Projective 2D Geometry

Size: px
Start display at page:

Download "Projective 2D Geometry"

Transcription

1 Projective D Geometry Multi View Geometry (Spring '08) Projective D Geometry Prof. Kyoung Mu Lee SoEECS, Seoul National University Homogeneous representation of lines and points Projective D Geometry Line equation: a + by + c 0 ka + kby + kc 0 a a ka (, y,) b 0 ( k, ky, k) b 0, or (, y,) kb 0 c c kc Homogeneous representation of lines l k( a, b, c), k 0 he set of all equivalence classes in R 3 (0,0,0) forms P Homogeneous representation of point (,y) on l ( a, b, c) ( k, ky, k) k(, y,), k 0 homogeneous point inhomogeneous point (,, 3) (, ) equivalence class of vectors homogeneous vectors 3 3

2 Homogeneous representation of lines and points Projective D Geometry 3 he point lies on the line l iff l0 he intersection of two lines l and l is the point (Note l ( l l ) l ( l l ) 0 ) E) intersection of line (-+0) and y (-y+0) l l the null space of L l 0, L l L hus, l l (,0,), (0,,) y Inhomogeneous point (,) he line passing two points and is l (Note ( ) ( ) 0 ) Ideal points and the line at infinity Intersection of parallel lines Projective D Geometry 4 Eample l ( a, b, c) l ( a, b, c ) : a + by + c 0 : a + by + c 0 i j k b l l a b c ( c c) a a b c l 0 Inhomogeneous representation b 0 a 0 Ideal points (points at infinity): (,,0) Line at infinity: l (0,0,) which satisfy (,,0) l 0 he parallel lines l and l intersect l in the ideal point (b,-a,0), where (b,-a) is the line s direction hus, the line at infinity is the set of directions of lines in the plane

3 A model for the projective plane Projective D Geometry 5 eactly one line through two points eactly one point at intersection of two lines Points and lines of P can be represented by the intersections of rays and planes through the origin by the plane 3. Duality Projective D Geometry 6 l 0 l l 0 l l' l ' Duality Principle: o any theorem of -D projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

4 Conics Projective D Geometry 7 Conics: Curve described by nd -degree equation in the plane hyperbola, ellipse, and parabola Conic equation (inhomogeneous coordinates): In homogeneous representation: 3, y 3 a C 0 with C b/ d / Conic coeff. matri Symmetric, 6 elements but 5 DOF (less one for scale) { a : b : c : d : e : f } b/ c e/ d / e/ f Point conic Determination of a Conic Projective D Geometry 8 How to determine the conic coeff. matric C? Using five points on the conic: c ( a, b, c, d, e, f ) By stacking these 5 constraints, we have C is the null vector of 56 matri.

5 angent Line to Conics Projective D Geometry 9 he line l tangent to C at a point on C is given by l C. l C Dual Conics Projective D Geometry 0 Conics that defines an equation on lines: C * A line l tangent to the conic C satisfies l C l 0, where C * is the adjoint matri of C. In general, for a non-singular symmetric matri, C C. Dual conics line conics conic envelopes C 0 point conic l C l 0 line conic

6 Degenerate Conics Projective D Geometry A conic is degenerate if matri C is not of full rank e.g. two lines (rank ) m l C lm + ml e.g. repeated line (rank ) C ll Degenerate line conics: points (rank ), double point (rank) * * Note that for degenerate conics C ( ) C Projective ransformations Projective D Geometry Def) A projectivity is an invertible mapping h from P to itself such that three points,, 3 lie on the same line iff h( ), h( ) and h( 3 ) do. (line to line mapping) hm) A mapping h: P P is a projectivity iff there eists a non-singular 33 matri H such that h() H. Pf) Let,, 3 lies on a line l, then l i 0, i,,3. hen, for a non-singular H 33, all points i H i lie on the same line l H - l such that ' l ( H ' i l) H l H i H l 0 i i

