Adversarial Machine Learning

Size: px
Start display at page:

Download "Adversarial Machine Learning"

Transcription

1 MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN BIM LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN ATN FGSM igan IAN Adversarial Machine Learning McGAN Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN MGAN C-VAE-GAN FF-GAN C-RNN-GAN South Park Commons San Francisco, BPDA DR-GAN BS-GAN DCGAN MAGAN 3D-GAN CCGAN AC-GAN Adversarial Training GAWWN Bayesian GAN EBGAN SN-GAN Context-RNN-GAN ALI f-gan PGD ArtGAN BiGAN CycleGAN Gradient Masking AnoGAN DTN MAD-GAN BEGAN AL-CGAN MalGAN

2 Adversarial Machine Learning Traditional ML: optimization Adversarial ML: game theory Minimum One player, one cost Equilibrium More than one player, more than one cost

3 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

4 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

5 Generative Modeling: Sample Generation Training Data Sample Generator (CelebA) (Karras et al, 2017) (Goodfellow 2018)

6 Adversarial Nets Framework D(x) tries to be near 1 D tries to make D(G(z)) near 0, G tries to make D(G(z)) near 1 Differentiable function D D x sampled from data x sampled from model Differentiable function G (Goodfellow et al., 2014) Input noise z (Goodfellow 2018)

7 GANs for simulated training data (Shrivastava et al., 2016) (Goodfellow 2018)

8 nsupervised Image-to-Image Translation Day to night (Liu et al., 2017) (Goodfellow 2018)

9 CycleGAN (Zhu et al., 2017) (Goodfellow 2018)

10 Designing DNA to optimize protein binding (Killoran et al, 2017) (Goodfellow 2018)

11 Personalized GANufacturing (Hwang et al 2018) (Goodfellow 2018)

12 Self-Attention GAN State of the art FID on ImageNet: 1000 categories, 128x128 pixels Goldfish Redshank Tiger Cat Geyser Broccoli Stone Wall Indigo Bunting (Zhang et al, 2018) Saint Bernard (Goodfellow 2018)

13 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

14 Adversarial Examples X ŷ x

15 Adversarial Examples in the Physical World (Kurakin et al, 2016)

16 Training on Adversarial Examples 10 0 Test misclassification rate Train=Clean, Test=Clean Train=Clean, Test=Adv Train=Adv, Test=Clean Train=Adv, Test=Adv Training time (epochs) (CleverHans tutorial, using method of Goodfellow et al 2014)

17 Adversarial Logit Pairing Logit pairing State of the art clean logits adv logits defense on ImageNet Adversarial perturbation (Kannan et al, 2018) (Goodfellow 2018)

18 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

19 Adversarial Examples for RL (Huang et al., 2017)

20 Self-Play 1959: Arthur Samuel s checkers agent (OpenAI, 2017) (Silver et al, 2017) (Bansal et al, 2017)

21 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

22 Extreme Reliability We want extreme reliability for Autonomous vehicles Air traffic control Surgery robots Medical diagnosis, etc. Adversarial machine learning research techniques can help with this Katz et al 2017: verification system, applied to air traffic control

23 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

24 Supervised Discriminator for Semi-Supervised Learning Real Fake Real cat Real dog Fake Hidden units Hidden units Learn to read with 100 labels rather Input Input than 60,000 (Odena 2016, Salimans et al 2016) (Goodfellow 2018)

25 Virtual Adversarial Training Miyato et al 2015: regularize for robustness to adversarial perturbations of unlabeled data (Oliver+Odena+Raffel et al, 2018) (Goodfellow 2018)

26 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

27 Privacy of training data X ˆX (Goodfellow 2018)

28 Defining (ε, δ)-differential Privacy (Abadi 2017) (Goodfellow 2018)

29 Private Aggregation of Teacher Ensembles (Papernot et al 2016) (Goodfellow 2018)

30 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

31 Domain Adaptation Domain Adversarial Networks (Ganin et al, 2015) Professor forcing (Lamb et al, 2016): Domain- Adversarial learning in RNN hidden state

