Countering Adversarial Images using Input Transformations

Size: px
Start display at page:

Download "Countering Adversarial Images using Input Transformations"

Transcription

1 Countering Adversarial Images using Input Transformations Chuan Guo, Mayank Rana, Moustapha Cisse, Laurens Van Der Maaten Presented by Hari Venugopalan, Zainul Abi Din

2 Motivation: Why is this a hard problem to solve? Adversarial Examples are very easy to generate and very difficult to defend against - problem with neural nets, piecewise linear functions Adversarial Examples transfer from one model to another very easily This problem is not well understood, researchers are divided on the nature of these samples.

3 Problem Definition: Adversarial Example x is the original input, x is the perturbed input which is found by adding some noise to x x Given a classifier h(x), the score h(x) and h(x ) should not be the same. While d(x, x ) is smaller than some threshold. + Noise Keep the distortion low and move the decision boundary x Source: Towards Evaluating the Robustness of Neural Networks, Carlini and Wagner

4 Measure of distortion Normalized L2-Dissimilarity X is the actual image X is the adversarial image N is the total number of images Low L2-Dissimilarity Source: Countering Adversarial Images using Input Transformations, Chuan Guo

5 Intuitively? What is an attack X: Original Input h(x) Y: probabilities Classifier X : Perturbed Image h(x ) Y: probabilities Classifier Image taken from: Towards Evaluating the Robustness of Neural Networks, Carlini and Wagner

6 Types of attacks in DNNs White-Box: The attacker is assumed to have complete knowledge of the networks weights and architecture Black-Box: Does not require internal model access Gray-Box: Attacker doesn t know the defense strategy used. Targeted Attack: Attacker selects the class they want the example to be misclassified as. Untargeted Attack: Any misclassification is the goal Source: ZOO: Zeroth Order Optimization Based Black-box A acks to Deep Neural Networks without Training Substitute Models, Pi-Yu Chen

7 How do you find this noise? Fast Gradient Sign Method Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy x = x + η 2. η = sign ( xj(θ, x, y)).

8 Deep fool: f(x) is the classifier Given a sample x 0, change f(x 0 ) sign Project x 0 orthogonally on f(x) r = {f( x 0 ) / [ x f( x 0 ) ^2 } x f( x 0 ) Keep adding r to x 0 till sign of f( x 0 ) changes Source: DeepFool: A simple and accurate method to fool deep neural networks, Moosavi Dezfooli

9 Adversarial Transformative Networks f w (X) X Target NN Probabilities Learn the noise g f,θ (X) ATN X X + Learn to generate and adversarial sample for Target NN Image Source: DeepFool: A simple and accurate method to fool deep neural networks, Moosavi Dezfooli Concept Source: Learning to generate adversarial examples, Shumeet Baluja

10 ATN Cost- Gradient W.R.T θ Cost = ΣβL x (g f,θ (x), x) + L y (f w (g f,θ (x)), r(f w (x), t)) r(f(x),t) = norm(ɑ*max(f(x); k = t, f(x); otherwise) Source: Learning to generate adversarial examples, Shumeet Baluja

11 Carlini and Wagner Attack: min x [ x - x 2 + λ f max(-k, Z(x ) h(x) - max{z(x ) k :k!= h(x)})] Z(x ): Input to the softmax layer Z(x ) k : k th component of Z(x ) max{z(x ) k :k!= h(x)} : second largest logit Z(x ) h(x) - max{z(x ) k :k!= h(x)} : Difference between second largest logit and largest logit k : Confidence Source: Towards Evaluating the Robustness of Neural Networks, Carlini and Wagner

12 Countering Adversarial Images Improve robustness of model Exploit randomness and non-differentiability Model specific and model agnostic defenses

13 Model Specific Defenses Based on Robust Optimization Minimization-maximization approach is followed Learning algorithm and regularization scheme Makes assumptions on nature of adversary Do not satisfy Kerckhoff's principle

14 Model Agnostic Defenses Transforms images to remove perturbations JPEG compression and image re-scaling are examples Paper aims to increase effectiveness of model agnostic defenses

15 Feature Squeezing Proposed by Xu et al Detects adversarial inputs Input space is reduced by squeezing out features Outputs are compared in original and reduced spaces Different outputs means adversarial inputs Source: Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks

16 JPEG Compression Proposed by Dziugaite et al Removes perturbations by compressing images Compression could remove aspects of perturbation Effective against small-magnitude perturbation With larger perturbation, compression is unable to recover non-adversarial image Source: A study of the effect of JPG compression on adversarial images

17 Total Variation Minimization Transformation is taken as an optimization problem Transformation is close to input, but also has low variation Inspired by noise removal Source: Countering Adversarial Images using Input Transformations

18 Image Quilting Images pieced together from small patches taken from database Non-parametric technique Database only has clean patches Patches are placed over predefined points and edges are smoothed Patches selected using KNN on database Resulting image does not have any perturbations

19 Experiments Performed in black box and gray box setting Performed on Imagenet dataset ResNet-50 model was attacked Attacks included FGSM, I-FGSM, Deepfool and Carlini and Wagner Top1 classification accuracy was reported for varying normalized L2 dissimilarities

20 Gray Box: Image Transformations at Test Time Source: Countering Adversarial Images using Input Transformations

21 Black Box: Image transformations at test time Source: Countering Adversarial Images using Input Transformations

22 Black Box: Ensembling and model transfer Source: Countering Adversarial Images using Input Transformations

23 Gray Box: Image transformations at test time Source: Countering Adversarial Images using Input Transformations

24 Comparison to Ensemble Adversarial Training Source: Countering Adversarial Images using Input Transformations

25 Our experiment: Running TVM with an ATN We built an ATN that broke an ANN from error rate 0.34 to 0.91 Error rate went from 0.91 to 0.90 when ATN perturbation was transformed using TVM Dataset consisted of non-mnist images

26 Conclusions and Questions Image transformations are a more generic defense Benefits from randomization Benefits from non-differentiability Why were they not successful against ATN attack? Like ATNs, can the best transformation be learned? How good are these transformations in complete white box settings?

27 Merci Beaucoup

Delving into Transferable Adversarial Examples and Black-box Attacks

Delving into Transferable Adversarial Examples and Black-box Attacks Delving into Transferable Adversarial Examples and Black-box Attacks Yanpei Liu, Xinyun Chen 1 Chang Liu, Dawn Song 2 1 Shanghai JiaoTong University 2 University of the California, Berkeley ICLR 2017/

More information

ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models

ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models Pin-Yu Chen AI Foundations Group IBM T. J. Watson Research Center Yorktown Heights, NY

More information

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Examples in Deep Learning Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Example Adversarial Example More Examples Robustness is critical in real systems More Examples Robustness

More information

arxiv: v3 [cs.cv] 25 Jan 2018

arxiv: v3 [cs.cv] 25 Jan 2018 COUNTERING ADVERSARIAL IMAGES USING INPUT TRANSFORMATIONS Chuan Guo Cornell University Mayank Rana & Moustapha Cissé & Laurens van der Maaten Facebook AI Research ABSTRACT arxiv:1711.00117v3 [cs.cv] 25

More information

Enhanced Attacks on Defensively Distilled Deep Neural Networks

Enhanced Attacks on Defensively Distilled Deep Neural Networks Enhanced Attacks on Defensively Distilled Deep Neural Networks Yujia Liu, Weiming Zhang, Shaohua Li, Nenghai Yu University of Science and Technology of China Email: yjcaihon@mail.ustc.edu.cn arxiv:1711.05934v1

More information

ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC-

ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC- ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC- TIVATION FUNCTION AND TOTAL VARIATION MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We improve the robustness of deep neural nets

More information

Understanding Adversarial Space through the lens of Attribution

Understanding Adversarial Space through the lens of Attribution Understanding Adversarial Space through the lens of Attribution Mayank Singh 1 [0000 0001 7261 6347], Nupur Kumari 1 [0000 0003 1799 1069], Abhishek Sinha 1 [0000 0002 3598 480X], and Balaji Krishnamurthy

More information

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University,

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, Adversarial Examples and Adversarial Training Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, 2017-05-30 Overview What are adversarial examples? Why do they happen?

