Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France

Size: px
Start display at page:

Download "Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France"

Transcription

1 Online Object Tracking with Proposal Selection Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France

2 Outline 2 Background Our approach Experimental results Summary

3 Background 3 Tracking-by-detection paradigm has been extremely successful on diverse benchmarks [Wu et al., 2013] [Kristan et al., 2013/14] [Smeulders et al., 2014] Train initial model on frame 1 T = 2 N Do detection on frame T Select tracking result with best detection score Update model for frame T+1 Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, A. W. M. Smeulders et al. Visual tracking: an experimental survey. PAMI, 2014 M. Kristan et al. The visual object tracking VOT2013/2014 challenge results. In ICCV/ECCV VOT Challenge Workshop, 2013/2014.

4 Background 4 Successful tracking-by-detection methods Struck [Hare et al., 2011] PLT 13/14 [Heng et al., 2012] DSST [Danelljan et al., 2014] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, C.K. Heng, Y. Sumio, M. Yuichi, T. Hajime, Shrink boost for selecting multi-lbp histogram features in object detection. In CVPR, 2012 M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. In BMVC, 2014.

5 Background 5 Two key ingredients Discriminative learning

6 Background 6 Two key ingredients Discriminative learning Similarity Dissimilarity

7 Background 7 Two key ingredients Discriminative learning Pixel-accurate localization IoU = 0.9 IoU = 0.7 IoU = 0.5

8 Background 8 Two key ingredients Discriminative learning Pixel-accurate localization Train initial model on frame 1 T = 2 N Do detection on frame T Select tracking result with best detection score Update model for frame T+1

9 Background 9 Two key ingredients Discriminative learning Pixel-accurate localization Train initial discriminative model on frame 1 T = 2 N Do detection with pixel-accurate localization on frame T Select tracking result with best detection score Update discriminative model for frame T+1

10 Background 10 Limitations of tracking-by-detection approaches Can not handle challenging conditions where an object undergoes transformations, e.g., severe rotation DSST Ours Groundtruth Frame 1 Frame 10 Frame 30

11 Background 11 Limitations of tracking-by-detection approaches Can not handle challenging conditions where an object undergoes transformations, e.g., severe rotation Select tracking results based on detection score only

12 Our approach: Overview 12 Proposal Selection Tracker [Hua et al., 2015] Train initial discriminative model on frame 1 T = 2 N Do detection with pixel-accurate localization on frame T Select tracking result with best detection score Update discriminative model for frame T+1 Y. Hua, K. Alahari and C. Schmid. Online Object Tracking with Proposal Selection. In ICCV, 2015

13 Our approach: Overview 13 Proposal Selection Tracker [Hua et al., 2015] T = 2 N Train initial discriminative model on frame 1 Propose regular detection candidates on frame T Propose geometry transformed candidates on frame T Select tracking result with three cues Update discriminative model for frame T+1 Y. Hua, K. Alahari and C. Schmid. Online Object Tracking with Proposal Selection. In ICCV, 2015

14 Our approach: Proposal Selection Tracker 14 Geometry proposal Compute frame-to-frame pixel correspondences with optical flow [Brox and Malik, 2011] Estimate similarity transformations with a Hough transform voting scheme Detection proposal Geometry proposal Ground truth T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI, 2011.

15 Our approach: Proposal Selection Tracker 15 Multiple cues for selection Detection scores Edgebox score [Zitnick and Dollár, 2014], originally from edge response [Dollár and Zitnick, 2013] High edgebox score Low edgebox score C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.

16 Our approach: Proposal Selection Tracker 16 Multiple cues for selection Edgebox scores from edge responses and motion boundaries [Weinzaepfel et al., 2015] are complementary Edge Responses Motion boundaries P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Learning to detect motion boundaries. In CVPR, 2015.

