Modeling and Propagating CNNs in a Tree Structure for Visual Tracking

Size: px
Start display at page:

Download "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking"

Transcription

1 The Visual Object Tracking Challenge Workshop 2016 Modeling and Propagating CNNs in a Tree Structure for Visual Tracking Hyeonseob Nam* Mooyeol Baek* Bohyung Han Dept. of Computer Science and Engineering *Equal contributors

2 Key concept 2 Multiple CNNs trained on tracking results from different time slices Modeling and propagating CNNs in a tree structure

3 Deep Learning for Visual Tracking Response map from CNN features HCF [Ma2016] FCNT [Wang2015] DeepSRDCF [Danelljan2015] 3 Pre-train CNN with tracking datasets MDNet [Nam2015]

4 Challenges Less training data Catastrophic forgetting 4 Online update Only a single labeled frame CNN forgets previous information Overfitting Difficult to train Unstable model Easily drifts

5 Our method CNNs trained on frames from different time slices State estimation Model update 5

6 Overall Algorithm 1 Initialize model with ground-truth 6 CNN1 1 st frame Model ground-truth positive patches negative patches

7 Overall Algorithm 2 Estimate target location for T consecutive frames 7 CNN1 (T+1) 23 nd rd st frame Model tracking results target candidates

8 Overall Algorithm 3 Update model 8 CNN1 21 nd st frame 31 rd st frame (T+1) 1 st st frame CNN2 Model tracking results positive patches negative patches Choose CNN with the best target score as a parent Maintain N latest CNNs

9 Overall Algorithm 4 Iterate until the end of sequence 9 CNN1 CNN2 (2T+1) (T+2) (T+3) nd rdst frame Model tracking results target candidates

10 Overall Algorithm 4 Iterate until the end of sequence 10 CNN1 (T+2) 1 st nd frame (T+3) 1 st rd frame (2T+1) 1 st frame st frame CNN2 Model CNN3 tracking results positive patches negative patches Choose CNN with the best target score as a parent Maintain N latest CNNs

11 Structure of CNN 11 Convolution layers are from VGG-M [Chatfield2014] network. Output: normalized vector [φ(x), 1 φ(x)] T Fully-connected layers are randomly initialized. Update fully-connected layers only (fc4, fc5, output)

12 State Estimation Weighted-average scores from multiple CNNs w N : min(max(φ N (x)), β N ) affinity of CNN N with t th frame reliability of CNN N 12 CNN w 1 CNN w 2 t th frame patch x* CNN 3 CNN N models w 3 w N scores φ N (x*) weights 0.79 score

13 Model Update 1 Sample training data for model update Store target scores of each CNN for parent selection 13 CNN w 1 CNN w 2 CNN w score t th frame patch CNN N models 0.66 w N scores weights positive patches negative patches score log

14 Model Update 2 14 Model CNN 1 Score log Target scores t+1 t+2 t+t Avg Disable old model (maintain N latest models) CNN 1 β 1 CNN 2 CNN max 0.91 CNN 2 β 2 CNN 3 β 3 CNN N 0.66 positive patches negative patches 0.91 CNN N+1 CNN N Finetune β N min. edge score along the path β N+1 =min(β 3,0.91)

15 Model Update an Example Soccer sequence 15 node: CNN image: representative training sample Multiple CNN captures multi-modal appearances Tree structure isolates erroneous models in a branch

16 Experiment Dataset VOT2016, VOT2015 [Kristan2015], OTB50 [Wu2013] 16 Experiment settings Parameters fixed throughout the whole experiment Speed: 1.5 fps Intel Core i7 3.3Ghz with NVIDIA TITAN X MATLAB / MatConvNet

17 Results VOT2016 Overlap: 0.56, Failures: 0.83, Unsupervised overlap: 0.49 Red box: tracking result, Black box: ground-truth <fish4> Overlap=0.45, Failures=0.00 <iceskater2> Overlap=0.62, Failures= <motocross1> Overlap=0.51, Failures=0.00 <nature> Overlap=0.58, Failures=2.00