More information

Properties of adv 1 Adversarials of Adversarials

Properties of adv 1 Adversarials of Adversarials Properties of adv 1 Adversarials of Adversarials Nils Worzyk and Oliver Kramer University of Oldenburg - Dept. of Computing Science Oldenburg - Germany Abstract. Neural networks are very successful in

More information

arxiv: v1 [cs.cv] 27 Dec 2017

arxiv: v1 [cs.cv] 27 Dec 2017 Adversarial Patch Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer {tombrown,dandelion,aurkor,abadi,gilmer}@google.com arxiv:1712.09665v1 [cs.cv] 27 Dec 2017 Abstract We present a method

More information

arxiv: v1 [cs.cv] 22 Nov 2018

arxiv: v1 [cs.cv] 22 Nov 2018 Distorting Neural Representations to Generate Highly Transferable Adversarial Examples Muzammal Naseer, Salman H. Khan, Shafin Rahman, Fatih Porikli Australian National University, Data61-CSIRO, Inception

More information

In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February Feature Squeezing:

In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February Feature Squeezing: In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February 2018 Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks Weilin Xu, David Evans, Yanjun Qi University

More information

Cascade Adversarial Machine Learning Regularized with a Unified Embedding

Cascade Adversarial Machine Learning Regularized with a Unified Embedding Cascade Adversarial Machine Learning Regularized with a Unified Embedding Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay Georgia Institute of Technology Atlanta, GA 3332 Abstract Injecting adversarial

More information

arxiv: v1 [cs.cv] 2 Mar 2018

arxiv: v1 [cs.cv] 2 Mar 2018 Protecting JPEG Images Against Adversarial Attacks Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo and James Storer Brandeis University aprakash,nemtiax,solomongarber,dilant,storer@brandeis.edu

More information

Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS

Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, Jun Zhu Department of Computer

More information

Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms

Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms Arjun Nitin Bhagoji 1, Warren He 2, Bo Li 3, and Dawn Song 2 1 Princeton University 2 University of California, Berkeley

More information

PPD: PERMUTATION PHASE DEFENSE AGAINST ADVERSARIAL EXAMPLES IN DEEP LEARNING

PPD: PERMUTATION PHASE DEFENSE AGAINST ADVERSARIAL EXAMPLES IN DEEP LEARNING PPD: PERMUTATION PHASE DEFENSE AGAINST ADVERSARIAL EXAMPLES IN DEEP LEARNING Anonymous authors Paper under double-blind review ABSTRACT Deep neural networks have demonstrated cutting edge performance on

More information

arxiv: v3 [cs.cv] 28 Feb 2018

arxiv: v3 [cs.cv] 28 Feb 2018 MITIGATING ADVERSARIAL EFFECTS THROUGH RAN- DOMIZATION Cihang Xie, Zhishuai Zhang & Alan L. Yuille Department of Computer Science The Johns Hopkins University Baltimore, MD 21218 USA {cihangxie306, zhshuai.zhang,

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 Semantic Adversarial Examples Hossein Hosseini Radha Poovendran Network Security Lab (NSL) Department of Electrical Engineering, University of Washington, Seattle, WA arxiv:1804.00499v1 [cs.cv] 16 Mar

More information

Dimensionality reduction as a defense against evasion attacks on machine learning classifiers

Dimensionality reduction as a defense against evasion attacks on machine learning classifiers Dimensionality reduction as a defense against evasion attacks on machine learning classifiers Arjun Nitin Bhagoji and Prateek Mittal Princeton University DC-Area Anonymity, Privacy, and Security Seminar,

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

Adversarial Patch. Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer

Adversarial Patch. Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer Adversarial Patch Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer {tombrown,dandelion,aurkor,abadi,gilmer}@google.com Abstract We present a method to create universal, robust, targeted

More information

arxiv: v1 [stat.ml] 28 Jan 2019

arxiv: v1 [stat.ml] 28 Jan 2019 Sanjay Kariyappa 1 Moinuddin K. Qureshi 1 arxiv:1901.09981v1 [stat.ml] 28 Jan 2019 Abstract Deep Neural Networks are vulnerable to adversarial attacks even in settings where the attacker has no direct

More information

arxiv: v2 [cs.lg] 22 Mar 2018

arxiv: v2 [cs.lg] 22 Mar 2018 arxiv:1712.00699v2 [cs.lg] 22 Mar 2018 Improving Network Robustness against Adversarial Attacks with Compact Convolution Rajeev Ranjan, Swami Sankaranarayanan, Carlos D. Castillo, and Rama Chellappa Center

More information

Local Gradients Smoothing: Defense against localized adversarial attacks

Local Gradients Smoothing: Defense against localized adversarial attacks Local Gradients Smoothing: Defense against localized adversarial attacks Muzammal Naseer Australian National University (ANU) muzammal.naseer@anu.edu.au Fatih Porikli Australian National University (ANU)