17 Our approach: Proposal Selection Tracker 17 How to combine multiple cues? When detection scores of the top candidates are very similar, we select the one with the best edgebox measure Low edgebox score, but high detection score High edgebox score, but low detection score

18 Our approach: Overview 18 Proposal Selection Tracker Our submission Train initial discriminative model on frame 1 T = 2 N Propose regular detection candidates on frame T Propose geometry transformed candidates on frame T Select tracking result with three cues Update discriminative model for frame T+1

19 Our approach: Overview 19 Proposal Selection Tracker Our submission A simplified Proposal Selection Tracker without optical flow calculation T = 2 N Train initial discriminative model on frame 1 Propose regular detection candidates on frame T Propose non-axis aligned detection candidates on frame T Select tracking result with two cues Update discriminative model for frame T+1

20 Our approach: Overview 20 Proposal Selection Tracker Our submission A simplified Proposal Selection Tracker without optical flow calculation Same parameters for both VOT-TIR2015 and VOT2015 challenges T = 2 N Train initial discriminative model on frame 1 Propose regular detection candidates on frame T Propose non-axis aligned detection candidates on frame T Select tracking result with two cues Update discriminative model for frame T+1

21 Our approach: Implementation details 21 Baseline tracking-by-detection framework HOG + Linear SVM [Supancic and Ramanan, 2013] Multi-scale detector with 2 pixels scanning step Small patch (e.g. 18x18) handling Additional correlation checking Occlusion handling Selective model updating J.S. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013.

22 Experimental results 22 VOT-TIR2015 Challenge Dataset Selection: detection score only Overlap #Failures

23 Experimental results 23 VOT-TIR2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Overlap #Failures Overlap #Failures

24 Experimental results 24 VOT2015 Challenge Dataset Selection: detection score only Overlap #Failures

25 Experimental results 25 VOT2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Overlap #Failures Overlap #Failures

26 Summary 26 Extending tracking-by-detection as a general proposal and selection scheme New geometry proposals A novel selection scheme based on multiple cues Achieving good performance on VOTTIR-2015 and VOT2015 challenge datasets Source code is released at project page

27 Advertisement 27 Proposal Selection Tracker will be presented at Poster Session 3B (Tuesday, 15 Dec. 2015)

28 Advertisement 28

29 Appendix: List 29 spst: overall framework Dense HOG Occlusion handling Detailed experimental results

30 Appendix: Overall framework 30 spst: overall framework Train initial discriminative model on frame 1 T = 2 N Small patch handling Propose non-axis aligned detection candidates on frame T Propose regular detection candidates on frame T Select tracking result with two cues Occlusion handling Update discriminative model for frame T+1

31 Appendix: Dense HOG 31 Dense HOG

32 Appendix: Dense HOG 32 Dense HOG

33 Appendix: Dense HOG 33 Dense HOG

34 Appendix: Dense HOG 34 Dense HOG

35 Appendix: Occlusion handling 35 Occlusion handling For short-term tracking, we update model with tracking result in every frame Selective model updating: If tracking result in current frame is quite similar with tracking result in the previous frame, probably occlusion happens, we don t update model in current frame Frame 246 Frame 247 Frame 248

36 Experimental results 36 VOT-TIR2015 Challenge Dataset Selection: detection score only Marker Overlap #Failures Baseline

37 Experimental results 37 VOT-TIR2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline

38 Experimental results 38 VOT-TIR2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline Submission

39 Experimental results 39 VOT-TIR2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline Submission

40 Experimental results 40 VOT2015 Challenge Dataset Selection: detection score only Marker Overlap #Failures Baseline

41 Experimental results 41 VOT2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline

42 Experimental results 42 VOT2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline Submission

43 Experimental results 43 VOT2015 Challenge Dataset Selection: detection score only Selection: detection + edgebox score Marker Overlap #Failures Marker Overlap #Failures Baseline Submission

Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA

Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA Towards Robust Visual Object Tracking: Proposal Selection & Occlusion Reasoning Yang HUA PhD Defense, June 10 2016 Rapporteur Rapporteur Examinateur Examinateur Directeur de these Co-encadrant de these

More information

arxiv: v1 [cs.cv] 30 Sep 2015

arxiv: v1 [cs.cv] 30 Sep 2015 Online Object Tracking with Proposal Selection Yang Hua Karteek Alahari Cordelia Schmid Inria arxiv:1509.09114v1 [cs.cv] 30 Sep 2015 Abstract Tracking-by-detection approaches are some of the most successful

More information

A Benchmark and Simulator for UAV Tracking -Supplementary Material-

A Benchmark and Simulator for UAV Tracking -Supplementary Material- A Benchmark and Simulator for UAV Tracking -Supplementary Material- Matthias Mueller, Neil Smith, and Bernard Ghanem King Abdullah University of Science and Technology (KAUST), Saudi Arabia {matthias.mueller.2,