18 Results VOT2015 [Kristan2015] 18 Trackers *MDNet excluded Accuracy Robustness Expected overlap ratio Rank Score Rank Score DSST [Danelljan2014] MUSTer [Hong2015CVPR] MEEM [Zhang2014] Struck [Hare2011] RAJSSC [Zhang2015] NSAMF [Li2014] SC-EBT [Wang2014] spst [Hua2015] LDP [Lukežič2016] SRDCF [Danelljan2015ICCV] EBT [Zhu2016] DeepSRDCF [Danelljan2015ICCVW] TCNN (ours) Red: best, Yellow: second best

19 Results OTB50 [Wu2013] 19 TCNN (ours) compared to state-of-the-art trackers HCF [Ma2016], CNN-SVM [Hong2015ICML], MEEM [Zhang2014], SRDCF [Danelljan2015ICCV], DeepSRDCF [Danelljan2015ICCVW], MUSTer [Hong2015CVPR], FCNT [Wang2015], DSST [Danelljan2014], Struck [Hare2011]

20 Ablation study Single Single CNN Linear Models propagating in a linear chain Tree-mean Models propagating in a tree structure Equal weights for every model Tree-weighted Models and weights propagating in a tree structure Results on OTB50 Variations Precision Success AUC Single Linear Tree-mean Tree-weighted

21 Comparison with MDNet Results on VOT2016 Results on OTB50 21 Trackers Accuracy Robustness MDNet-N Trackers Precision Success AUC MDNet-N TCNN (ours) TCNN (ours) MDNet MDNet MDNet-N: MDNet without pretraining using tracking videos

22 Conclusion Multiple CNNs are helpful to achieve multi-modality and reliability of target appearances. 22 The CNNs and their weights propagating in a tree structure efficiently isolates error in a temporal manner. Please refer to our arxiv paper for further details.

23 23 Thank you.

Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA

Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA PhD Defense, June 10 2016 Rapporteur Rapporteur Examinateur Examinateur Directeur de these Co-encadrant de these

More information

Supplementary Material

Supplementary Material Supplementary Material ECO: Efficient Convolution Operators for Tracking Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Department of Electrical Engineering,

More information

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, Michael Felsberg 2 Discriminative Correlation Filters (DCF)

More information

Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France

Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France Online Object Tracking with Proposal Selection Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France Outline 2 Background Our approach Experimental results Summary Background 3 Tracking-by-detection

More information

CREST: Convolutional Residual Learning for Visual Tracking

CREST: Convolutional Residual Learning for Visual Tracking CREST: Convolutional Residual Learning for Visual Tracking Yibing Song, Chao Ma 2, Lijun Gong 3, Jiawei Zhang, Rynson W.H. Lau, and Ming-Hsuan Yang 4 City University of Hong Kong, Hong Kong 2 The University

More information

arxiv: v1 [cs.cv] 27 Oct 2015

arxiv: v1 [cs.cv] 27 Oct 2015 Learning Multi-Domain Convolutional Neural Networks for Visual Tracking Hyeonseob Nam Bohyung Han Dept. of Computer Science and Engineering, POSTECH, Korea {namhs9, bhhan}@postech.ac.kr arxiv:.9v [cs.cv]

More information

Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation

Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation Al-Hussein A. El-Shafie Faculty of Engineering Cairo University Giza, Egypt elshafie_a@yahoo.com Mohamed Zaki Faculty

More information

Fully-Convolutional Siamese Networks for Object Tracking

Fully-Convolutional Siamese Networks for Object Tracking Fully-Convolutional Siamese Networks for Object Tracking Luca Bertinetto*, Jack Valmadre*, João Henriques, Andrea Vedaldi and Philip Torr www.robots.ox.ac.uk/~luca luca.bertinetto@eng.ox.ac.uk Tracking

More information

Unveiling the Power of Deep Tracking

Unveiling the Power of Deep Tracking Unveiling the Power of Deep Tracking Goutam Bhat 1, Joakim Johnander 1,2, Martin Danelljan 1, Fahad Shahbaz Khan 1,3, and Michael Felsberg 1 1 CVL, Department of Electrical Engineering, Linköping University,

More information

Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS

Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS Gao Zhu Fatih Porikli,2,3 Hongdong Li,3 Australian National University, NICTA 2 ARC Centre of Excellence for

