One-to-One Piecewise Linear Mappings Over Triangulations

Size: px
Start display at page:

Download "One-to-One Piecewise Linear Mappings Over Triangulations"

Transcription

1 One-to-One Piecewise Linear Mappings Over Triangulations Michael S. Floater Presentation by Elif Tosun Geometric Modeling Fall 02

2 Outline Introduction Triangulations Convex Combination Mappings Proof: Local Injectivity Global Injectivity Example Parametrizations

3 Introduction Condition for injectivity of piecewise linear mappings over triangulations Applications in Geometric Modeling Computer Graphics Numerical Grid Generation Parametrizations and image morphing Discrete analog of a property of harmonic mappings: Radó-Kneser-Choquet Theorem(RKC Thm)

4 Harmonic function: defined on closed region Harmonic Mappings satisfies the Laplace Eqn in the interior of D. Harmonic mapping-both components are harmonic Ex: power functions, RKC Thm:Given is harmonic and maps the boundary homeomorphically into the convex boundary. Then is one-to-one.

5 A similar property for convex combination mappings is established. Proof closely follows that of RKC Thm. In this paper:

6 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

7 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

8 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

9 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

10 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

11 Triangulations Let T be a finite set of non-degenerate triangles and let. T is a triangulation if The intersection of any pair of triangles is either empty, a common vertex, or a common edge The edges in T that belong to only one triangle form a simple closed polygon (=simply connected) Dividing Edge: An edge [v, w] of T that is an interior edge and both v and w are boundary vertices.

12 Lemma: Every interior vertex of T can be connected to at least 3 boundary vertices by an interior path. If T contains no dividing edges then v 1 can be connected to every boundary vertex by an interior path. (Proof) A triangulation is strongly connected if it contains no dividing edges. next

13 Lemma: Every interior vertex of T can be connected to at least 3 boundary vertices by an interior path. If T contains no dividing edges then v 1 can be connected to every boundary vertex by an interior path. (Proof) w/ dividing edges w/out dividing edges vk w1 vk w1 w2 vk-1 vk-1 v1 v1 back

14 Convex Combination Mappings Given T, a function is piecewise linear if continuous over D T and is linear over each triangle. is a piecewise linear function and for every interior vertex v of T, there exist weights, for such that Then, f is a convex combination function. is a convex combination mapping if, for every interior vertex v of T, there are positive weights such that

15 Convex Combination Mappings Discrete Maximum Principle: f is a convex combination function over T. For any interior vertex v 0 of T, let V 0 denote the set of all boundary vertices which can be connected to v 0 by an interior path. If for all, then for all. Pf: W: set of vertices including v 0 which can be connected via interior path v 1 : interior vertex in W at which f attains max=m over all W. v0 v1 Note: maximum of a convex comb. func. is attained at a boundary vertex.

16 Convex Combination Mappings Discrete Maximum Principle: f is a convex combination function over T. For any interior vertex v 0 of T, let V 0 denote the set of all boundary vertices which can be connected to v 0 by an interior path. If for all, then for all. Pf: W: set of vertices including v 0 which can be connected via interior path v 1 : interior vertex in W at which f attains max=m over all W. B/c convex combination; f(y)=m for all neighbors y of v 1. Then f(v k )=M =f(v 0 ). v0 vk v1 Note: maximum of a convex comb. func. is attained at a boundary vertex.

17 Overview Prove: If T is a strongly connected triangulation and is a convex combination mapping that maps to of convex. Then is one-toone. Step1: Local Injectivity: is one-to-one for every quadrilateral Q in T. Step2 Global Injectivity

18 Local Injectivity is locally one-to-one in the sense that one-to-one for every quadrilateral Q in T. Proof: Lemma 1.1: For every interior vertex v of T, the point lies in the interior of. Proof 1.1: is

19 Local Injectivity Note: From Lemma 1.1: Every triangle T containing a boundary edge in T, is mapped to a non degenerate triangle. Lemma 1.2: If is a quadrilateral in T and if is oneto-one then is one-to-one Proof 1.2: L

20 Local Injectivity Use eqn of L to come up with h: Then h is a convex combination function satisfying: h(v 2 )=h(v 3 )=0 and h(v 1 )>0 and h(v 4 )>=0. Note: -P1 is distinct from P2 and P3. -P2 is also distinct from P3.(proof) h>0 h<0 rising path:p1 falling paths: P2, P3 h=0 next

21 Local Injectivity Use eqn of L to come up with h: Then h is a convex combination function satisfying: h(v 2 )=h(v 3 )=0 and h(v 1 )>0 and h(v 4 )>=0. Note: -P1 is distinct from P2 and P3. -P2 is also distinct from P3.(proof) h>0 h<0 Now let Q be the closed path P2, P3, and edge (v2, v3). rising path:p1 falling paths: P2, P3 h=0

