Jacobian: Velocities and Static Forces 1/4

Size: px
Start display at page:

Download "Jacobian: Velocities and Static Forces 1/4"

Transcription

1 Jacobian: Velocities and Static Forces /4 Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

2 Kinematics Relations - Joint & Cartesian Spaces A robot is often used to manipulate object attached to its tip (end effector). The location of the robot tip may be specified using one of the following descriptions: Joint Space Cartesian Space R P N N NT Euler Angles N X P r N N {N} Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

3 Kinematics Relations - Forward & Inverse The robot kinematic equations relate the two description of the robot tip location N Tip Location in Joint Space X FK( ) IK(X ) X P r N N Tip Location in Cartesian Space Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

4 Kinematics Relations - Forward & Inverse N dt d ] [ z y z y N N v v v v X dt d X ] [ Tip Velocity in Joint Space Tip velocity in Cartesian Space Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

5 Jacobian Matri - Introduction The Jacobian is a multi dimensional form of the derivative. Suppose that for eample we have 6 functions, each of which is a function of 6 independent variables We may also use a vector notation to write these equations as ),,,,, ( ),,,,, ( ),,,,, ( f y f y f y Y F(X ) Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

6 Jacobian Matri - Introduction If we wish to calculate the differential of as a function of the differential we use the chain rule to get Which again might be written more simply using a vector notation as f f f y f f f y f f f y i y i X X F Y Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

7 Jacobian Matri - Introduction The 66 matri of partial derivative is defined as the Jacobian matri F Y X J ( X ) X X By dividing both sides by the differential time element, we can think of the Jacobian as mapping velocities in X to those in Y Y J( X ) X Note that the Jacobian is time varying linear transformation Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

8 Jacobian Matri - Introduction In the field of robotics the Jacobian matri describe the relationship between the joint angle rates ( ) and the translation and rotation velocities of the end effector ( ). This relationship is given by: N J J Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

9 Jacobian Matri - Introduction This epression can be epanded to: Where: is a 6 vector of the end effector linear and angular velocities is a 6N Jacobian matri is a N vector of the manipulator joint velocities is the number of joints N z y J z y N J N 6 6N N Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

10 Jacobian Matri - Introduction In addition to the velocity relationship, we are also interested in developing a relationship between the robot joint torques ( forces and moments ( F ) and the ) at the robot end effector (Static Conditions). This relationship is given by: F T J F Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

11 Jacobian Matri - Introduction This epression can be epanded to: Where: is a 6 vector of the robot joint torques is a 6N Transposed Jacobian matri is a N vector of the forces and moments at the robot end effector is the number of joints z y z y T N M M M F F F J F T J N 6 6N N Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

12

13

14

15 Jacobian Matri - Calculation Methods Differentiation the Forward Kinematics Eqs. Iterative Propagation (Velocities or Forces / Torques) Jacobian Matri Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

16 Jacobian Matri by Differentiation - R - /4 Consider a simple planar R robot y P y r, P V ee The end effector position is given by P P y r cos y r sin Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

17 Jacobian Matri by Differentiation - R - /4 The velocity of the end effector is defined by V V y P P y r sin r sin y r cos r cos Epressed in matri form we have J y rsin r cos Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

18 Jacobian Matri by Differentiation - R - /4 y F ee F y P y r F, P The moment about the joint generated by the force acting on the end effector is given by rf sin rf y cos Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

19 Jacobian Matri by Differentiation - R - 4/4 Epressed in matri form we have T J F F F rsin r cos y J y rsin r cos Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

20 Jacobian Matri by Differanciation - R - /4 Consider the following DOF Planar manipulator y y y y y Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

21 Jacobian Matri by Differanciation - R - /4 Problem: Compute the Jacobian matri that describes the relationship J J T F Solution: The end effector position and orientation is defined in the base frame by y Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

22 Jacobian Matri by Differanciation - R - /4 The forward kinematics gives us relationship of the end effector to the joint angles: P org, L c L c L c P org, y P org, y L s L s L s Differentiating the three epressions gives L s L s y L c L s L s L s L s L s L s L s L c L c L c L c L c L c L c L c Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

23 Jacobian Matri by Differanciation - R - 4/4 Using a matri form we get J y L s Ls Ls Ls Ls Ls L c Lc Lc Lc L c Lc The Jacobian provides a linear transformation, giving a velocity map and a force map for a robot manipulator. For the simple eample above, the equations are trivial, but can easily become more complicated with robots that have additional degrees a freedom. Before tackling these problems, consider this brief review of linear algebra. Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