More information

Object-Aware Tracking

Object-Aware Tracking Object-Aware Tracking Ivan Bogun Eraldo Ribeiro Department of Computer Sciences Florida Institute of Technology, Melbourne, Florida, U.S.A. ibogun21@my.fit.edu, eribeiro@cs.fit.edu Abstract In this paper,

More information

Real-Time MDNet. 1 Introduction. Ilchae Jung 1, Jeany Son 1, Mooyeol Baek 1, and Bohyung Han 2

Real-Time MDNet. 1 Introduction. Ilchae Jung 1, Jeany Son 1, Mooyeol Baek 1, and Bohyung Han 2 Real-Time MDNet Ilchae Jung 1, Jeany Son 1, Mooyeol Baek 1, and Bohyung Han 2 1 Dept. of CSE, POSTECH, Korea 2 Dept. of ECE & ASRI, Seoul National University, Korea {chey0313,jeany,mooyeol}@postech.ac.kr

More information

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material Learning to Track at 1 FPS with Deep Regression Networks - Supplementary Material David Held, Sebastian Thrun, Silvio Savarese Department of Computer Science Stanford University {davheld,thrun,ssilvio}@cs.stanford.edu

More information

VISUAL object tracking is one of the fundamental problems

VISUAL object tracking is one of the fundamental problems Robust Visual Tracking via Hierarchical Convolutional Features Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang arxiv:77.386v [cs.cv] 2 Jul 27 Abstract Visual tracking is challenging as target

More information

VISUAL object tracking is one of the fundamental problems

VISUAL object tracking is one of the fundamental problems Robust Visual Tracking via Hierarchical Convolutional Features Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang arxiv:77.386v2 [cs.cv] Aug 28 Abstract Visual tracking is challenging as target

More information

arxiv: v1 [cs.cv] 10 Nov 2017 Abstract

arxiv: v1 [cs.cv] 10 Nov 2017 Abstract UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking Zheng Zhu Guan Huang, Wei Zou Dalong Du, Chang Huang Institute of Automation, Chinese Academy of Sciences University of Chinese

More information

Visual Tracking via Spatially Aligned Correlation Filters Network

Visual Tracking via Spatially Aligned Correlation Filters Network Visual Tracking via Spatially Aligned Correlation Filters Network Mengdan Zhang, Qiang Wang, Junliang Xing, Jin Gao, Peixi Peng, Weiming Hu, and Steve Maybank 2 CAS Center for Excellence in Brain Science

More information

End-to-end Flow Correlation Tracking with Spatial-temporal Attention

End-to-end Flow Correlation Tracking with Spatial-temporal Attention End-to-end Flow Correlation Tracking with Spatial-temporal Attention Zheng Zhu 1,2, Wei Wu 3, Wei Zou 1,2,4, Junjie Yan 3 1 Institute of Automation, Chinese Academy of Sciences, Beijing, China 2 University

More information

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017 Visual Object Tracking Jianan Wu Megvii (Face++) Researcher wjn@megvii.com Dec 2017 Applications From image to video: Augmented Reality Motion Capture Surveillance Sports Analysis Wait. What is visual

More information

arxiv: v1 [cs.cv] 2 Sep 2018

arxiv: v1 [cs.cv] 2 Sep 2018 Natural Language Person Search Using Deep Reinforcement Learning Ankit Shah Language Technologies Institute Carnegie Mellon University aps1@andrew.cmu.edu Tyler Vuong Electrical and Computer Engineering

More information

Fully-Convolutional Siamese Networks for Object Tracking

Fully-Convolutional Siamese Networks for Object Tracking Fully-Convolutional Siamese Networks for Object Tracking Luca Bertinetto*, Jack Valmadre*, João Henriques, Andrea Vedaldi and Philip Torr www.robots.ox.ac.uk/~luca luca.bertinetto@eng.ox.ac.uk Tracking