32 GANs for domain adaptation (Bousmalis et al., 2016) (Raffel, 2017)

33 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

34 Adversarially Learned Fair Representations Edwards and Storkey 2015 Learn representations that are useful for classification An adversary tries to recover a sensitive variable S from the representation. Primary learner tries to make S impossible to recover Final decision does not depend on S

35 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

36 How do machine learning models work? (Goodfellow et al, 2014) Interpretability literature: our analysis tools show that deep nets work about how you would expect them to. (Selvaraju et al, 2016) Adversarial ML literature: ML models are very easy to fool and even linear models work in counter-intuitive ways.

37 A Cambrian Explosion of Machine Learning Research Topics Generative Modeling Security RL Make ML work ML+neuroscience Accountability and Transparency Fairness Extreme reliability Domain adaptation Label Privacy efficiency

38 Adversarial Examples that Fool both Human and Computer Vision Gamaleldin et al 2018

39 Questions (Goodfellow 2018)

Introduction to GANs

Introduction to GANs MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan Introduction to GANs IAN SAGAN McGAN Ian Goodfellow, Staff Research Scientist, Google Brain

More information

Bridging Theory and Practice of GANs

Bridging Theory and Practice of GANs MedGAN ID-CGAN Progressive GAN LR-GAN CGAN IcGAN b-gan LS-GAN AffGAN LAPGAN LSGAN InfoGAN CatGAN SN-GAN DiscoGANMPM-GAN AdaGAN AMGAN igan IAN CoGAN Bridging Theory and Practice of GANs McGAN Ian Goodfellow,

More information

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University,

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, Adversarial Examples and Adversarial Training Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, 2017-05-30 Overview What are adversarial examples? Why do they happen?

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain Institut des algorithmes d apprentissage de Montréal Modèles génératifs Mathieu Germain Qu est-ce qu un Modèle Génératif? Entrées Modèle Génératif Modèle Génératif Sorties Vraie distribution Distribution

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS

Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser SUPPLEMENTARY MATERIALS Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, Jun Zhu Department of Computer

More information

Countering Adversarial Images using Input Transformations

Countering Adversarial Images using Input Transformations Countering Adversarial Images using Input Transformations Chuan Guo, Mayank Rana, Moustapha Cisse, Laurens Van Der Maaten Presented by Hari Venugopalan, Zainul Abi Din Motivation: Why is this a hard problem

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Unsupervised Cross-Domain Deep Image Generation

Unsupervised Cross-Domain Deep Image Generation Unsupervised Cross-Domain Deep Image Generation Yaniv Taigman, Adam Polyak, Lior Wolf Facebook AI Research (FAIR) Tel Aviv Supervised Learning; {Xi, yi} àf Face Recognition (DeepFace / FAIR) Kaiming et

More information

Properties of adv 1 Adversarials of Adversarials

Properties of adv 1 Adversarials of Adversarials Properties of adv 1 Adversarials of Adversarials Nils Worzyk and Oliver Kramer University of Oldenburg - Dept. of Computing Science Oldenburg - Germany Abstract. Neural networks are very successful in

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

arxiv: v1 [cs.cv] 27 Dec 2017

arxiv: v1 [cs.cv] 27 Dec 2017 Adversarial Patch Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer {tombrown,dandelion,aurkor,abadi,gilmer}@google.com arxiv:1712.09665v1 [cs.cv] 27 Dec 2017 Abstract We present a method

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Modeling Density estimation Sample generation Training examples Model samples Next Video Frame

More information

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Examples in Deep Learning Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Example Adversarial Example More Examples Robustness is critical in real systems More Examples Robustness

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

The State of Physical Attacks on Deep Learning Systems

The State of Physical Attacks on Deep Learning Systems The State of Physical Attacks on Deep Learning Systems Earlence Fernandes Collaborators: Ivan Evtimov, Kevin Eykholt, Chaowei Xiao, Amir Rahmati, Florian Tramer, Bo Li, Atul Prakash, Tadayoshi Kohno, Dawn