22 Local Injectivity Use eqn of L to come up with h: Then h is a convex combination function satisfying: h(v 2 )=h(v 3 )=0 and h(v 1 )>0 and h(v 4 )>=0. Note: -P1 is distinct from P2 and P3. -P2 is also distinct from P3.(proof) h>0 h<0 Now let Q be the closed path P2, P3, and edge (v2, v3). Due to convexity, and since h(u2)<0, h (u3)<=0, we have h(v)<0 for all boundary vertices v of T in Q other than u2 and u3. Then h(v)<0 for every vertex v in Q other than v2 and v3. Since v4 in enclosed by Q, and h(v4)>=0; contradiction. rising path:p1 h=0 falling paths: P2, P3

23 Q cannot enclose v1, for then Q would have to cross P1. Then Q would have to enclose v4. But cannot since we said h(v4)>=0, and the discrete max principle over Q fails (b.c v4 must be connected to at least one other vertex than v2 and v3 and due to falling path h (v)<0). h=0 Q h>0 h<0

24 Local Injectivity Due to connectedness of area of T: Any 2 triangles in T can be connected by a path of triangles where each consecutive pair shares an edge. So any T 1 in T can be connected to some T k that has a boundary edge. By Lemma 1.1, T k is non-degenerate. Then by Lemma 1.2, the T k-1 is non-degenerate, and so on. Then is oneto-one on every triangle, and therefore is oneto-one on every quadrilateral. Q.E.D T 1 T k

25 Step2 : Global Injectivity Overview: For any two distinct triangles T&S in T, have disjoint interiors. and If T 1 and T 2 in T don t share an edge, then is either empty or a point, for and. If then If in T, then is also empty.

26 Global Injectivity Lemma 2.1:For any two distinct triangles T and S in T, and have disjoint interiors. Pf:Assume there exists an x s.t. x belongs to interiors of both and. e Path: T 1 -> T k L Path: S 1 -> S l 2 cases: x l = k, T=S! k>l, T k-l+1 =S!

27 Global Injectivity Lemma 2.2:If T 1 and T 2 in T don t share an edge, then is either empty or a point, for and. Pf: Suppose the intersection is x. Note e cannot be boundary edge.

28 Global Injectivity Lemma 2.2:If T 1 and T 2 in T don t share an edge, then is either empty or a point, for and. Pf: Suppose the intersection is x. Note e cannot be boundary edge. e must be shared between T1 and some other triangle T3!= T2. Interior intersection -> contradict prev lemma

29 Global Injectivity Lemma 2.3:If Pf: then T 1 T 2 v Because of lemma 2.1 and 2.2 intersection is either empty or a common vertex. Since v is common, then intersection is

30 Global Injectivity Lemma 2.4: If in T, then is also empty Pf: Suppose not, and then they intersect at a vertex. (b/c of Lemma 2.2) It has to be an interior vertex. T2 S1=T1 S2

31 Proof of main theorem If T is a strongly connected triangulation and is a convex combination mapping that maps to of convex. Then is one-to-one. Let x 1 and x 2 be distinct points in. If they belong to a common triangle T, then from local injectivity, we know. Then say x 1 belongs to T1, and x 2 belongs to T2. But by the global injectivity we know that is one-to-one in. Therefore:. QED

32 Example parametrizations

33

34

35 Questions

ONE-TO-ONE PIECEWISE LINEAR MAPPINGS OVER TRIANGULATIONS

ONE-TO-ONE PIECEWISE LINEAR MAPPINGS OVER TRIANGULATIONS MATHEMATICS OF COMPUTATION Volume 72, Number 242, Pages 685 696 S 0025-5718(02)01466-7 Article electronically published on October 17, 2002 ONE-TO-ONE PIECEWISE LINEAR MAPPINGS OVER TRIANGULATIONS MICHAEL

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE**

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** Chin. Ann. of Math. 23B:(2002),87-9. ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** XU Changqing* DING Ren* Abstract The authors discuss the partition of a finite set of points in the plane

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

EULER S FORMULA AND THE FIVE COLOR THEOREM

EULER S FORMULA AND THE FIVE COLOR THEOREM EULER S FORMULA AND THE FIVE COLOR THEOREM MIN JAE SONG Abstract. In this paper, we will define the necessary concepts to formulate map coloring problems. Then, we will prove Euler s formula and apply

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle.