More information

Supplementary file for Robust Visual Tracking Using Oblique Random Forests

Supplementary file for Robust Visual Tracking Using Oblique Random Forests Supplementary file for Robust Visual Tracking Using Oblique Random Forests Le Zhang ADSC Singapore 38632 zhang.le@adsc.com.sg Jagannadan Varadarajan ADSC Singapore 38632 vjagan@adsc.com.sg Pierre Moulin

More information

arxiv: v1 [cs.cv] 5 Sep 2018

arxiv: v1 [cs.cv] 5 Sep 2018 arxiv:1809.01368v1 [cs.cv] 5 Sep 2018 Towards a Better Match in Siamese Network Based Visual Object Tracker Anfeng He 1, Chong Luo 2, Xinmei Tian 1, and Wenjun Zeng 2 1 CAS Key Laboratory of Technology

More information

RoI Pooling Based Fast Multi-Domain Convolutional Neural Networks for Visual Tracking

RoI Pooling Based Fast Multi-Domain Convolutional Neural Networks for Visual Tracking Advances in Intelligent Systems Research, volume 133 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016) RoI Pooling Based Fast Multi-Domain Convolutional Neural

More information

Convolutional Features for Correlation Filter Based Visual Tracking

Convolutional Features for Correlation Filter Based Visual Tracking Convolutional Features for Correlation Filter Based Visual Tracking Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Linköping University, Sweden {martin.danelljan,

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

VISUAL tracking is a fundamental problem in computer

VISUAL tracking is a fundamental problem in computer .9/TPAMI.28.282887, IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Hedging Deep Features for Visual Tracking Yuankai Qi, Shengping

More information

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection ILSVRC 2016 Object Detection from Video Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu

More information

arxiv: v2 [cs.cv] 8 Jan 2019

arxiv: v2 [cs.cv] 8 Jan 2019 Deeper and Wider Siamese Networks for Real-Time Visual Tracking arxiv:90.0660v2 [cs.cv] Jan 209 Zhipeng Zhang NLPR, CASIA zhangzhipeng20@ia.ac.cn Abstract Siamese networks have drawn great attention in

More information

GIVEN an initial state (or bounding box) of a target

GIVEN an initial state (or bounding box) of a target IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017 3817 Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor Han-Ul Kim, Student Member, IEEE, and

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

arxiv: v1 [cs.cv] 21 Nov 2016

arxiv: v1 [cs.cv] 21 Nov 2016 SANet: Structure-Aware Network for Visual Tracking Heng Fan and Haibin Ling Department of Computer and Information Sciences, Temple University, Philadelphia, USA {hengfan, hbling}@temple.edu arxiv:6.06878v

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

arxiv: v2 [cs.cv] 13 Sep 2017

arxiv: v2 [cs.cv] 13 Sep 2017 Learning Policies for Adaptive Tracking with Deep Feature Cascades Chen Huang Simon Lucey Deva Ramanan Robotics Institute, Carnegie Mellon University chenh2@andrew.cmu.edu {slucey,deva}@cs.cmu.edu arxiv:178.2973v2

More information

arxiv: v2 [cs.cv] 8 Nov 2018

arxiv: v2 [cs.cv] 8 Nov 2018 Learning a Robust Society of Tracking Parts using Co-occurrence Constraints Elena Burceanu 1,2,3 and Marius Leordeanu 1,2,4 arxiv:1804.01771v2 [cs.cv] 8 Nov 2018 1 Bitdefender, Romania eburceanu@bitdefender.com

More information

Visual Tracking UCU Day 3: State-of-art methods Dmytro Mishkin. Center for Machine Perception Czech Technical University in Prague

Visual Tracking UCU Day 3: State-of-art methods Dmytro Mishkin. Center for Machine Perception Czech Technical University in Prague Visual Tracking course @ UCU Day 3: State-of-art methods Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague Lviv, Ukraine 2017 Heavily based on tutorial: Visual Tracking

More information

A Twofold Siamese Network for Real-Time Object Tracking

A Twofold Siamese Network for Real-Time Object Tracking A Twofold Siamese Network for Real-Time Object Tracking Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,