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition

Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition sensors Article Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition Fei Gao 1, *, Fei Ma 1 ID, Jun Wang 1, Jinping Sun 1 ID, Erfu Yang 2 and Huiyu Zhou 3 1 School

More information

Dimensionality reduction as a defense against evasion attacks on machine learning classifiers

Dimensionality reduction as a defense against evasion attacks on machine learning classifiers Dimensionality reduction as a defense against evasion attacks on machine learning classifiers Arjun Nitin Bhagoji and Prateek Mittal Princeton University DC-Area Anonymity, Privacy, and Security Seminar,

More information

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain Institut des algorithmes d apprentissage de Montréal Modèles génératifs Mathieu Germain Qu est-ce qu un Modèle Génératif? Entrées Modèle Génératif Modèle Génératif Sorties Vraie distribution Distribution

More information

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich GANs for Exploiting Unlabeled Data Improved Techniques for Training GANs Learning from Simulated and Unsupervised Images through Adversarial Training Presented by: Uriya Pesso Nimrod Gilboa Markevich [

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Unsupervised Image-to-Image Translation Networks

Unsupervised Image-to-Image Translation Networks Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz NVIDIA {mingyul,tbreuel,jkautz}@nvidia.com Abstract Unsupervised image-to-image translation aims at learning a joint

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, 2016-12-4 Generative Modeling Density estimation Sample generation Training examples Model

More information

arxiv: v3 [cs.cv] 26 Sep 2017

arxiv: v3 [cs.cv] 26 Sep 2017 APE-GAN: Adversarial Perturbation Elimination with GAN arxiv:1707.05474v3 [cs.cv] 26 Sep 2017 Shiwei Shen ICT shenshiwei@ict.ac.cn Abstract Guoqing Jin ICT jinguoqing@ict.ac.cn Although neural networks

More information

RenderBEGAN: Adversarial Generative Domain Adaptation

RenderBEGAN: Adversarial Generative Domain Adaptation RenderBEGAN: Adversarial Generative Domain Adaptation Fabian Reimeier f.reimeier@fu-berlin.de Institute of Computer Science Freie Universität Berlin A thesis submitted for the degree of Master of Science

More information

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / 2017. 10. 31 syoh@add.re.kr Page 1/36 Overview 1. Introduction 2. Data Generation Synthesis 3. Distributed Deep Learning 4. Conclusions

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

Generative Adversarial Network: a Brief Introduction. Lili Mou

Generative Adversarial Network: a Brief Introduction. Lili Mou Generative Adversarial Network: a Brief Introduction Lili Mou doublepower.mou@gmail.com Outline Generative adversarial net Conditional generative adversarial net Deep generative image models using Laplacian

More information

From attribute-labels to faces: face generation using a conditional generative adversarial network

From attribute-labels to faces: face generation using a conditional generative adversarial network From attribute-labels to faces: face generation using a conditional generative adversarial network Yaohui Wang 1,2, Antitza Dantcheva 1,2, and Francois Bremond 1,2 1 Inria, Sophia Antipolis, France 2 Université

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation Alexander H. Liu 1 Yen-Cheng Liu 2 Yu-Ying Yeh 3 Yu-Chiang Frank Wang 1,4 1 National Taiwan University, Taiwan 2 Georgia

More information

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro 1 SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro Dongao Ma, Ping Tang, and Lijun Zhao arxiv:1809.04985v4 [cs.cv] 30 Nov 2018

More information

Dist-GAN: An Improved GAN using Distance Constraints

Dist-GAN: An Improved GAN using Distance Constraints Dist-GAN: An Improved GAN using Distance Constraints Ngoc-Trung Tran [0000 0002 1308 9142], Tuan-Anh Bui [0000 0003 4123 262], and Ngai-Man Cheung [0000 0003 0135 3791] ST Electronics - SUTD Cyber Security

More information

Characterizing adversarial examples in deep networks with convolutional filter statistics