More information

Detecting Parts for Action Localization

Detecting Parts for Action Localization CHESNEAU ET AL.: DETECTING PARTS FOR ACTION LOCALIZATION 1 Detecting Parts for Action Localization Nicolas Chesneau nicolas.chesneau@inria.fr Grégory Rogez gregory.rogez@inria.fr Karteek Alahari karteek.alahari@inria.fr

More information

Occlusion and Motion Reasoning for Long-term Tracking

Occlusion and Motion Reasoning for Long-term Tracking Occlusion and Motion Reasoning for Long-term Tracking Yang Hua, Karteek Alahari, Cordelia Schmid To cite this version: Yang Hua, Karteek Alahari, Cordelia Schmid. Occlusion and Motion Reasoning for Long-term

More information

Robust and Real-Time Visual Tracking Based on Complementary Learners

Robust and Real-Time Visual Tracking Based on Complementary Learners Robust and Real-Time Visual Tracking Based on Complementary Learners Xingzhou Luo, Dapeng Du, and Gangshan Wu (B) State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

More information

Struck: Structured Output Tracking with Kernels. Presented by Mike Liu, Yuhang Ming, and Jing Wang May 24, 2017

Struck: Structured Output Tracking with Kernels. Presented by Mike Liu, Yuhang Ming, and Jing Wang May 24, 2017 Struck: Structured Output Tracking with Kernels Presented by Mike Liu, Yuhang Ming, and Jing Wang May 24, 2017 Motivations Problem: Tracking Input: Target Output: Locations over time http://vision.ucsd.edu/~bbabenko/images/fast.gif

More information

Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS

Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS Robust Visual Tracking with Deep Convolutional Neural Network based Object Proposals on PETS Gao Zhu Fatih Porikli,2,3 Hongdong Li,3 Australian National University, NICTA 2 ARC Centre of Excellence for

More information

Modeling and Propagating CNNs in a Tree Structure for Visual Tracking

Modeling and Propagating CNNs in a Tree Structure for Visual Tracking The Visual Object Tracking Challenge Workshop 2016 Modeling and Propagating CNNs in a Tree Structure for Visual Tracking Hyeonseob Nam* Mooyeol Baek* Bohyung Han Dept. of Computer Science and Engineering

More information

A Comparative Study of Object Trackers for Infrared Flying Bird Tracking

A Comparative Study of Object Trackers for Infrared Flying Bird Tracking A Comparative Study of Object Trackers for Infrared Flying Bird Tracking Ying Huang, Hong Zheng, Haibin Ling 2, Erik Blasch 3, Hao Yang 4 School of Automation Science and Electrical Engineering, Beihang

More information

Action recognition in videos

Action recognition in videos Action recognition in videos Cordelia Schmid INRIA Grenoble Joint work with V. Ferrari, A. Gaidon, Z. Harchaoui, A. Klaeser, A. Prest, H. Wang Action recognition - goal Short actions, i.e. drinking, sit

More information

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material Learning to Track at 1 FPS with Deep Regression Networks - Supplementary Material David Held, Sebastian Thrun, Silvio Savarese Department of Computer Science Stanford University {davheld,thrun,ssilvio}@cs.stanford.edu

More information

A Survey on Visual Object Tracking: Datasets, Methods and Metrics

A Survey on Visual Object Tracking: Datasets, Methods and Metrics A Survey on Visual Object Tracking: Datasets, Methods and Metrics V. Ramalakshmi @ Kanthimathi 1, Dr. M. Germanus Alex 2 1 Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore,

More information

Collaborative Correlation Tracking

Collaborative Correlation Tracking ZHU, WANG, WU, LU: COLLABORATIVE CORRELATION TRACKING 1 Collaborative Correlation Tracking Guibo Zhu 1 gbzhu@nlpr.ia.ac.cn Jinqiao Wang 1 jqwang@nlpr.ia.ac.cn Yi Wu 2 ywu.china@yahoo.com Hanqing Lu 1 luhq@nlpr.ia.ac.cn