24 Singularity - The Concept Motivation: We would like the hand of a robot (end effecror) to move with a certain velocity vector in Cartesian space. Using linear transformation relating the joint velocity to the Cartesian velocity we could calculate the necessary joint rates at each instance along the path. J Given: a linear transformation relating the joint velocity to the Cartesian velocity (usually the end effector) Question: Is the Jacobian matri invertable? (Or) Is it nonsingular? Is the Jacobian invertable for all values of? If not, where is it not invertable? Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

25 Singularity - The Concept Answer (Conceptual): Most manipulator have values of where the Jacobian becomes singular. Such locations are called singularities of the mechanism or singularities for short Singularities of the mechanism Workspace boundary singularities Workspace interior Singularities - Stretched out - Folded back End Effector Workspace Boundary - Two or more joints are lining up Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

26 Singularity - The Concept Manipulator Singular Configuration General Configuration Losing One or More DOF All DOF Are Available Losing one or more DOF means that there is a some direction (or subspace) in Cartesian space along which it is impossible to move the hand of the robot (end effector) no matter which joint rate are selected Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

27 Singularity Physical Interpretation - Eamples Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

28 Brief Linear Algebra Review - / Inverse of Matri A eists if and only if the determinant of A is non-zero. A Eists if and only if Det( A) A If the determinant of A is equal to zero, then the matri A is a singular matri Det( A) A A Singular Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

29 Brief Linear Algebra Review - / The rank of the matri A is the size of the largest squared Matri S for which Det( S) Eample - A A S A S Rank ( A) Eample - A S S Rank ( A) Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

30 Brief Linear Algebra Review - / If two rows or columns of matri A are equal or related by a constant, then Eample ) ( A Det A ) det( A A Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

31 Brief Linear Algebra Review - 4/ Eigenvalues AX X ( AI ) X Eigenvalues are the roots of the polynomial X Det( AI) If each solution to the characteristic equation (Eigenvalue) has a corresponding Eigenvector Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

32 Brief Linear Algebra Review - 4/ A ) ( I A Det ) ( X X X I A Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

33 Brief Linear Algebra Review - 4/ X X X X X X Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

34 Brief Linear Algebra Review - 5/ Det( A) Any singular matri ( ) has at least one Eigenvalue equal to zero Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

35 Brief Linear Algebra Review - 6/ Det( A) If A is non-singular ( ), and is an eigenvalue of A with corresponding to eigenvector X, then A X X Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

36 Brief Linear Algebra Review - 7/ If the n n matri A is of full rank (that is, Rank (A) = n), then the only solution to AX is the trivial one X If A is of less than full rank (that is Rank (A) < n), then there are n-r linearly independent (orthogonal) solutions j j n r for which A j Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

37 Brief Linear Algebra Review - 8/ If A is square, then A and A T have the same eigenvalues Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

38 Properties of the Jacobian - Velocity Mapping and Singularities Eample: Planar R det( J ( )) L s L c L L c s L s L c L L c s L s Lc L s L c L L s det( J( )) L Ls det( J( )) Note that is not a function of, Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

39 Properties of the Jacobian - Velocity Mapping and Singularities singular configurat ion Stretched Out Fold Back The manipulator loses DEF. The end effector can only move along the tangent direction of the arm. Motion along the radial direction is not possible. Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

40 Properties of the Jacobian - Force Mapping and Singularities The relationship between joint torque and end effector force and moments is given by: T J F T J The rank of is equals the rank of. At a singular configuration there eists a non trivial force such that J J T F F In other words, a finite force can be applied to the end effector that produces no torque at the robot s joints. In the singular configuration, the manipulator can lock up. Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

41 Properties of the Jacobian - Force Mapping and Singularities Eample: Planar R ; F In this case the force acting on the end effector (relative to the {} frame) is given by F Fc Fs Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

42 Properties of the Jacobian - Force Mapping and Singularities For we get Fs Fc L c L s L c L c L s s L L c L c L c L s s L L s F J T ; ) ( ) ( ) ( ) ( ) ( ) ( L c Fs L c Fs L L c Fs L L c Fs L L L c Fs L L L c Fs Fs Fc L c L s L c L c L s s L L c L c L c L s s L L s F J T Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