More information

arxiv: v1 [cs.cv] 25 Dec 2018

arxiv: v1 [cs.cv] 25 Dec 2018 Deflecting 3D Adversarial Point Clouds Through Outlier-Guided Removal Hang Zhou Kejiang Chen Weiming Zhang Han Fang Wenbo Zhou Nenghai Yu University of Science and Technology of China {zh299, chenj, fanghan,

More information

Local Gradients Smoothing: Defense against localized adversarial attacks

Local Gradients Smoothing: Defense against localized adversarial attacks Local Gradients Smoothing: Defense against localized adversarial attacks Muzammal Naseer Australian National University (ANU) muzammal.naseer@anu.edu.au Fatih Porikli Australian National University (ANU)

More information

AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI

AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI SESSION ID: SPO2-T07 AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI Sridhar Muppidi IBM Fellow and VP Technology IBM Security

More information

arxiv: v3 [stat.ml] 15 Nov 2017

arxiv: v3 [stat.ml] 15 Nov 2017 Reuben Feinman 1 Ryan R. Curtin 1 Saurabh Shintre 2 Andrew B. Gardner 1 arxiv:1703.00410v3 [stat.ml] 15 Nov 2017 Abstract Deep neural networks (DNNs) are powerful nonlinear architectures that are known

More information

arxiv: v1 [cs.lg] 25 Dec 2018

arxiv: v1 [cs.lg] 25 Dec 2018 PPD: PERMUTATION PHASE DEFENSE AGAINST ADVERSARIAL EXAMPLES IN DEEP LEARNING Mehdi Jafarnia-Jahromi Department of Electrical Engineering University of Southern California Los Angeles, CA {mjafarni}@usc.edu

More information

arxiv: v3 [cs.cv] 26 Sep 2017

arxiv: v3 [cs.cv] 26 Sep 2017 APE-GAN: Adversarial Perturbation Elimination with GAN arxiv:1707.05474v3 [cs.cv] 26 Sep 2017 Shiwei Shen ICT shenshiwei@ict.ac.cn Abstract Guoqing Jin ICT jinguoqing@ict.ac.cn Although neural networks

More information

Deflecting Adversarial Attacks with Pixel Deflection

Deflecting Adversarial Attacks with Pixel Deflection Deflecting Adversarial Attacks with Pixel Deflection Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, James Storer Brandeis University {aprakash,nemtiax,solomongarber,dilant,storer}@brandeis.edu

More information

arxiv: v1 [cs.lg] 15 Jan 2018

arxiv: v1 [cs.lg] 15 Jan 2018 Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks Bo Luo, Yannan Liu, Lingxiao Wei, Qiang Xu Department of Computer Science & Engineering The Chinese University of Hong

More information

Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network

Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network Received June 26, 2018, accepted August 8, 2018, date of publication August 20, 2018, date of current version September 7, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2866197 Multi-Targeted Adversarial

More information

Image Super-Resolution as a Defense Against Adversarial Attacks

Image Super-Resolution as a Defense Against Adversarial Attacks 1 Image Super-Resolution as a Defense Against Adversarial Attacks Aamir Mustafa, Salman H. Khan, Munawar Hayat, Jianbing Shen and Ling Shao Owing to the critical nature of security-sensitive CNN applications,

More information

arxiv: v1 [cs.lg] 29 Sep 2018

arxiv: v1 [cs.lg] 29 Sep 2018 INTERPRETING ADVERSARIAL ROBUSTNESS: A VIEW FROM DECISION SURFACE IN INPUT SPACE Fuxun Yu 1, Chenchen Liu 2, Yanzhi Wang 3, Xiang Chen 4 1,4 Department of Electrical Computer Engineering, George Mason

More information

arxiv: v2 [cs.cv] 6 Apr 2018

arxiv: v2 [cs.cv] 6 Apr 2018 Query-efficient Black-box Adversarial Examples Andrew Ilyas 12, Logan Engstrom 12, Anish Athalye 12, Jessy Lin 12 1 Massachusetts Institute of Technology, 2 LabSix {ailyas,engstrom,aathalye,lnj}@mit.edu

More information

An Explainable Adversarial Robustness Metric for Deep Learning Neural Networks

An Explainable Adversarial Robustness Metric for Deep Learning Neural Networks An Explainable Adversarial Robustness Metric for Deep Learning Neural Networks Chirag Agarwal 1, Bo Dong 2, Dan Schonfeld 1, Anthony Hoogs 2 1 Department of Electrical and Computer Engineering, University