7 Projective ransformations Projective D Geometry 3 Def) A planar projective transformation is a linear transformation on homogeneous 3-vectors represented by a non-singular 33 matri: H Homogeneous matri H: 8 DOF (less one for scale) Projectivity collineation projective transfromation homography Mapping between Planes Projective D Geometry 4 central projection may be epressed by H (application of theorem) similarity affine projective Distortions by central projection

8 Eamples of Projective ransformations Projective D Geometry 5 Removing the projective distortions Projective D Geometry 6 Select four points in a plane with known coordinates Inhomogeneous correspondence (,y) (,y ) (linear in h ij ) the eight elements are determined by four point correspondences. ( constraints/point, 8DOF 4 points needed)

9 ransform of lines and conics Projective D Geometry 7 Point transform: ransformation of lines: Note: l l ( H ) ( l H H l H l ( l l H ) l 0 ) ransformation of conics: C H CH ' ( C HC H ) Note: Hierarchy of transformations - Isometries Projective D Geometry 8 Class I: Isometries (isosame, metricmeasure) ε : orientation-preserving ε-: reverse orientation R : rotation matri (orthogonal) t : translation -vector Planar Euclidean transform rigid body motion 3 DOF ( rotation, translation) point correspondences Invariants: length, angle and area R R I

10 Similarity transformations Projective D Geometry 9 Class II: Similarity transformations (isometry + scale): s : isotropic scaling R R I Equi-form transformation, preserves shape. 4 DOF ( scale, rotation, translation) point correspondences Invariants: angles, ratio of lengths and areas, parallel lines Metric structure structure defined up to a similarity Affine transformations Projective D Geometry 0 Calss III: Affine transformations: A : non-singular matri 6 DOF ( scale, rotation, translation) hree point correspondences Invariants: parallel lines, ratio of lengths of parallel line segments, ratio of areas non-isotropic scaling (DOF: scale ratio and orientation)

11 Projective transformations Projective D Geometry Case IV: projective transformations: v ( v v ) 8 DOF ( scale, rotation, translation, line at infinity) Action non-homogeneous over the plane 4 point correspondences Invariants: cross ratio (ratio of ratios) of four collinear points, Summary Projective D Geometry

12 Projective D Geometry 3 Action of affinities and projectivities on line at infinity Line at infinity (ideal point) stays at infinity for affine transform, but points move along line Parallel line are still parallel Line at infinity (ideal point) becomes finite for perspective transform, allows to observe vanishing points, horizon v A A t + 0 v v v v A A t Projective D Geometry 4 Decomposition of a projective transformation H can be decomposed as E A : non-singular matri, A srk + tv K : upper-triangular matri with det K v 0, s is positive

13 Number of invariants Projective D Geometry 5 he number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation e.g. configuration of 4 points in general position has 8 dof (/pt) and so 4 similarity, affinity and zero projective invariants Recovery of affine and metric properties from images Under a projective transform H, since ideal points are mapped to finite points, the line at infinity l is mapped to a finite line. However, l is a fied line iff H is an affinity. 0 0 A 0 l H A l 0 0 l t A Note however that since Projective D Geometry 6 a point on l is not mapped to the same point on l A, ) k(, ) ( unless

14 Recovery of affine properties from images projection rectification Projective D Geometry 7 If l ( l is the imaged line at infinity with l 3 0,, l, l3) following H p maps l back to l (0,0,) ' H p H A 0 l l 3 l H ' p (, l, l3 l ) (0,0, ) l Determining imaged line at infinity vanishing line Projective D Geometry 8 v v l l l 3 l l 4 v l3 l 4 v l l l v v

15 Distance ratios Projective D Geometry 9 ( a, b ): d( b,c ) a : b d ( 0,),( a,),( a + b, ) H a, b,c v' H(,0 ) he circular points Projective D Geometry 30 Circular points:

16 he circular points Projective D Geometry 3 Any circle intersects l in the circular points circular points l + + d3 + e3 + f3 I 3 0 (,0,0 ) + i( 0,, 0) 0 + I J Algebraically, encodes orthogonal directions 0 (, i,0) (, i,0) Conic dual to the circular points Projective D Geometry 3 he conic dual to the circular points:

17 Angles Projective D Geometry 33 For lines l ( l, l, l ) and ( m, m, m ) the angle between 3 m 3 them is (b,-a) Euclidean: (a,b) his can be rewritten by l(a,b,c) Projective: his is invariant to projective transform since for H and l H l ( l l H ) * l C m 0 orthogonal Recovery of metric properties from images Projective D Geometry 34 We can find a projective transform that maps the imaged circular points to their canonical positions (,±i,0), then rectify the image using it. OR, metric rectification using : For point transform C ' * H C * ( H HPH HAH HS ) C ( H HPH HAH HS ) * ( H HPH HA ) H HSC H HS ( H HPH HA ) * ( H H ) C ( H H ) HP HA KK v KK HP HA KK v v KK v

18 Recovery of metric properties from images Projective D Geometry 35 Rectifying homography using SVD: aking SVD of ' C 0 0 H 0 0 H H U hen the rectifying projectivity is similarity, since H C r H ( H U U C ' H r U U 0 0 U U 0 0 r ) up to a Metric from affine Projective D Geometry 36 Affine to metric rectification using orthogonality constraints m KK 0 s s ( l l l3 ) m KK 0 s s 0 0 ' m 3 l m, l m + l m, l m s, s, s s ( s, s s ) is the null-vector of 3 matri, ( )( ) 0 C s KK K ' C SVD UC * U H U

19 Metric from projective Projective D Geometry 37 General metric rectification using 5 orthogonality constraints m KK K v ( l l l 3 ) m 0 v K v v ' m C 3 ( l m 0.5( l m + l m ), l m, 0.5( l m + l m ), 0. ( l m + l m ), l m ) c 0, c is the null-vector of 56 matri ' c C SVD UC * U H U Pole-polar relationship Projective D Geometry 38 he polar line lc of the point with respect to the conic C intersects the conic in two points. he two lines tangent to C at these points intersect at y C 0 Conjugate Pole of l Polar of

Part 0. The Background: Projective Geometry, Transformations and Estimation

Part 0. The Background: Projective Geometry, Transformations and Estimation Part 0 The Background: Projective Geometry, Transformations and Estimation La reproduction interdite (The Forbidden Reproduction), 1937, René Magritte. Courtesy of Museum Boijmans van Beuningen, Rotterdam.

More information

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates METR4202 -- Robotics Tutorial 2 Week 2: Homogeneous Coordinates The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations

3D Computer Vision II. Reminder Projective Geometry, Transformations 3D Computer Vision II Reminder Projective Geometry, Transformations Nassir Navab" based on a course given at UNC by Marc Pollefeys & the book Multiple View Geometry by Hartley & Zisserman" October 21,

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Invariance of l and the Conic Dual to Circular Points C

Invariance of l and the Conic Dual to Circular Points C Invariance of l and the Conic Dual to Circular Points C [ ] A t l = (0, 0, 1) is preserved under H = v iff H is an affinity: w [ ] l H l H A l l v 0 [ t 0 v! = = w w] 0 0 v = 0 1 1 C = diag(1, 1, 0) is

More information

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme Computer Vision 2. Projective Geometry in 3D Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 26 Syllabus Mon.

More information

Metric Rectification for Perspective Images of Planes

Metric Rectification for Perspective Images of Planes 789139-3 University of California Santa Barbara Department of Electrical and Computer Engineering CS290I Multiple View Geometry in Computer Vision and Computer Graphics Spring 2006 Metric Rectification

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Auto-calibration. Computer Vision II CSE 252B

Auto-calibration. Computer Vision II CSE 252B Auto-calibration Computer Vision II CSE 252B 2D Affine Rectification Solve for planar projective transformation that maps line (back) to line at infinity Solve as a Householder matrix Euclidean Projective

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 01/11/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

Robot Vision: Projective Geometry

Robot Vision: Projective Geometry Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals Understand homogeneous coordinates Understand points, line, plane parameters and interpret them geometrically

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

More on single-view geometry class 10

More on single-view geometry class 10 More on single-view geometry class 10 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan.