43 Properties of the Jacobian - Force Mapping and Singularities This situation is an old and famous one in mechanical engineering. For eample, in the steam locomotive, top dead center refers to the following condition The piston force, F, cannot generate any torque around the drive wheel ais because the linkage is singular in the position shown. Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

44 Properties of the Jacobian - Velocity Mapping and Singularities We have shown the relationship between joint space velocity and end effector velocity, given by J It is interesting to determine the inverse of this relationship, namely J Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

45 Consider the square 66 case for. Properties of the Jacobian - Velocity Mapping and Singularities J Det J If rank < 6 ( ), then there is no solution to the inverse equation (see Brief Linear Algebra Review -,7). Rank J 6 J However, if the rank = 5, then there is at least one non-trivial solution to the forward equation (see Brief Linear Algebra Review - 7). That is, for J Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

46 Properties of the Jacobian - Velocity Mapping and Singularities The solution is a direction in the in joint velocity space for which joint motion produces no end effector motion. We call any joint configuration for which a singular configuration. Q Rank J 6 Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

47 Properties of the Jacobian - Velocity Mapping and Singularities For certain directions of end effector motion, i i 6 J i i where: i are the eigenvalues of i are the eigenvectors of J J J If is fully ranked (see Brief Linear Algebra Review - 6/ ), we have i J i Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

48 Properties of the Jacobian - Velocity Mapping and Singularities As the joint approach a singular configuration there is at least one eigenvalue for which i. This results in Q i i In other word, as the joints approach the singular configuration, the end effector motion in a particular task direction causes the joint velocities to approach infinity. However, there are task velocities that can have solutions. j J If loses rank by only one, then there are n- eigenvectors in the task velocity space ( solutions. j ) for which solutions do eist. However, there can be multiple Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA

49

50

51

52

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

Robotics I. March 27, 2018

Robotics I. March 27, 2018 Robotics I March 27, 28 Exercise Consider the 5-dof spatial robot in Fig., having the third and fifth joints of the prismatic type while the others are revolute. z O x Figure : A 5-dof robot, with a RRPRP

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6)

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6) Jacobians 6.1 Linearized Kinematics In previous chapters we have seen how kinematics relates the joint angles to the position and orientation of the robot's endeffector. This means that, for a serial robot,

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Lecture «Robot Dynamics»: Kinematic Control

Lecture «Robot Dynamics»: Kinematic Control Lecture «Robot Dynamics»: Kinematic Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

[9] D.E. Whitney, "Resolved Motion Rate Control of Manipulators and Human Prostheses," IEEE Transactions on Man-Machine Systems, 1969.

[9] D.E. Whitney, Resolved Motion Rate Control of Manipulators and Human Prostheses, IEEE Transactions on Man-Machine Systems, 1969. 160 Chapter 5 Jacobians: velocities and static forces [3] I. Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1967. [4] D. Orin and W. Schrader, "Efficient Jacobian Determination

More information

4 Kinematic Linkages. Chapter 4. Kinematic Linkages. Department of Computer Science and Engineering 4-1

4 Kinematic Linkages. Chapter 4. Kinematic Linkages. Department of Computer Science and Engineering 4-1 Kinematic Linkages 4-1 Introduction In describing an object s motion, it is often useful to relate it to another object. Consider, for eample a coordinate system centered at our sun in which the moon s

More information

Singularity Management Of 2DOF Planar Manipulator Using Coupled Kinematics

Singularity Management Of 2DOF Planar Manipulator Using Coupled Kinematics Singularity Management Of DOF lanar Manipulator Using oupled Kinematics Theingi, huan Li, I-Ming hen, Jorge ngeles* School of Mechanical & roduction Engineering Nanyang Technological University, Singapore

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Lecture «Robot Dynamics»: Multi-body Kinematics

Lecture «Robot Dynamics»: Multi-body Kinematics Lecture «Robot Dynamics»: Multi-body Kinematics 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2005-06 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

Kinematics of Closed Chains

Kinematics of Closed Chains Chapter 7 Kinematics of Closed Chains Any kinematic chain that contains one or more loops is called a closed chain. Several examples of closed chains were encountered in Chapter 2, from the planar four-bar

More information

Lecture 2: Kinematics of medical robotics

Lecture 2: Kinematics of medical robotics ME 328: Medical Robotics Autumn 2016 Lecture 2: Kinematics of medical robotics Allison Okamura Stanford University kinematics The study of movement The branch of classical mechanics that describes the

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute What are the DH parameters for describing the relative pose of the two frames?