More information

Structured Siamese Network for Real-Time Visual Tracking

Structured Siamese Network for Real-Time Visual Tracking Structured Siamese Network for Real-Time Visual Tracking Yunhua Zhang [ 3 3567 25X], Lijun Wang [ 3 2538 8358], Jinqing Qi [ 2 3777 245], Dong Wang [ 2 6976 44], Mengyang Feng [ 2 72 4655], and Huchuan

More information

Learning Dynamic Memory Networks for Object Tracking

Learning Dynamic Memory Networks for Object Tracking Learning Dynamic Memory Networks for Object Tracking Tianyu Yang [ 2 9674 522] and Antoni B. Chan [ 2 2886 253] Department of Computer Science, City University of Hong Kong, Hong Kong, China tianyyang8-c@my.cityu.edu.hk,

More information

VISUAL object tracking is an established yet rapidly. When Correlation Filters Meet Siamese Networks for Real-time Complementary Tracking

VISUAL object tracking is an established yet rapidly. When Correlation Filters Meet Siamese Networks for Real-time Complementary Tracking This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI.9/TCSVT.29.2892759,

More information

Multi-task Correlation Particle Filter for Robust Object Tracking

Multi-task Correlation Particle Filter for Robust Object Tracking Multi-tas Correlation Particle Filter for Robust Object Tracing Tianzhu Zhang 1,2 Changsheng Xu 1,2 Ming-Hsuan Yang 3 1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy

More information

Online Learning of Discriminative Correlation Filter Bank for Visual Tracking

Online Learning of Discriminative Correlation Filter Bank for Visual Tracking information Article Online Learning of Discriminative Correlation Filter Bank for Visual Tracking Jian Wei ID and Feng Liu * Jiangsu Province Key Lab on Image Processing and Image Communications, Nanjing

More information

A Benchmark and Simulator for UAV Tracking -Supplementary Material-

A Benchmark and Simulator for UAV Tracking -Supplementary Material- A Benchmark and Simulator for UAV Tracking -Supplementary Material- Matthias Mueller, Neil Smith, and Bernard Ghanem King Abdullah University of Science and Technology (KAUST), Saudi Arabia {matthias.mueller.2,

More information

SANet: Structure-Aware Network for Visual Tracking

SANet: Structure-Aware Network for Visual Tracking SANet: Structure-Aware Network for Visual Tracking Heng Fan Haibin Ling Department of Computer and Information Sciences, Temple University, Philadelphia, USA 2 HiScene Information Technologies, Shanghai,

More information

ECO: Efficient Convolution Operators for Tracking

ECO: Efficient Convolution Operators for Tracking ECO: Efficient Convolution Operators for Tracking Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Department of Electrical Engineering, Linköping University,

More information

Robust Tracking using Manifold Convolutional Neural Networks with Laplacian Regularization

Robust Tracking using Manifold Convolutional Neural Networks with Laplacian Regularization IEEE TRANSACTIONS ON MULTIMEDIA 1 Robust Tracking using Manifold Convolutional Neural Networks with Laplacian Regularization Hongwei Hu, Bo Ma, Member, IEEE, Jianbing Shen, Senior Member, IEEE, Hanqiu

More information

Correlation Filters with Weighted Convolution Responses

Correlation Filters with Weighted Convolution Responses Correlation Filters with Weighted Convolution Responses Zhiqun He 1, Yingruo Fan 1, Junfei Zhuang 1, Yuan Dong 1,2, HongLiang Bai 2 1 Beijing University of Posts and Telecommunications, 2 Beijing FaceAll

More information

arxiv: v1 [cs.cv] 26 Nov 2017

arxiv: v1 [cs.cv] 26 Nov 2017 MAVOT: Memory-Augmented Video Object Tracking Boyu Liu Yanzhao Wang HKUST {bliuag,ywangdg}@connect.ust.hk Yu-Wing Tai Tencent Youtu yuwingtai@tencent.com Chi-Keung Tang HKUST cktang@cs.ust.hk arxiv:1711.09414v1

More information

arxiv: v1 [cs.cv] 28 Nov 2017

arxiv: v1 [cs.cv] 28 Nov 2017 Tracking for Half an Hour Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders QUVA Lab, University of Amsterdam arxiv:1711.10217v1 [cs.cv] 28 Nov 2017 Abstract Long-term tracking requires extreme stability