Characterizing adversarial examples in deep networks with convolutional filter statistics Joint work with Xin Li Characterizing adversarial examples in deep networks with convolutional filter statistics Fuxin Li School of EECS Oregon State University web.engr.oregonstate.edu/~lif Fooling a

More information

Perturbation, Optimization and Statistics

Perturbation, Optimization and Statistics Perturbation, Optimization and Statistics Editors: Tamir Hazan Technion - Israel Institute of Technology Technion City, Haifa 32000, Israel George Papandreou Google Inc. 340 Main St., Los Angeles, CA 90291

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 Semantic Adversarial Examples Hossein Hosseini Radha Poovendran Network Security Lab (NSL) Department of Electrical Engineering, University of Washington, Seattle, WA arxiv:1804.00499v1 [cs.cv] 16 Mar

More information

arxiv: v3 [stat.ml] 15 Nov 2017

arxiv: v3 [stat.ml] 15 Nov 2017 Reuben Feinman 1 Ryan R. Curtin 1 Saurabh Shintre 2 Andrew B. Gardner 1 arxiv:1703.00410v3 [stat.ml] 15 Nov 2017 Abstract Deep neural networks (DNNs) are powerful nonlinear architectures that are known

More information

arxiv: v2 [cs.cv] 6 Apr 2018

arxiv: v2 [cs.cv] 6 Apr 2018 Query-efficient Black-box Adversarial Examples Andrew Ilyas 12, Logan Engstrom 12, Anish Athalye 12, Jessy Lin 12 1 Massachusetts Institute of Technology, 2 LabSix {ailyas,engstrom,aathalye,lnj}@mit.edu

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

Smooth Deep Image Generator from Noises

Smooth Deep Image Generator from Noises Smooth Deep Image Generator from Noises Tianyu Guo,2,3, Chang Xu 2, Boxin Shi 4, Chao Xu,3, Dacheng Tao 2 Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, China 2 UBTECH Sydney

More information

New Research Trends in Cybersecurity Privacy Attacks on Decentralized Deep Learning

New Research Trends in Cybersecurity Privacy Attacks on Decentralized Deep Learning New Research Trends in Cybersecurity Privacy Attacks on Decentralized Deep Learning Prof. Luigi V. Mancini Tel. +39 06 4991 8421 E-mail: mancini@di.uniroma1.it http://www.di.uniroma1.it/mancini Machine

More information

Adversarial Attacks and Defences Competition

Adversarial Attacks and Defences Competition Adversarial Attacks and Defences Competition Alexey Kurakin and Ian Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie

More information

Project report - COS 598B Physical adversarial examples for semantic image segmentation

Project report - COS 598B Physical adversarial examples for semantic image segmentation Project report - COS 598B Physical adversarial examples for semantic image segmentation Vikash Sehwag Princeton University vvikash@princeton.edu Abstract In this project, we work on the generation of physical

More information

arxiv: v1 [cs.cv] 20 Nov 2018

arxiv: v1 [cs.cv] 20 Nov 2018 MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense Rushil Anirudh, Jayaraman J. Thiagarajan, Bhavya Kailkhura, Timo Bremer {anirudh1, jjayaram, kailkhura1, bremer5}@llnl.gov

More information

arxiv: v1 [cs.ne] 11 Jun 2018

arxiv: v1 [cs.ne] 11 Jun 2018 Generative Adversarial Network Architectures For Image Synthesis Using Capsule Networks arxiv:1806.03796v1 [cs.ne] 11 Jun 2018 Yash Upadhyay University of Minnesota, Twin Cities Minneapolis, MN, 55414

More information

Adversarial Patch. Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer

Adversarial Patch. Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer Adversarial Patch Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer {tombrown,dandelion,aurkor,abadi,gilmer}@google.com Abstract We present a method to create universal, robust, targeted

More information

ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC-

ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC- ADVERSARIAL DEFENSE VIA DATA DEPENDENT AC- TIVATION FUNCTION AND TOTAL VARIATION MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We improve the robustness of deep neural nets