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision http://www.cs.unc.edu/~marc/ Multiple View Geometry in Computer Vision 2011.09. 2 3 4 5 Visual 3D Modeling from Images 6 AutoStitch http://cs.bath.ac.uk/brown/autostitch/autostitch.html 7 Image Composite

More information

Camera model and calibration

Camera model and calibration and calibration AVIO tristan.moreau@univ-rennes1.fr Laboratoire de Traitement du Signal et des Images (LTSI) Université de Rennes 1. Mardi 21 janvier 1 AVIO tristan.moreau@univ-rennes1.fr and calibration

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Projective geometry, camera models and calibration

Projective geometry, camera models and calibration Projective geometry, camera models and calibration Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 6, 2008 The main problems in computer vision Image

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C.

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C. GEOMETRY OF CURVES JOHN W. RUTTER CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. Contents Introduction 0.1 Cartesian coordinates 0.2 Polar coordinates 0.3 The Argand diagram 0.4 Polar equations

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 4 Affine Structure from Motion Mani Golparvar-Fard Department of Civil and Environmental Engineering 329D, Newmark Civil Engineering

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

CS231M Mobile Computer Vision Structure from motion

CS231M Mobile Computer Vision Structure from motion CS231M Mobile Computer Vision Structure from motion - Cameras - Epipolar geometry - Structure from motion Pinhole camera Pinhole perspective projection f o f = focal length o = center of the camera z y

More information

Robotics - Projective Geometry and Camera model. Matteo Pirotta

Robotics - Projective Geometry and Camera model. Matteo Pirotta Robotics - Projective Geometry and Camera model Matteo Pirotta pirotta@elet.polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano 14 March 2013 Inspired from Simone

More information

But First: Multi-View Projective Geometry

But First: Multi-View Projective Geometry View Morphing (Seitz & Dyer, SIGGRAPH 96) Virtual Camera Photograph Morphed View View interpolation (ala McMillan) but no depth no camera information Photograph But First: Multi-View Projective Geometry

More information

Projective geometry for 3D Computer Vision

Projective geometry for 3D Computer Vision Subhashis Banerjee Computer Science and Engineering IIT Delhi Dec 16, 2015 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence problem:

More information

Structure from Motion

Structure from Motion /8/ Structure from Motion Computer Vision CS 43, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from motion

More information

Projective geometry- 2D

Projective geometry- 2D Projecive geomer- D Acknowledgemens Marc Pollefes: for allowing e use of is ecellen slides on is opic p://www.cs.unc.edu/~marc/mvg/ Ricard Harle and Andrew Zisserman, "Muliple View Geomer in Compuer Vision"

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Epipolar Geometry class 11

Epipolar Geometry class 11 Epipolar Geometry class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16

More information

Camera models and calibration

Camera models and calibration Camera models and calibration Read tutorial chapter 2 and 3. http://www.cs.unc.edu/~marc/tutorial/ Szeliski s book pp.29-73 Schedule (tentative) 2 # date topic Sep.8 Introduction and geometry 2 Sep.25

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

3D Geometric Computer Vision. Martin Jagersand Univ. Alberta Edmonton, Alberta, Canada

3D Geometric Computer Vision. Martin Jagersand Univ. Alberta Edmonton, Alberta, Canada 3D Geometric Computer Vision Martin Jagersand Univ. Alberta Edmonton, Alberta, Canada Multi-view geometry Build 3D models from images Carry out manipulation tasks http://webdocs.cs.ualberta.ca/~vis/ibmr/