More information

arxiv: v3 [cs.cv] 15 Sep 2018

arxiv: v3 [cs.cv] 15 Sep 2018 DPATCH: An Adversarial Patch Attack on Object Detectors Xin Liu1, Huanrui Yang1, Ziwei Liu2, Linghao Song1, Hai Li1, Yiran Chen1, arxiv:1806.02299v3 [cs.cv] 15 Sep 2018 2 1 Duke University The Chinese

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks

MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks Chang Song, Hsin-Pai Cheng, Huanrui Yang, Sicheng Li, Chunpeng Wu, Qing Wu, Yiran Chen, Hai Li Department of Electrical

More information

arxiv: v2 [cs.cv] 15 Aug 2017

arxiv: v2 [cs.cv] 15 Aug 2017 SafetyNet: Detecting and Rejecting Adversarial Examples Robustly arxiv:704.0003v2 [cs.cv] 5 Aug 207 Jiajun Lu, Theerasit Issaranon, David Forsyth University of Illinois at Urbana Champaign {jlu23, issaran,

More information

DPATCH: An Adversarial Patch Attack on Object Detectors

DPATCH: An Adversarial Patch Attack on Object Detectors DPATCH: An Adversarial Patch Attack on Object Detectors Xin Liu1, Huanrui Yang1, Ziwei Liu2, Linghao Song1, Hai Li1, Yiran Chen1 1 Duke 1 University, 2 The Chinese University of Hong Kong {xin.liu4, huanrui.yang,

More information

Adversarial Machine Learning

Adversarial Machine Learning MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN BIM LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN ATN FGSM igan IAN Adversarial Machine Learning McGAN Ian Goodfellow, Staff Research Scientist,

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples Image Transformation can make Neural Networks more robust against Adversarial Examples Dang Duy Thang Information Security Department Institute of Information Security Yokohama, Japan dgs174101@iisec.ac.jp

More information

Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition

Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition Noname manuscript No. (will be inserted by the editor) Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition Gaurav Goswami Akshay Agarwal Nalini Ratha Richa Singh Mayank Vatsa

More information

arxiv: v1 [cs.lg] 16 Nov 2018

arxiv: v1 [cs.lg] 16 Nov 2018 DARCCC: Detecting Adversaries by Reconstruction from Class Conditional Capsules arxiv:1811.06969v1 [cs.lg] 16 Nov 2018 Nicholas Frosst, Sara Sabour, Geoffrey Hinton {frosst, sasabour, geoffhinton}@google.com

More information

SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES

SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES Chaowei Xiao University of Michigan Jun-Yan Zhu MIT CSAIL Bo Li UC Berkeley Warren He UC Berkeley Mingyan Liu University of Michigan Dawn Song UC Berkeley ABSTRACT

More information

Safety verification for deep neural networks

Safety verification for deep neural networks Safety verification for deep neural networks Marta Kwiatkowska Department of Computer Science, University of Oxford UC Berkeley, 8 th November 2016 Setting the scene Deep neural networks have achieved

More information

Image Restoration Using DNN

Image Restoration Using DNN Image Restoration Using DNN Hila Levi & Eran Amar Images were taken from: http://people.tuebingen.mpg.de/burger/neural_denoising/ Agenda Domain Expertise vs. End-to-End optimization Image Denoising and

More information

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang Adversarial Machine Learning An Introduction With slides from: Binghui Wang Outline Machine Learning (ML) Adversarial ML Attack Taxonomy Capability Adversarial Training Conclusion Outline Machine Learning

More information

Adversarial Attacks and Defences Competition

Adversarial Attacks and Defences Competition Adversarial Attacks and Defences Competition Alexey Kurakin and Ian Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie

More information

arxiv: v2 [cs.lg] 29 Mar 2018

arxiv: v2 [cs.lg] 29 Mar 2018 Sumanth Dathathri * 1 Stephan Zheng * 1 Richard M. Murray 1 Yisong Yue 1 arxiv:1803.03870v2 [cs.lg] 29 Mar 2018 Abstract Deep neural networks are vulnerable to adversarial examples, which dramatically

More information

The State of Physical Attacks on Deep Learning Systems

The State of Physical Attacks on Deep Learning Systems The State of Physical Attacks on Deep Learning Systems Earlence Fernandes Collaborators: Ivan Evtimov, Kevin Eykholt, Chaowei Xiao, Amir Rahmati, Florian Tramer, Bo Li, Atul Prakash, Tadayoshi Kohno, Dawn