More information

Lecture 18 Kinematic Chains

Lecture 18 Kinematic Chains CS 598: Topics in AI - Adv. Computational Foundations of Robotics Spring 2017, Rutgers University Lecture 18 Kinematic Chains Instructor: Jingjin Yu Outline What are kinematic chains? C-space for kinematic

More information

Manipulation: Mechanisms, Grasping and Inverse Kinematics

Manipulation: Mechanisms, Grasping and Inverse Kinematics Manipulation: Mechanisms, Grasping and Inverse Kinematics RSS Lectures 14 & 15 Monday & Wednesday, 1 & 3 April 2013 Prof. Seth Teller Overview Mobility and Manipulation Manipulation Strategies Mechanism

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

Computer Animation. Rick Parent

Computer Animation. Rick Parent Algorithms and Techniques Kinematic Linkages Hierarchical Modeling Relative motion Parent-child relationship Simplifies motion specification Constrains motion Reduces dimensionality Modeling & animating

More information

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index A New Algorithm for Measuring and Optimizing the Manipulability Index Mohammed Mohammed, Ayssam Elkady and Tarek Sobh School of Engineering, University of Bridgeport, USA. Mohammem@bridgeport.edu Abstract:

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Spacecraft Actuation Using CMGs and VSCMGs

Spacecraft Actuation Using CMGs and VSCMGs Spacecraft Actuation Using CMGs and VSCMGs Arjun Narayanan and Ravi N Banavar (ravi.banavar@gmail.com) 1 1 Systems and Control Engineering, IIT Bombay, India Research Symposium, ISRO-IISc Space Technology

More information

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods CS545 Contents IX Inverse Kinematics Analytical Methods Iterative (Differential) Methods Geometric and Analytical Jacobian Jacobian Transpose Method Pseudo-Inverse Pseudo-Inverse with Optimization Extended

More information

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators Chapter Intelligent Behaviour Modelling and Control for Mobile Manipulators Ayssam Elkady, Mohammed Mohammed, Eslam Gebriel, and Tarek Sobh Abstract In the last several years, mobile manipulators have

More information

Table of Contents Introduction Historical Review of Robotic Orienting Devices Kinematic Position Analysis Instantaneous Kinematic Analysis

Table of Contents Introduction Historical Review of Robotic Orienting Devices Kinematic Position Analysis Instantaneous Kinematic Analysis Table of Contents 1 Introduction 1 1.1 Background in Robotics 1 1.2 Robot Mechanics 1 1.2.1 Manipulator Kinematics and Dynamics 2 1.3 Robot Architecture 4 1.4 Robotic Wrists 4 1.5 Origins of the Carpal

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Welman, 1993 Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation, Chris

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index DOI 10.1007/s10846-009-9388-9 A New Algorithm for Measuring and Optimizing the Manipulability Index Ayssam Yehia Elkady Mohammed Mohammed Tarek Sobh Received: 16 September 2009 / Accepted: 27 October 2009

More information

Robot. A thesis presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Master of Science. Zachary J.

Robot. A thesis presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Master of Science. Zachary J. Uncertainty Analysis throughout the Workspace of a Macro/Micro Cable Suspended Robot A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Extension of Usable Workspace of Rotational Axes in Robot Planning

Extension of Usable Workspace of Rotational Axes in Robot Planning Extension of Usable Workspace of Rotational Axes in Robot Planning Zhen Huang' andy. Lawrence Yao Department of Mechanical Engineering Columbia University New York, NY 127 ABSTRACT Singularity of a robot

More information

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION FOR THE DEGREE OF B.ENG. (Semester I: 1999/000) EE4304/ME445 - ROBOTICS October/November 1999 - Time Allowed: Hours INSTRUCTIONS TO CANDIDATES: 1. This paper

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Written exams of Robotics 1

Written exams of Robotics 1 Written exams of Robotics 1 http://www.diag.uniroma1.it/~deluca/rob1_en.php All materials are in English, unless indicated (oldies are in Year Date (mm.dd) Number of exercises Topics 2018 06.11 2 Planar

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Chapter 2 Kinematics of Mechanisms