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Contents. 1 Introduction Background Organization Features... 7

Contents. 1 Introduction Background Organization Features... 7 Contents 1 Introduction... 1 1.1 Background.... 1 1.2 Organization... 2 1.3 Features... 7 Part I Fundamental Algorithms for Computer Vision 2 Ellipse Fitting... 11 2.1 Representation of Ellipses.... 11

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 More on Single View Geometry Lecture 11 2 In Chapter 5 we introduced projection matrix (which

More information

Computer Vision Projective Geometry and Calibration

Computer Vision Projective Geometry and Calibration Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA Kinematics Relations - Joint & Cartesian Spaces A robot is often used to manipulate

More information

A Stratified Approach for Camera Calibration Using Spheres

A Stratified Approach for Camera Calibration Using Spheres IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH YEAR 1 A Stratified Approach for Camera Calibration Using Spheres Kwan-Yee K. Wong, Member, IEEE, Guoqiang Zhang, Student-Member, IEEE and Zhihu

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane International Journal of Computer Vision 49(2/3), 117 141, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Linear Multi View Reconstruction and Camera Recovery Using a Reference

More information

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION Mr.V.SRINIVASA RAO 1 Prof.A.SATYA KALYAN 2 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING PRASAD V POTLURI SIDDHARTHA

More information

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello Elements of Computer Vision: Multiple View Geometry. Andrea Fusiello http://www.sci.univr.it/~fusiello July 11, 2005 c Copyright by Andrea Fusiello. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 28 https://www-m.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for Worksheet

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE Acta Math. Hungar., 134 (4) (2012), 571 582 DOI: 10.1007/s10474-011-0174-3 First published online November 29, 2011 ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE E. JURKIN and N. KOVAČEVIĆ Faculty

More information

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz Humanoid Robotics Projective Geometry, Homogeneous Coordinates (brief introduction) Maren Bennewitz Motivation Cameras generate a projected image of the 3D world In Euclidian geometry, the math for describing

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

3D Photography: Epipolar geometry

3D Photography: Epipolar geometry 3D Photograph: Epipolar geometr Kalin Kolev, Marc Pollefes Spring 203 http://cvg.ethz.ch/teaching/203spring/3dphoto/ Schedule (tentative) Feb 8 Feb 25 Mar 4 Mar Mar 8 Mar 25 Apr Apr 8 Apr 5 Apr 22 Apr

More information

Advanced Computer Graphics Transformations. Matthias Teschner

Advanced Computer Graphics Transformations. Matthias Teschner Advanced Computer Graphics Transformations Matthias Teschner Motivation Transformations are used To convert between arbitrary spaces, e.g. world space and other spaces, such as object space, camera space

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

Advances in Metric-neutral Visualization

Advances in Metric-neutral Visualization Advances in Metric-neutral Visualization Charles Gunn Institut für Mathematik Geometry and Visualization Group Technisches Universität Berlin GraVisMa 2010, Brno, October 7, 2010 Overview The talk will

More information

Camera Calibration from the Quasi-affine Invariance of Two Parallel Circles

Camera Calibration from the Quasi-affine Invariance of Two Parallel Circles Camera Calibration from the Quasi-affine Invariance of Two Parallel Circles Yihong Wu, Haijiang Zhu, Zhanyi Hu, and Fuchao Wu National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

ASSIGNMENT BOOKLET. Bachelor s Degree Programme. Analytical Geometry

ASSIGNMENT BOOKLET. Bachelor s Degree Programme. Analytical Geometry ASSIGNMENT BOOKLET MTE-05 Bachelor s Degree Programme Analytical Geometry (Valid from st January, 0 to st December, 0) School of Sciences Indira Gandhi National Open University Maidan Garhi New Delhi-0068

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

Multiple View Geometry in computer vision

Multiple View Geometry in computer vision Multiple View Geometry in computer vision Chapter 8: More Single View Geometry Olaf Booij Intelligent Systems Lab Amsterdam University of Amsterdam, The Netherlands HZClub 29-02-2008 Overview clubje Part