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

Data Set Extension with Generative Adversarial Nets

Data Set Extension with Generative Adversarial Nets Department of Artificial Intelligence University of Groningen, The Netherlands Data Set Extension with Generative Adversarial Nets Master s Thesis Luuk Boulogne S2366681 Primary supervisor: Secondary supervisor:

More information

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang Adversarial Machine Learning An Introduction With slides from: Binghui Wang Outline Machine Learning (ML) Adversarial ML Attack Taxonomy Capability Adversarial Training Conclusion Outline Machine Learning

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

Demystifying Machine Learning

Demystifying Machine Learning Demystifying Machine Learning Dmitry Figol, WW Enterprise Sales Systems Engineer - Programmability @dmfigol CTHRST-1002 Agenda Machine Learning examples What is Machine Learning Types of Machine Learning

More information

Improved Techniques for Training GANs

Improved Techniques for Training GANs Improved Techniques for Training GANs Tim Salimans tim@openai.com Ian Goodfellow ian@openai.com Wojciech Zaremba woj@openai.com Vicki Cheung vicki@openai.com Alec Radford alec@openai.com Xi Chen peter@openai.com

More information

Perception Deception: Physical Adversarial Attack Challenges and Tactics for DNN-based Object Detection

Perception Deception: Physical Adversarial Attack Challenges and Tactics for DNN-based Object Detection Perception Deception: Physical Adversarial Attack Challenges and Tactics for DNN-based Object Detection Zhenyu (Edward) Zhong, Yunhan Jia, Weilin Xu, Tao Wei Scan Me Our Team X-Lab Chief Security Scientist

More information

Virtual Adversarial Ladder Networks for Semi-Supervised Learning

Virtual Adversarial Ladder Networks for Semi-Supervised Learning Virtual Adversarial Ladder Networks for Semi-Supervised Learning Saki Shinoda 1, Daniel E. Worrall 2 & Gabriel J. Brostow 2 Computer Science Department University College London United Kingdom 1 saki.shinoda.16@ucl.ac.uk

More information

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr.

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr. Two Routes for Image to Image Translation: Rule based vs. Learning based Minglun Gong, Memorial Univ. Collaboration with Mr. Zili Yi Introduction A brief history of image processing Image to Image translation

More information

GAN and Feature Representation. Hung-yi Lee

GAN and Feature Representation. Hung-yi Lee GAN and Feature Representation Hung-yi Lee Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar

More information

When Big Datasets are Not Enough: The need for visual virtual worlds.

When Big Datasets are Not Enough: The need for visual virtual worlds. When Big Datasets are Not Enough: The need for visual virtual worlds. Alan Yuille Bloomberg Distinguished Professor Departments of Cognitive Science and Computer Science Johns Hopkins University Computational

More information

arxiv: v2 [cs.cv] 11 Feb 2017

arxiv: v2 [cs.cv] 11 Feb 2017 ADVERSARIAL MACHINE LEARNING AT SCALE Alexey Kurakin Google Brain kurakin@google.com Ian J. Goodfellow OpenAI ian@openai.com Samy Bengio Google Brain bengio@google.com ABSTRACT arxiv:1611.01236v2 [cs.cv]

More information

A Survey of Image Synthesis and Editing with Generative Adversarial Networks

A Survey of Image Synthesis and Editing with Generative Adversarial Networks TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll0X/XXllppXXX-XXX Volume XX, Number 3, June 20XX A Survey of Image Synthesis and Editing with Generative Adversarial Networks Xian Wu, Kun Xu*, Peter Hall

More information

arxiv: v4 [cs.cr] 19 Mar 2017

arxiv: v4 [cs.cr] 19 Mar 2017 arxiv:1602.02697v4 [cs.cr] 19 Mar 2017 Practical Black-Box Attacks against Machine Learning Nicolas Papernot Patrick McDaniel Pennsylvania State University ngp5056@cse.psu.edu Pennsylvania State University