Chapter 2 Kinematics of Mechanisms Chapter Kinematics of Mechanisms.1 Preamble Robot kinematics is the study of the motion (kinematics) of robotic mechanisms. In a kinematic analysis, the position, velocity, and acceleration of all the

More information

Kinematic Model of Robot Manipulators

Kinematic Model of Robot Manipulators Kinematic Model of Robot Manipulators Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri

More information

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io autorob.github.io Inverse Kinematics Objective (revisited) Goal: Given the structure of a robot arm, compute Forward kinematics: predicting the pose of the end-effector, given joint positions. Inverse

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel

WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel ISSN 30-9135 1 International Journal of Advance Research, IJOAR.org Volume 4, Issue 1, January 016, Online: ISSN 30-9135 WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel Karna Patel is currently pursuing

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

A Detailed Look into Forward and Inverse Kinematics

A Detailed Look into Forward and Inverse Kinematics A Detailed Look into Forward and Inverse Kinematics Kinematics = Study of movement, motion independent of the underlying forces that cause them September 19-26, 2016 Kinematics Preliminaries Preliminaries:

More information

Modelling and index analysis of a Delta-type mechanism

Modelling and index analysis of a Delta-type mechanism CASE STUDY 1 Modelling and index analysis of a Delta-type mechanism K-S Hsu 1, M Karkoub, M-C Tsai and M-G Her 4 1 Department of Automation Engineering, Kao Yuan Institute of Technology, Lu-Chu Hsiang,

More information

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 2, July-December 2011; pp. 43-51; International Science Press, ISSN: 0975-6108 Finding Reachable Workspace of a Robotic Manipulator

More information

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Masoud Moeini, University of Hamburg, Oct 216 [Wearable Haptic Thimble,A Developing Guide and Tutorial,Francesco Chinello]

More information

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2009 Solution of inverse kinematic problem for

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

4 DIFFERENTIAL KINEMATICS

4 DIFFERENTIAL KINEMATICS 4 DIFFERENTIAL KINEMATICS Purpose: The purpose of this chapter is to introduce you to robot motion. Differential forms of the homogeneous transformation can be used to examine the pose velocities of frames.

More information

Projective 2D Geometry

Projective 2D Geometry Projective D Geometry Multi View Geometry (Spring '08) Projective D Geometry Prof. Kyoung Mu Lee SoEECS, Seoul National University Homogeneous representation of lines and points Projective D Geometry Line

More information

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics Kinematics: The science of pure motion, considered without reference to the matter of objects moved, or to the

More information

02/22/02. Assignment 1 on the web page: Announcements. Test login procedure NOW!

02/22/02.   Assignment 1 on the web page: Announcements. Test login procedure NOW! Announcements Assignment on the web page: www.cs.cmu.edu/~jkh/anim_class.html est login procedure NOW! 0//0 Forward and Inverse Kinematics Parent: Chapter 4. Girard and Maciejewski 985 Zhao and Badler

More information

-SOLUTION- ME / ECE 739: Advanced Robotics Homework #2

-SOLUTION- ME / ECE 739: Advanced Robotics Homework #2 ME / ECE 739: Advanced Robotics Homework #2 Due: March 5 th (Thursday) -SOLUTION- Please submit your answers to the questions and all supporting work including your Matlab scripts, and, where appropriate,

More information

Visualizing Quaternions

Visualizing Quaternions Visualizing Quaternions Andrew J. Hanson Computer Science Department Indiana University Siggraph 1 Tutorial 1 GRAND PLAN I: Fundamentals of Quaternions II: Visualizing Quaternion Geometry III: Quaternion

More information

Automatic Control Industrial robotics

Automatic Control Industrial robotics Automatic Control Industrial robotics Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Prof. Luca Bascetta Industrial robots

More information

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz Humanoid Robotics Inverse Kinematics and Whole-Body Motion Planning Maren Bennewitz 1 Motivation Plan a sequence of configurations (vector of joint angle values) that let the robot move from its current

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction This dissertation will describe the mathematical modeling and development of an innovative, three degree-of-freedom robotic manipulator. The new device, which has been named the

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute We know how to describe the transformation of a single rigid object w.r.t. a single

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Ph.D. Antonio Marin-Hernandez Artificial Intelligence Department Universidad Veracruzana Sebastian Camacho # 5 Xalapa, Veracruz Robotics Action and Perception LAAS-CNRS 7, av du