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION

ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION Alhussein Fawzi, Horst Samulowitz, Deepak Turaga, Pascal Frossard EPFL, Switzerland & IBM Watson Research Center, USA ABSTRACT Data augmentation is the

More information

Characterizing adversarial examples in deep networks with convolutional filter statistics

Characterizing adversarial examples in deep networks with convolutional filter statistics Joint work with Xin Li Characterizing adversarial examples in deep networks with convolutional filter statistics Fuxin Li School of EECS Oregon State University web.engr.oregonstate.edu/~lif Fooling a

More information

Are Image-Agnostic Universal Adversarial Perturbations for Face Recognition Difficult to Detect?

Are Image-Agnostic Universal Adversarial Perturbations for Face Recognition Difficult to Detect? Are Image-Agnostic Universal Adversarial Perturbations for Face Recognition Difficult to Detect? Akshay Agarwal, Richa Singh, Mayank Vatsa, and Nalini Ratha IIIT-Delhi, India and IBM TJ Watson, USA Email:

More information

Adversarial Attacks on Image Recognition*

Adversarial Attacks on Image Recognition* Adversarial Attacks on Image Recognition* Masha Itkina, Yu Wu, and Bahman Bahmani 3 Abstract This project extends the work done by Papernot et al. in [4] on adversarial attacks in image recognition. We

More information

Isolated and Ensemble Audio Preprocessing Methods for Detecting Adversarial Examples against Automatic Speech Recognition

Isolated and Ensemble Audio Preprocessing Methods for Detecting Adversarial Examples against Automatic Speech Recognition Isolated and Ensemble Audio Preprocessing Methods for Detecting Adversarial Examples against Automatic Speech Recognition Krishan Rajaratnam 1, Kunal Shah 2, Jugal Kalita 3 1 The College, University of

More information

arxiv: v4 [cs.cv] 30 Jan 2019

arxiv: v4 [cs.cv] 30 Jan 2019 AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks Chun-Chen Tu 1, Paishun Ting 1, Pin-Yu Chen, Sijia Liu, Huan Zhang 3, Jinfeng Yi 4, Cho-Jui Hsieh 3,

More information

arxiv: v1 [cs.cr] 1 Aug 2017

arxiv: v1 [cs.cr] 1 Aug 2017 ADVERSARIAL-PLAYGROUND: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning Andrew P. Norton * Yanjun Qi Department of Computer Science, University of Virginia arxiv:1708.00807v1

More information

Perturbation, Optimization and Statistics

Perturbation, Optimization and Statistics Perturbation, Optimization and Statistics Editors: Tamir Hazan Technion - Israel Institute of Technology Technion City, Haifa 32000, Israel George Papandreou Google Inc. 340 Main St., Los Angeles, CA 90291

More information

arxiv: v1 [cs.cv] 16 Apr 2018

arxiv: v1 [cs.cv] 16 Apr 2018 Robust Physical Adversarial Attack on Faster R-CNN Object Detector Shang-Tse Chen 1, Cory Cornelius 2, Jason Martin 2, and Duen Horng (Polo) Chau 1 arxiv:1804.05810v1 [cs.cv] 16 Apr 2018 1 Georgia Institute

More information

arxiv: v2 [cs.cv] 11 Feb 2017

arxiv: v2 [cs.cv] 11 Feb 2017 ADVERSARIAL MACHINE LEARNING AT SCALE Alexey Kurakin Google Brain kurakin@google.com Ian J. Goodfellow OpenAI ian@openai.com Samy Bengio Google Brain bengio@google.com ABSTRACT arxiv:1611.01236v2 [cs.cv]

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Project report - COS 598B Physical adversarial examples for semantic image segmentation

Project report - COS 598B Physical adversarial examples for semantic image segmentation Project report - COS 598B Physical adversarial examples for semantic image segmentation Vikash Sehwag Princeton University vvikash@princeton.edu Abstract In this project, we work on the generation of physical

More information

Imperial College London. Department of Electrical and Electronic Engineering. Final Year Project Report 2018

Imperial College London. Department of Electrical and Electronic Engineering. Final Year Project Report 2018 Imperial College London Department of Electrical and Electronic Engineering Final Year Project Report 2018 Project Title: Fooling Neural Networks using Adversarial Image Perturbations Student: Guillaume