More information

3D reconstruction class 11

3D reconstruction class 11 3D reconstruction class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16

More information

Canonical representations. for the geometries of multiple projective views. Q.-T. Luong and T. Vieville

Canonical representations. for the geometries of multiple projective views. Q.-T. Luong and T. Vieville Canonical representations for the geometries of multiple projective views Q.-T. Luong and T. Vieville Report No. UCB/CSD 93-77 Oct. 1993, revised July 1994 Computer Science Division (EECS) University of

More information

Lecture 1.3 Basic projective geometry. Thomas Opsahl

Lecture 1.3 Basic projective geometry. Thomas Opsahl Lecture 1.3 Basic projective geometr Thomas Opsahl Motivation For the pinhole camera, the correspondence between observed 3D points in the world and D points in the captured image is given b straight lines

More information

Geometric Algebra. 8. Conformal Geometric Algebra. Dr Chris Doran ARM Research

Geometric Algebra. 8. Conformal Geometric Algebra. Dr Chris Doran ARM Research Geometric Algebra 8. Conformal Geometric Algebra Dr Chris Doran ARM Research Motivation Projective geometry showed that there is considerable value in treating points as vectors Key to this is a homogeneous

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015 3D Photography Marc Pollefeys, Torsten Sattler Spring 2015 Schedule (tentative) Feb 16 Feb 23 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30 Apr 6 Apr 13 Apr 20 Apr 27 May 4 May 11 May 18 Apr 6 Introduction Geometry,

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004 Augmented Reality II - Camera Calibration - Gudrun Klinker May, 24 Literature Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2. (Section 5,

More information

MAPI Computer Vision

MAPI Computer Vision MAPI Computer Vision Multiple View Geometry In tis module we intend to present several tecniques in te domain of te 3D vision Manuel Joao University of Mino Dep Industrial Electronics - Applications -

More information

Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length

Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length Peter F Sturm Computational Vision Group, Department of Computer Science The University of Reading,

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Introduction to Geometric Algebra Lecture VI

Introduction to Geometric Algebra Lecture VI Introduction to Geometric Algebra Lecture VI Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf - Summer School in Computer Graphics - 2010 CG UFRGS Lecture

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

Camera calibration. Robotic vision. Ville Kyrki

Camera calibration. Robotic vision. Ville Kyrki Camera calibration Robotic vision 19.1.2017 Where are we? Images, imaging Image enhancement Feature extraction and matching Image-based tracking Camera models and calibration Pose estimation Motion analysis

More information

2D Transforms. Lecture 4 CISC440/640 Spring Department of Computer and Information Science

2D Transforms. Lecture 4 CISC440/640 Spring Department of Computer and Information Science 2D Transforms Lecture 4 CISC440/640 Spring 2015 Department of Computer and Information Science Where are we going? A preview of assignment #1 part 2: The Ken Burns Effect 2 Where are we going? A preview

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( )

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( ) Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers (1879 1935) Investigation Exercise 3.1. (a) Construct a tessellation. (Directions for construction.)

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Linear Algebra Simplified

Linear Algebra Simplified Linear Algebra Simplified Readings http://szeliski.org/book/drafts/szeliskibook_20100903_draft.pdf -2.1.5 for camera geometry, -2.1.3, 2.1.4 for rotation representation Inner (dot) Product v w α 3 3 2

More information

Parallel projection Special type of mapping of 3D object on a 2D medium (technical drawing, display)

Parallel projection Special type of mapping of 3D object on a 2D medium (technical drawing, display) Parallel projection Special type of mapping of 3D object on a 2D medium (technical drawing, display) Parallel projection 1. Direction of projection s, plane of projection p 1 Parallel projection (parallel

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe : Martin Stiaszny and Dana Qu LECTURE 0 Camera Calibration 0.. Introduction Just like the mythical frictionless plane, in real life we will

More information