More information

Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics

Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics J. Software Engineering & Applications, 2010, 3: 230-239 doi:10.4236/jsea.2010.33028 Published Online March 2010 (http://www.scirp.org/journal/jsea) Applying Neural Network Architecture for Inverse Kinematics

More information

I. This material refers to mathematical methods designed for facilitating calculations in matrix

I. This material refers to mathematical methods designed for facilitating calculations in matrix A FEW CONSIDERATIONS REGARDING MATRICES operations. I. This material refers to mathematical methods designed for facilitating calculations in matri In this case, we know the operations of multiplying two

More information

Reading. Topics in Articulated Animation. Character Representation. Animation. q i. t 1 t 2. Articulated models: Character Models are rich, complex

Reading. Topics in Articulated Animation. Character Representation. Animation. q i. t 1 t 2. Articulated models: Character Models are rich, complex Shoemake, Quaternions Tutorial Reading Topics in Articulated Animation 2 Articulated models: rigid parts connected by joints Animation They can be animated by specifying the joint angles (or other display

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset Chapter 3: Kinematics Locomotion Ross Hatton and Howie Choset 1 (Fully/Under)Actuated Fully Actuated Control all of the DOFs of the system Controlling the joint angles completely specifies the configuration

More information

Ch. 6: Trajectory Generation

Ch. 6: Trajectory Generation 6.1 Introduction Ch. 6: Trajectory Generation move the robot from Ti to Tf specify the path points initial + via + final points spatial + temporal constraints smooth motion; continuous function and its

More information

Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities

Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities H. Saafi a, M. A. Laribi a, S. Zeghloul a a. Dept. GMSC, Pprime Institute, CNRS - University of Poitiers

More information

EE Kinematics & Inverse Kinematics

EE Kinematics & Inverse Kinematics Electric Electronic Engineering Bogazici University October 15, 2017 Problem Statement Kinematics: Given c C, find a map f : C W s.t. w = f(c) where w W : Given w W, find a map f 1 : W C s.t. c = f 1

More information

Dynamics modeling of structure-varying kinematic chains for free-flying robots

Dynamics modeling of structure-varying kinematic chains for free-flying robots Dynamics modeling of structure-varying kinematic chains for free-flying robots Roberto Lampariello, Satoko Abiko, Gerd Hirzinger Institute of Robotics and Mechatronics German Aerospace Center (DLR) 8 Weßling,

More information

Control of industrial robots. Kinematic redundancy

Control of industrial robots. Kinematic redundancy Control of industrial robots Kinematic redundancy Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Kinematic redundancy Direct kinematics

More information

Singularity Handling on Puma in Operational Space Formulation

Singularity Handling on Puma in Operational Space Formulation Singularity Handling on Puma in Operational Space Formulation Denny Oetomo, Marcelo Ang Jr. National University of Singapore Singapore d oetomo@yahoo.com mpeangh@nus.edu.sg Ser Yong Lim Gintic Institute

More information

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL MODELIZATION OF A 3-PSP 3-DOF PARALLEL MANIPULATOR USED AS FLIGHT SIMULATOR MOVING SEAT. MASTER IN ENGINEERING PROJET III MEC693 SUBMITTED TO: Luc Baron Ph.D. Mechanical

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

Week 7: 2-D Haptic Rendering

Week 7: 2-D Haptic Rendering ME 20N: Haptics: Engineering Touch Autumn 2017 Week 7: 2-D Haptic Rendering Allison M. Okamura Stanford University 2-D Rendering 1 2 The Haptic Joint sensors Haptic device Θ Forward kinematic equations

More information

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism and Robot Kinematics, Part I: Algebraic Foundations Mechanism and Robot Kinematics, Part I: Algebraic Foundations Charles Wampler General Motors R&D Center In collaboration with Andrew Sommese University of Notre Dame Overview Why kinematics is (mostly)

More information

EXPANDING THE CALCULUS HORIZON. Robotics

EXPANDING THE CALCULUS HORIZON. Robotics EXPANDING THE CALCULUS HORIZON Robotics Robin designs and sells room dividers to defra college epenses. She is soon overwhelmed with orders and decides to build a robot to spra paint her dividers. As in

More information

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory Roshdy Foaad Abo-Shanab Kafr Elsheikh University/Department of Mechanical Engineering, Kafr Elsheikh,

More information