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle. Lesson Plan #39 Class: Geometry Date: Tuesday December 11 th, 2018 Topic: Sum of the measures of the interior angles of a polygon Objectives: Aim: What is the sum of the measures of the interior angles

More information

Polygon Partitioning. Lecture03

Polygon Partitioning. Lecture03 1 Polygon Partitioning Lecture03 2 History of Triangulation Algorithms 3 Outline Monotone polygon Triangulation of monotone polygon Trapezoidal decomposition Decomposition in monotone mountain Convex decomposition

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

SPERNER S LEMMA MOOR XU

SPERNER S LEMMA MOOR XU SPERNER S LEMMA MOOR XU Abstract. Is it possible to dissect a square into an odd number of triangles of equal area? This question was first answered by Paul Monsky in 970, and the solution requires elements

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp 4. Applications Meisters [Me] Two-Ears Theorem was motivated by the problem of triangulating a simple polygon. In fact Meisters suggests a greedy, but concise algorithm to achieve this goal, i.e., find

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics SIMPLIFYING TRIANGULATIONS OF S 3 Aleksandar Mijatović Volume 208 No. 2 February 2003 PACIFIC JOURNAL OF MATHEMATICS Vol. 208, No. 2, 2003 SIMPLIFYING TRIANGULATIONS OF S

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

A Data Dependent Triangulation for Vector Fields

A Data Dependent Triangulation for Vector Fields A Data Dependent Triangulation for Vector Fields Gerik Scheuermann Hans Hagen Institut for Computer Graphics and CAGD Department of Computer Science University of Kaiserslautern, Postfach 3049, D-67653

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Master Thesis Patrick Schnider July 25, 2015 Advisors: Prof. Dr. Emo Welzl, Manuel Wettstein Department of

More information

The Graphs of Triangulations of Polygons

The Graphs of Triangulations of Polygons The Graphs of Triangulations of Polygons Matthew O Meara Research Experience for Undergraduates Summer 006 Basic Considerations Let Γ(n) be the graph with vertices being the labeled planar triangulation

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( ) The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

Dissections of polygons into convex polygons

Dissections of polygons into convex polygons Dissections of polygons into convex polygons Andrzej Żak Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30 059 Kraków, Poland e-mail: zakandrz@uci.agh.edu.pl

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( ) 1 The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation Definition Simple Polygons 1. A polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve. 2. Simple closed curve means a certain

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

Which n-venn diagrams can be drawn with convex k-gons?

Which n-venn diagrams can be drawn with convex k-gons? Which n-venn diagrams can be drawn with convex k-gons? Jeremy Carroll Frank Ruskey Mark Weston Abstract We establish a new lower bound for the number of sides required for the component curves of simple

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

The Full Survey on The Euclidean Steiner Tree Problem

The Full Survey on The Euclidean Steiner Tree Problem The Full Survey on The Euclidean Steiner Tree Problem Shikun Liu Abstract The Steiner Tree Problem is a famous and long-studied problem in combinatorial optimization. However, the best heuristics algorithm

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Not Conway s 99-Graph Problem

Not Conway s 99-Graph Problem Not onway s 99-Graph Problem Sa ar Zehavi Ivo agundes avid de Oliveira September 15, 2017 1 bstract onway s 99-graph problem is the second problem amongst the five 1000$ 2017 open problems set [1]. our

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

Acute Triangulations of Polygons

Acute Triangulations of Polygons Europ. J. Combinatorics (2002) 23, 45 55 doi:10.1006/eujc.2001.0531 Available online at http://www.idealibrary.com on Acute Triangulations of Polygons H. MAEHARA We prove that every n-gon can be triangulated

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane Rom Pinchasi August 2, 214 Abstract We prove the following isoperimetric inequality in R 2, conjectured by Glazyrin

More information

BROUWER S FIXED POINT THEOREM. Contents

BROUWER S FIXED POINT THEOREM. Contents BROUWER S FIXED POINT THEOREM JASPER DEANTONIO Abstract. In this paper we prove Brouwer s Fixed Point Theorem, which states that for any continuous transformation f : D D of any figure topologically equivalent

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

Construction Of The Constrained Delaunay Triangulation Of A Polygonal Domain

Construction Of The Constrained Delaunay Triangulation Of A Polygonal Domain Construction Of The Constrained Delaunay Triangulation Of A Polygonal Domain Reinhard Klein 1 A fast and easy to implement divide-and-conquer algorithm is presented for the construction of the Constrained

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

CS 532: 3D Computer Vision 11 th Set of Notes

CS 532: 3D Computer Vision 11 th Set of Notes 1 CS 532: 3D Computer Vision 11 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Line Intersection

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Figure 1: Two polygonal loops

Figure 1: Two polygonal loops Math 1410: The Polygonal Jordan Curve Theorem: The purpose of these notes is to prove the polygonal Jordan Curve Theorem, which says that the complement of an embedded polygonal loop in the plane has exactly

More information

A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS

A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS Adrian Dumitrescu János Pach Géza Tóth Abstract Given a finite point set P in the plane, let b(p) be the smallest number of points q 1,q 2,... not belonging

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps S={s 1,s 2,..., s n } is the set of line segments segments don t intersect, but can touch

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1 Planar graphs Typically a drawing of a graph is simply a notational shorthand or a more visual way to capture the structure of the graph. Now we focus on the drawings themselves. Definition A drawing of

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards Nicole Chesnokov May 16, 2018 Contents 1 Introduction 2 2 The Art Gallery Problem 3 2.1 Proof..................................