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples ITAT 216 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 187 194 http://ceur-ws.org/vol-1649, Series ISSN 1613-73, c 216 P. Vidnerová, R. Neruda Vulnerability of machine learning models to adversarial

More information

arxiv: v2 [cs.cv] 30 Oct 2017

arxiv: v2 [cs.cv] 30 Oct 2017 SYNTHESIZING ROBUST ADVERSARIAL EXAMPLES Anish Athalye 1,2, Logan Engstrom 1,2, Andrew Ilyas 1,2, Kevin Kwok 2 1 Massachusetts Institute of Technology, 2 LabSix {aathalye,engstrom,ailyas}@mit.edu, kevin@labsix.org

More information

EXPLORING AND ENHANCING THE TRANSFERABILITY

EXPLORING AND ENHANCING THE TRANSFERABILITY EXPLORING AND ENHANCING THE TRANSFERABILITY OF ADVERSARIAL EXAMPLES Anonymous authors Paper under double-blind review ABSTRACT State-of-the-art deep neural networks are vulnerable to adversarial examples,

More information

arxiv: v2 [cs.cv] 30 Oct 2018

arxiv: v2 [cs.cv] 30 Oct 2018 Adversarial Noise Layer: Regularize Neural Network By Adding Noise Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, Ping Wang School of Electronics Engineering and Computer Science, Peking University

More information

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. Machine Learning: Support Vector Machines: Linear Kernel Support Vector Machines Extending Perceptron Classifiers. There are two ways to

More information

arxiv: v4 [cs.cr] 19 Mar 2017

arxiv: v4 [cs.cr] 19 Mar 2017 arxiv:1602.02697v4 [cs.cr] 19 Mar 2017 Practical Black-Box Attacks against Machine Learning Nicolas Papernot Patrick McDaniel Pennsylvania State University ngp5056@cse.psu.edu Pennsylvania State University

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

PIXELDEFEND: LEVERAGING GENERATIVE MODELS

PIXELDEFEND: LEVERAGING GENERATIVE MODELS PIXELDEFEND: LEVERAGING GENERATIVE MODELS TO UNDERSTAND AND DEFEND AGAINST ADVERSARIAL EXAMPLES Yang Song Stanford University yangsong@cs.stanford.edu Sebastian Nowozin Microsoft Research nowozin@microsoft.com

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

arxiv: v4 [cs.lg] 22 Feb 2018

arxiv: v4 [cs.lg] 22 Feb 2018 One pixel attack for fooling deep neural networks Jiawei Su* Kyushu University Japan jiawei.su@inf.kyushu-u.ac.jp Danilo Vasconcellos Vargas* Kyushu University Japan vargas@inf.kyushu-u.ac.jp Kouichi Sakurai

More information

Adversarial Localization Network

Adversarial Localization Network Adversarial Localization Network Lijie Fan Tsinghua University flj14@mails.tsinghua.edu.cn Shengjia Zhao Stanford University sjzhao@stanford.edu Stefano Ermon Stanford University ermon@stanford.edu Abstract

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

arxiv: v2 [cs.cv] 7 Nov 2018

arxiv: v2 [cs.cv] 7 Nov 2018 SparseFool: a few pixels make a big difference arxiv:1811.02248v2 [cs.cv] 7 Nov 2018 Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard École Polytechnique Fédérale de Lausanne {apostolos.modas,

More information

arxiv: v2 [cs.cr] 19 Feb 2016

arxiv: v2 [cs.cr] 19 Feb 2016 arxiv:1602.02697v2 [cs.cr] 19 Feb 2016 Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples Nicolas Papernot - The Pennsylvania State University Patrick McDaniel - The Pennsylvania

More information

ATTACKING BINARIZED NEURAL NETWORKS

ATTACKING BINARIZED NEURAL NETWORKS ATTACKING BINARIZED NEURAL NETWORKS Angus Galloway 1, Graham W. Taylor 1,2,3 Medhat Moussa 1 1 School of Engineering, University of Guelph, Canada 2 Canadian Institute for Advanced Research 3 Vector Institute

More information

When Big Datasets are Not Enough: The need for visual virtual worlds.