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, Michael Felsberg CVL, Department of Electrical Engineering,

More information

arxiv: v2 [cs.cv] 10 Apr 2017

arxiv: v2 [cs.cv] 10 Apr 2017 ECO: Efficient Convolution Operators for Tracking Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Department of Electrical Engineering, Linko ping University,

More information

arxiv: v2 [cs.cv] 14 Jan 2019

arxiv: v2 [cs.cv] 14 Jan 2019 FuCoLoT A Fully-Correlational Long-Term Tracker Alan Lukežič 1, Luka Čehovin Zajc1, Tomáš Vojíř 2, Jiří Matas 2, and Matej Kristan 1 arxiv:1711.09594v2 [cs.cv] 14 Jan 2019 1 Faculty of Computer and Information

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Synthetic data generation for end-to-end thermal infrared tracking

Synthetic data generation for end-to-end thermal infrared tracking SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Synthetic data generation for end-to-end thermal infrared tracking Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan, and Fahad

More information

Robust visual tracking by exploiting the historical tracker snapshots

Robust visual tracking by exploiting the historical tracker snapshots Robust visual tracking by exploiting the historical tracker snapshots Jiatong Li,2, Zhibin Hong 2, and Baojun Zhao School of Information and Electronics, Beijing Institute of Technology 5 South Zhongguancun

More information

arxiv: v1 [cs.cv] 7 Sep 2018

arxiv: v1 [cs.cv] 7 Sep 2018 DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking Mohamed H. Abdelpakey 1 ( ), Mohamed S. Shehata 1, and Mostafa M. Mohamed 2 arxiv:1809.02714v1 cs.cv] 7 Sep 2018

More information

Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking

Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking International Journal of Computer Vision manuscript No. (will be inserted by the editor) Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking Chao Ma Jia-Bin Huang Xiaokang

More information

Internet of things that video

Internet of things that video Video recognition from a sentence Cees Snoek Intelligent Sensory Information Systems Lab University of Amsterdam The Netherlands Internet of things that video 45 billion cameras by 2022 [LDV Capital] 2

More information

Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs

Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs Francesco Comaschi 1, Sander Stuijk 1, Twan Basten 1,2 and Henk Corporaal 1 1 Eindhoven University of Technology,

More information

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Kihyuk Sohn 1 Sifei Liu 2 Guangyu Zhong 3 Xiang Yu 1 Ming-Hsuan Yang 2 Manmohan Chandraker 1,4 1 NEC Labs

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF)

Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF) Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF) Alan Lukežič 1, Andrej Muhič 1, Tomáš Vojíř 2, Luka Čehovin 1, Jiří Matas 2, Matej Kristan 1 1 Faculty of Computer and Information

More information

VISUAL tracking plays an important role in signal processing

VISUAL tracking plays an important role in signal processing IEEE TRANSACTIONS ON CYBERNETICS 1 Correlation Filter Learning Toward Peak Strength for Visual Tracking Yao Sui, Guanghui Wang, and Li Zhang Abstract This paper presents a novel visual tracking approach

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

ROBUST ONLINE FACE TRACKING-BY-DETECTION. {f.comaschi, s.stuijk, a.a.basten,

ROBUST ONLINE FACE TRACKING-BY-DETECTION. {f.comaschi, s.stuijk, a.a.basten, ROBUST ONLINE FACE TRACKING-BY-DETECTION Francesco Comaschi 1, Sander Stuijk 1, Twan Basten 1,2, Henk Corporaal 1 1 Eindhoven University of Technology, The Netherlands 2 TNO Embedded Systems Innovation,

More information

The Visual Object Tracking VOT2015: Challenge and results

The Visual Object Tracking VOT2015: Challenge and results The Visual Object Tracking VOT2015: Challenge and results Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg Luka Čehovin, Gustavo Fernandez, Tomaš Vojir, Georg Nebehay, Roman Pflugfelder, et

More information

DeepIndex for Accurate and Efficient Image Retrieval

DeepIndex for Accurate and Efficient Image Retrieval DeepIndex for Accurate and Efficient Image Retrieval Yu Liu, Yanming Guo, Song Wu, Michael S. Lew Media Lab, Leiden Institute of Advance Computer Science Outline Motivation Proposed Approach Results Conclusions