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

arxiv: v1 [cs.lg] 16 Nov 2018

arxiv: v1 [cs.lg] 16 Nov 2018 DARCCC: Detecting Adversaries by Reconstruction from Class Conditional Capsules arxiv:1811.06969v1 [cs.lg] 16 Nov 2018 Nicholas Frosst, Sara Sabour, Geoffrey Hinton {frosst, sasabour, geoffhinton}@google.com

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 12: Deep Reinforcement Learning Types of Learning Supervised training Learning from the teacher Training data includes

More information

Deep Model Adaptation using Domain Adversarial Training

Deep Model Adaptation using Domain Adversarial Training Deep Model Adaptation using Domain Adversarial Training Victor Lempitsky, joint work with Yaroslav Ganin Skolkovo Institute of Science and Technology ( Skoltech ) Moscow region, Russia Deep supervised

More information

Deep Generative Models and a Probabilistic Programming Library

Deep Generative Models and a Probabilistic Programming Library Deep Generative Models and a Probabilistic Programming Library Discriminative (Deep) Learning Learn a (differentiable) function mapping from input to output x f(x; θ) y Gradient back-propagation Generative

More information

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING CS 7265 BIG DATA ANALYTICS INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, PhD Computer Science,

More information

S+U Learning through ANs - Pranjit Kalita

S+U Learning through ANs - Pranjit Kalita S+U Learning through ANs - Pranjit Kalita - (from paper) Learning from Simulated and Unsupervised Images through Adversarial Training - Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

DEEP LEARNING WITH DIFFERENTIAL PRIVACY Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google * Open

DEEP LEARNING WITH DIFFERENTIAL PRIVACY Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google * Open DEEP LEARNING WITH DIFFERENTIAL PRIVACY Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google * Open AI 2 3 Deep Learning Fashion Cognitive tasks: speech,

More information

Super-Resolution on Image and Video

Super-Resolution on Image and Video Super-Resolution on Image and Video Jason Liu Stanford University liujas00@stanford.edu Max Spero Stanford University maxspero@stanford.edu Allan Raventos Stanford University aravento@stanford.edu Abstract

More information

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation Yunjey Choi 1,2 Minje Choi 1,2 Munyoung Kim 2,3 Jung-Woo Ha 2 Sunghun Kim 2,4 Jaegul Choo 1,2 1 Korea University

More information

arxiv: v1 [stat.ml] 28 Jan 2019

arxiv: v1 [stat.ml] 28 Jan 2019 Sanjay Kariyappa 1 Moinuddin K. Qureshi 1 arxiv:1901.09981v1 [stat.ml] 28 Jan 2019 Abstract Deep Neural Networks are vulnerable to adversarial attacks even in settings where the attacker has no direct

More information

Machine Learning with Python

Machine Learning with Python DEVNET-2163 Machine Learning with Python Dmitry Figol, SE WW Enterprise Sales @dmfigol Cisco Spark How Questions? Use Cisco Spark to communicate with the speaker after the session 1. Find this session

More information

Deep learning in action with DL4J

Deep learning in action with DL4J Deep learning in action with DL4J Sigrid Keydana Trivadis München Keywords Deep Learning, Machine Learning, Artificial Intelligence, DL4J, Deeplearning4j, Java, Anomaly Detection Introduction In this second

More information

Delving into Transferable Adversarial Examples and Black-box Attacks

Delving into Transferable Adversarial Examples and Black-box Attacks Delving into Transferable Adversarial Examples and Black-box Attacks Yanpei Liu, Xinyun Chen 1 Chang Liu, Dawn Song 2 1 Shanghai JiaoTong University 2 University of the California, Berkeley ICLR 2017/

More information

Multi-Modal Generative Adversarial Networks

Multi-Modal Generative Adversarial Networks Multi-Modal Generative Adversarial Networks By MATAN BEN-YOSEF Under the supervision of PROF. DAPHNA WEINSHALL Faculty of Computer Science and Engineering THE HEBREW UNIVERSITY OF JERUSALEM A thesis submitted

More information