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides?

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides? Coloring Radhika Gupta 1 Coloring of A N Let A N be the arc graph of a polygonal disc with N sides, N > 4 Problem 1 What is the chromatic number of the arc graph of a polygonal disc of N sides? Or we would

More information

Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem

Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem Pawe l Żyliński Institute of Mathematics University of Gdańsk, 8095 Gdańsk, Poland pz@math.univ.gda.pl Submitted: Sep 9, 005;

More information

2017 SOLUTIONS (PRELIMINARY VERSION)

2017 SOLUTIONS (PRELIMINARY VERSION) SIMON MARAIS MATHEMATICS COMPETITION 07 SOLUTIONS (PRELIMINARY VERSION) This document will be updated to include alternative solutions provided by contestants, after the competition has been mared. Problem

More information

The Art Gallery Problem

The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery. Computational Geometry [csci 3250] The Art Gallery Problem Laura Toma Bowdoin

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the

More information

Non-extendible finite polycycles

Non-extendible finite polycycles Izvestiya: Mathematics 70:3 1 18 Izvestiya RAN : Ser. Mat. 70:3 3 22 c 2006 RAS(DoM) and LMS DOI 10.1070/IM2006v170n01ABEH002301 Non-extendible finite polycycles M. Deza, S. V. Shpectorov, M. I. Shtogrin

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

6-1 Properties and Attributes of Polygons

6-1 Properties and Attributes of Polygons 6-1 Properties and Attributes of Polygons Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up 1. A? is a three-sided polygon. triangle 2. A? is a four-sided polygon. quadrilateral Evaluate each expression

More information

BEHIND THE INTUITION OF TILINGS

BEHIND THE INTUITION OF TILINGS BEHIND THE INTUITION OF TILINGS EUGENIA FUCHS Abstract. It may seem visually intuitive that certain sets of tiles can be used to cover the entire plane without gaps or overlaps. However, it is often much

More information

Math 208/310 HWK 4 Solutions Section 1.6

Math 208/310 HWK 4 Solutions Section 1.6 Math 208/310 HWK 4 Solutions Problem 1, 1.6, p35. Prove that the neighborhood z z 0 < ρ is an open set. [Hint: Show that if z 1 belongs to the neighborhood, then so do all points z that satisfy z z + 1

More information

Approximate Algorithms for Touring a Sequence of Polygons

Approximate Algorithms for Touring a Sequence of Polygons Approximate Algorithms for Touring a Sequence of Polygons Fajie Li 1 and Reinhard Klette 2 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The

More information

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE DHRUBAJIT CHOUDHURY, SUHYOUNG CHOI, AND GYE-SEON LEE Abstract. The aim of this work is to investigate properties

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information

Decomposing Coverings and the Planar Sensor Cover Problem

Decomposing Coverings and the Planar Sensor Cover Problem Intro. previous work. Restricted Strip Cover Decomposing Multiple Coverings Decomposing Coverings and the Planar Sensor Cover Problem Matt Gibson Kasturi Varadarajan presented by Niv Gafni 2012-12-12 Intro.

More information

On the number of distinct directions of planes determined by n points in R 3

On the number of distinct directions of planes determined by n points in R 3 On the number of distinct directions of planes determined by n points in R 3 Rom Pinchasi August 27, 2007 Abstract We show that any set of n points in R 3, that is not contained in a plane, determines

More information

Geometric Unique Set Cover on Unit Disks and Unit Squares

Geometric Unique Set Cover on Unit Disks and Unit Squares CCCG 2016, Vancouver, British Columbia, August 3 5, 2016 Geometric Unique Set Cover on Unit Disks and Unit Squares Saeed Mehrabi Abstract We study the Unique Set Cover problem on unit disks and unit squares.

More information

Improved Results on Geometric Hitting Set Problems

Improved Results on Geometric Hitting Set Problems Improved Results on Geometric Hitting Set Problems Nabil H. Mustafa nabil@lums.edu.pk Saurabh Ray saurabh@cs.uni-sb.de Abstract We consider the problem of computing minimum geometric hitting sets in which,

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information