More information

Collaborative Correlation Tracking

Collaborative Correlation Tracking ZHU, WANG, WU, LU: COLLABORATIVE CORRELATION TRACKING 1 Collaborative Correlation Tracking Guibo Zhu 1 gbzhu@nlpr.ia.ac.cn Jinqiao Wang 1 jqwang@nlpr.ia.ac.cn Yi Wu 2 ywu.china@yahoo.com Hanqing Lu 1 luhq@nlpr.ia.ac.cn

More information

Integrating Boundary and Center Correlation Filters for Visual Tracking with Aspect Ratio Variation

Integrating Boundary and Center Correlation Filters for Visual Tracking with Aspect Ratio Variation Integrating Boundary and Center Correlation Filters for Visual Tracing with Aspect Ratio Variation Feng Li, Yingjie Yao, Peihua Li 2, David Zhang 3, Wangmeng Zuo,, and Ming-Hsuan Yang 4 School of Computer

More information

Evaluation of Visual Object Trackers on Equirectangular Panorama

Evaluation of Visual Object Trackers on Equirectangular Panorama Evaluation of Visual Object Trackers on Equirectangular Panorama Ugur Kart, Joni-Kristian Kämäräinen, Lixin Fan 2 and Moncef Gabbouj Laboratory of Signal Processing, Tampere University of Technology, Finland

More information

A New Approach for Train Driver Tracking in Real Time. Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang CHEN, Zhen-chao CUI, Wen-zhu YANG *

A New Approach for Train Driver Tracking in Real Time. Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang CHEN, Zhen-chao CUI, Wen-zhu YANG * 2018 International Conference on Modeling, Simulation and Analysis (ICMSA 2018) ISBN: 978-1-60595-544-5 A New Approach for Train Driver Tracking in Real Time Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang

More information

Kernalised Multi-resolution Convnet for Visual Tracking

Kernalised Multi-resolution Convnet for Visual Tracking Kernalised Multi-resolution Convnet for Visual Tracking Di Wu, Wenbin Zou, Xia Li Shenzhen University dwu, wzou, lixia@szu.edu.cn Yong Zhao Peking University Shenzhen Graduate School yongzhao@pkusz.edu.cn

More information

Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking

Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking Heng Fan Haibin Ling Meitu HiScene Lab, HiScene Information Technologies, Shanghai, China Department of Computer

More information

arxiv: v1 [cs.cv] 30 Sep 2015

arxiv: v1 [cs.cv] 30 Sep 2015 Online Object Tracking with Proposal Selection Yang Hua Karteek Alahari Cordelia Schmid Inria arxiv:1509.09114v1 [cs.cv] 30 Sep 2015 Abstract Tracking-by-detection approaches are some of the most successful

More information

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1. RGB-T Object Tracking: Benchmark and Baseline

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1. RGB-T Object Tracking: Benchmark and Baseline SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1 RGB-T Object Tracking: Benchmark and Baseline Chenglong Li, Xinyan Liang, Yijuan Lu, Nan Zhao, and Jin Tang arxiv:1805.08982v1 [cs.cv] 23 May 2018

More information

Large-scale gesture recognition based on Multimodal data with C3D and TSN

Large-scale gesture recognition based on Multimodal data with C3D and TSN Large-scale gesture recognition based on Multimodal data with C3D and TSN July 6, 2017 1 Team details Team name ASU Team leader name Yunan Li Team leader address, phone number and email address: Xidian

More information

The Visual Object Tracking VOT2015 challenge results

The Visual Object Tracking VOT2015 challenge results 2015 IEEE International Conference on Computer Vision Workshops The Visual Object Tracking VOT2015 challenge results Matej Kristan 1, Jiri Matas 2, Aleš Leonardis 3, Michael Felsberg 4, Luka Čehovin 1,

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

arxiv: v2 [cs.cv] 10 Apr 2017

arxiv: v2 [cs.cv] 10 Apr 2017 Deep Reinforcement Learning for Visual Object Tracking in Videos Da Zhang 1, Hamid Maei 2, Xin Wang 1, and Yuan-Fang Wang 1 arxiv:1701.08936v2 [cs.cv] 10 Apr 2017 1 Department of Computer Science, University

