertigt am Institut für Informatik Lehrstuhl

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Free Surface Lattice-Boltzmann fluid simulations. with and without level sets.

Free Surface Lattice-Boltzmann fluid simulations. with and without level sets. ree Surface Lattice-Boltzmann fluid simulations with and without level sets Nils Thürey, Ulrich Rüde University of Erlangen-Nuremberg System Simulation roup Cauerstr. 6, 91054 Erlangen, ermany Email: Nils.Thuerey@cs.fau.de

More information

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić Coupled Simulation of Flow and Body Motion Using Overset Grids Eberhard Schreck & Milovan Perić Contents Dynamic Fluid-Body Interaction (DFBI) model in STAR-CCM+ Overset grids method in STAR-CCM+ Advantages

More information

Lattice Boltzmann Methods on the way to exascale

Lattice Boltzmann Methods on the way to exascale Lattice Boltzmann Methods on the way to exascale Ulrich Rüde (LSS Erlangen, ulrich.ruede@fau.de) Lehrstuhl für Simulation Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de HIGH PERFORMANCE

More information

S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs

S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs S7260: Microswimmers on Speed: Simulating Spheroidal Squirmers on GPUs Elmar Westphal - Forschungszentrum Jülich GmbH Spheroids Spheroid: A volume formed by rotating an ellipse around one of its axes Two

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with andreas.schaefer@cs.fau.de Friedrich-Alexander-Universität Erlangen-Nürnberg GPU Technology Conference 2013, San José,

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

Simulation of Turbulent Particulate Flow on HPC Systems

Simulation of Turbulent Particulate Flow on HPC Systems Simulation of Turbulent Particulate Flow on HPC Systems Konstantin Fröhlich, Lennart Schneiders, Matthias Meinke, Wolfgang Schröder k.froehlich@aia.rwth-aachen.de Institute of Aerodynamics RWTH Aachen

More information

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial Auto Injector Syringe A Fluent Dynamic Mesh 1DOF Tutorial 1 2015 ANSYS, Inc. June 26, 2015 Prerequisites This tutorial is written with the assumption that You have attended the Introduction to ANSYS Fluent

More information

Next-generation CFD: Real-Time Computation and Visualization

Next-generation CFD: Real-Time Computation and Visualization Next-generation CFD: Real-Time Computation and Visualization Christian F. Janßen Hamburg University of Technology Tesla C1060, ~20 million lattice nodes [2010] Kinetic approaches for the simulation of

More information

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs C.-C. Su a, C.-W. Hsieh b, M. R. Smith b, M. C. Jermy c and J.-S. Wu a a Department of Mechanical Engineering, National Chiao Tung

More information

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech Multi-Mesh CFD Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech cjroy@vt.edu May 21, 2014 CCAS Program Review, Columbus, OH 1 Motivation Automated

More information

Rachel Weinstein, Joseph Teran and Ron Fedkiw

Rachel Weinstein, Joseph Teran and Ron Fedkiw Rachel Weinstein, Joseph Teran and Ron Fedkiw presented by Marco Bernasconi (mberna7@uic.edu) Politecnico di Milano A couple of questions: Why did I choose this paper? What does contact vs collision mean?

More information

Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC

Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC DLR.de Chart 1 Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC Melven Röhrig-Zöllner DLR, Simulations- und Softwaretechnik DLR.de Chart 2 Outline Hardware-Architecture (CPU+GPU)

More information

Volumetric processing and visualization on heterogeneous architecture

Volumetric processing and visualization on heterogeneous architecture Volumetric processing and visualization on heterogeneous architecture Wei Li Siemens Corporation Princeton, NJ In collaboration with Wei Hong & Gianluca Paladini Volumetric computation Areas Medical imaging,

More information

Performance Analysis of a Parallel Implementation of the Lattice Boltzmann Method for Computational Fluid Dynamics

Performance Analysis of a Parallel Implementation of the Lattice Boltzmann Method for Computational Fluid Dynamics Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-2002 Performance Analysis of a Parallel Implementation of the Lattice Boltzmann Method for Computational

More information

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Dimitri P. Tselepidakis & Lewis Collins ASME 2012 Verification and Validation Symposium May 3 rd, 2012 1 Outline

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11]

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11] Fluid Simulation [Thürey 10] [Pfaff 10] [Chentanez 11] 1 Computational Fluid Dynamics 3 Graphics Why don t we just take existing models from CFD for Computer Graphics applications? 4 Graphics Why don t

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Computational Fluid Dynamics PRODUCT SHEET

Computational Fluid Dynamics PRODUCT SHEET TM 2014 Computational Fluid Dynamics PRODUCT SHEET 1 Breaking Limitations The Challenge of Traditional CFD In the traditional mesh-based approach, the reliability highly depends on the quality of the mesh,

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information