When Big Datasets are Not Enough: The need for visual virtual worlds. When Big Datasets are Not Enough: The need for visual virtual worlds. Alan Yuille Bloomberg Distinguished Professor Departments of Cognitive Science and Computer Science Johns Hopkins University Computational

More information

Safety verification for deep neural networks

Safety verification for deep neural networks Safety verification for deep neural networks Marta Kwiatkowska Department of Computer Science, University of Oxford Based on joint work with Xiaowei Huang, Sen Wang, Min Wu and Matthew Wicker CAV, Heidelberg,

More information

Robust Physical-World Attacks on Machine Learning Models

Robust Physical-World Attacks on Machine Learning Models Robust Physical-World Attacks on Machine Learning Models Ivan Evtimov 1, Kevin Eykholt 2, Earlence Fernandes 1, Tadayoshi Kohno 1, Bo Li 3, Atul Prakash 2, Amir Rahmati 3, and Dawn Song 4 arxiv:1707.08945v1

More information

arxiv: v1 [cs.lg] 20 May 2018

arxiv: v1 [cs.lg] 20 May 2018 Targeted Adversarial Examples for Black Box Audio Systems Rohan Taori Amog Kamsetty Brenton Chu Nikita Vemuri arxiv:1805.07820v1 [cs.lg] 20 May 2018 University of California, Berkeley Machine Learning

More information

Robust Physical-World Attacks on Deep Learning Models

Robust Physical-World Attacks on Deep Learning Models Robust Physical-World Attacks on Deep Learning Models Visit https://iotsecurity.eecs.umich.edu/#roadsigns for an FAQ Ivan Evtimov 3, Kevin Eykholt 2, Earlence Fernandes 3, Tadayoshi Kohno 3, Bo Li 1, Atul

More information

Foolbox Documentation

Foolbox Documentation Foolbox Documentation Release 1.2.0 Jonas Rauber & Wieland Brendel Jun 27, 2018 User Guide 1 Robust Vision Benchmark 3 1.1 Installation................................................ 3 1.2 Tutorial..................................................

More information

arxiv: v1 [cs.cv] 15 Apr 2016

arxiv: v1 [cs.cv] 15 Apr 2016 arxiv:1604.04326v1 [cs.cv] 15 Apr 2016 Improving the Robustness of Deep Neural Networks via Stability Training Stephan Zheng Google, Caltech Yang Song Google Thomas Leung Google Ian Goodfellow Google stzheng@caltech.edu

More information

arxiv: v1 [cs.lg] 17 Oct 2018

arxiv: v1 [cs.lg] 17 Oct 2018 Provable Robustness of ReLU networks via Maximization of Linear Regions Francesco Croce Maksym Andriushchenko Matthias Hein Saarland University, Germany Saarland University, Germany University of Tübingen,

More information

Opening the Black Box Data Driven Visualizaion of Neural N

Opening the Black Box Data Driven Visualizaion of Neural N Opening the Black Box Data Driven Visualizaion of Neural Networks September 20, 2006 Aritificial Neural Networks Limitations of ANNs Use of Visualization (ANNs) mimic the processes found in biological

More information

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018 INF 5860 Machine learning for image classification Lecture 11: Visualization Anne Solberg April 4, 2018 Reading material The lecture is based on papers: Deep Dream: https://research.googleblog.com/2015/06/inceptionism-goingdeeper-into-neural.html

More information

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Deep Learning Workshop Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Why deep learning? The ImageNet Challenge Goal: image classification with 1000 categories Top 5 error rate of 15%. Krizhevsky, Alex,

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

arxiv: v1 [cs.cv] 26 Dec 2017

arxiv: v1 [cs.cv] 26 Dec 2017 The Robust Manifold Defense: Adversarial Training using Generative Models arxiv:1712.09196v1 [cs.cv] 26 Dec 2017 Andrew Ilyas ailyas@mit.edu MIT EECS Constantinos Daskalakis costis@mit.edu MIT EECS Ajil

More information

arxiv: v1 [cs.lg] 28 Nov 2018

arxiv: v1 [cs.lg] 28 Nov 2018 A randomized gradient-free attack on ReLU networks Francesco Croce 1 and Matthias Hein 2 arxiv:1811.11493v1 [cs.lg] 28 Nov 2018 1 Department of Mathematics and Computer Science, Saarland University, Germany

More information

arxiv: v4 [stat.ml] 22 Jul 2018

arxiv: v4 [stat.ml] 22 Jul 2018 ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND DEFENSES Florian Tramèr Stanford University tramer@cs.stanford.edu Alexey Kurakin Google Brain kurakin@google.com Nicolas Papernot Pennsylvania State University

More information