More information

VISUAL object tracking confronts with major challenges. Not All Negatives are Equal: Learning to Track with Multiple Background Clusters

VISUAL object tracking confronts with major challenges. Not All Negatives are Equal: Learning to Track with Multiple Background Clusters IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY Not All Negatives are Equal: Learning to Track with Multiple Background Clusters Gao Zhu, Student Member, IEEE, Fatih Porikli, Fellow, IEEE,

More information

Discriminative Correlation Filter with Channel and Spatial Reliability

Discriminative Correlation Filter with Channel and Spatial Reliability Discriminative Correlation Filter with Channel and Spatial Reliability Alan Lukežič 1, Tomáš Vojíř 2, Luka Čehovin Zajc 1, Jiří Matas 2 and Matej Kristan 1 1 Faculty of Computer and Information Science,

More information

Robust UAV-based Tracking Using Hybrid Classifiers

Robust UAV-based Tracking Using Hybrid Classifiers Robust UAV-based Tracking Using Hybrid Classifiers Yong Wang University of Ottawa 75 Laurier Ave E, Ottawa, ON K1N 6N5 ywang6@uottawa.ca Wei Shi INSKY Lab, Leotail Intelligent Tech 1628, Pudong District,

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors [Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim Department of Computer Science and Engineering

More information

The Visual Object Tracking VOT2016 challenge results

The Visual Object Tracking VOT2016 challenge results 1 The Visual Object Tracking VOT2016 challenge results Matej Kristan 1, Aleš Leonardis 2, Jiři Matas 3, Michael Felsberg 4, Roman Pflugfelder 5, Luka Čehovin1, Tomáš Vojí r 3, Gustav Häger 4, Alan Lukežič

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

A multi-view model for visual tracking via correlation filters

A multi-view model for visual tracking via correlation filters A multi-view model for visual tracking via correlation filters Xin Li a,, Qiao Liu a,, Zhenyu He a,, Hongpeng Wang a, Chunkai Zhang a, Wen-Sheng Chen b a School of Computer Science, Harbin Institute of

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

Supplementary Material: Unconstrained Salient Object Detection via Proposal Subset Optimization

Supplementary Material: Unconstrained Salient Object Detection via Proposal Subset Optimization Supplementary Material: Unconstrained Salient Object via Proposal Subset Optimization 1. Proof of the Submodularity According to Eqns. 10-12 in our paper, the objective function of the proposed optimization

More information

A Survey on Visual Object Tracking: Datasets, Methods and Metrics

A Survey on Visual Object Tracking: Datasets, Methods and Metrics A Survey on Visual Object Tracking: Datasets, Methods and Metrics V. Ramalakshmi @ Kanthimathi 1, Dr. M. Germanus Alex 2 1 Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore,

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Meta-path based Multi-Network Collective Link Prediction

Meta-path based Multi-Network Collective Link Prediction Meta-path based Multi-Network Collective Link Prediction Jiawei Zhang 1,2, Philip S. Yu 1, Zhi-Hua Zhou 2 University of Illinois at Chicago 2, Nanjing University 2 Traditional social link prediction in

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Deep-LK for Efficient Adaptive Object Tracking

Deep-LK for Efficient Adaptive Object Tracking Deep-LK for Efficient Adaptive Object Tracking Chaoyang Wang, Hamed Kiani Galoogahi, Chen-Hsuan Lin, and Simon Lucey 1 Abstract In this paper, we present a new approach for efficient regression-based object

More information

Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking

Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking Luka Čehovin Zajc, Alan Lukežič, Aleš Leonardis, Matej Kristan University of Ljubljana Faculty of computer and

More information

VISUAL object tracking is an important problem in

VISUAL object tracking is an important problem in IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 4, APRIL 017 763 Occlusion-Aware Real-Time Object Tracking Xingping Dong, Jianbing Shen, Senior Member, IEEE, Dajiang Yu, Wenguan Wang, Jianhong Liu, and Hua

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information