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation

Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation Fast CNN-Based Object Tracking Using Localization Layers and Deep Features Interpolation Al-Hussein A. El-Shafie Faculty of Engineering Cairo University Giza, Egypt elshafie_a@yahoo.com Mohamed Zaki Faculty

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, Michael Felsberg 2 Discriminative Correlation Filters (DCF)

More information

Supplementary Material

Supplementary Material Supplementary Material ECO: Efficient Convolution Operators for Tracking Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Department of Electrical Engineering,

More information

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017 Visual Object Tracking Jianan Wu Megvii (Face++) Researcher wjn@megvii.com Dec 2017 Applications From image to video: Augmented Reality Motion Capture Surveillance Sports Analysis Wait. What is visual

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Learning to track for spatio-temporal action localization

Learning to track for spatio-temporal action localization Learning to track for spatio-temporal action localization Philippe Weinzaepfel a Zaid Harchaoui a,b Cordelia Schmid a a Inria b NYU firstname.lastname@inria.fr Abstract We propose an effective approach

More information

Object-Aware Tracking

Object-Aware Tracking Object-Aware Tracking Ivan Bogun Eraldo Ribeiro Department of Computer Sciences Florida Institute of Technology, Melbourne, Florida, U.S.A. ibogun21@my.fit.edu, eribeiro@cs.fit.edu Abstract In this paper,

More information

A Complementary Tracking Model with Multiple Features

A Complementary Tracking Model with Multiple Features A Complementary Tracking Model with Multiple Features Peng Gao, Yipeng Ma, Chao Li, Ke Song, Fei Wang, Liyi Xiao Shenzhen Graduate School, Harbin Institute of Technology, China arxiv:184.7459v3 [cs.cv]

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Real-Time Face Tracking under Long-Term Full Occlusions

Real-Time Face Tracking under Long-Term Full Occlusions 10th International Symposium on Image and Signal Processing and Analysis (ISPA 2017) Real-Time Face Tracking under Long-Term Full Occlusions Martin Soldić, Darijan Marčetić, Marijo Maračić, Darko Mihalić,

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Visual Tracking UCU Day 3: State-of-art methods Dmytro Mishkin. Center for Machine Perception Czech Technical University in Prague

Visual Tracking UCU Day 3: State-of-art methods Dmytro Mishkin. Center for Machine Perception Czech Technical University in Prague Visual Tracking course @ UCU Day 3: State-of-art methods Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague Lviv, Ukraine 2017 Heavily based on tutorial: Visual Tracking

More information

arxiv: v1 [cs.cv] 28 Nov 2017

arxiv: v1 [cs.cv] 28 Nov 2017 Tracking for Half an Hour Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders QUVA Lab, University of Amsterdam arxiv:1711.10217v1 [cs.cv] 28 Nov 2017 Abstract Long-term tracking requires extreme stability

More information

ROBUST ONLINE FACE TRACKING-BY-DETECTION. {f.comaschi, s.stuijk, a.a.basten,

ROBUST ONLINE FACE TRACKING-BY-DETECTION. {f.comaschi, s.stuijk, a.a.basten, ROBUST ONLINE FACE TRACKING-BY-DETECTION Francesco Comaschi 1, Sander Stuijk 1, Twan Basten 1,2, Henk Corporaal 1 1 Eindhoven University of Technology, The Netherlands 2 TNO Embedded Systems Innovation,

More information

A New Approach for Train Driver Tracking in Real Time. Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang CHEN, Zhen-chao CUI, Wen-zhu YANG *

A New Approach for Train Driver Tracking in Real Time. Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang CHEN, Zhen-chao CUI, Wen-zhu YANG * 2018 International Conference on Modeling, Simulation and Analysis (ICMSA 2018) ISBN: 978-1-60595-544-5 A New Approach for Train Driver Tracking in Real Time Ming-yu WANG, Si-le WANG, Li-ping CHEN, Xiang-yang

More information

RoI Pooling Based Fast Multi-Domain Convolutional Neural Networks for Visual Tracking

RoI Pooling Based Fast Multi-Domain Convolutional Neural Networks for Visual Tracking Advances in Intelligent Systems Research, volume 133 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016) RoI Pooling Based Fast Multi-Domain Convolutional Neural

More information

4-DoF Tracking for Robot Fine Manipulation Tasks

4-DoF Tracking for Robot Fine Manipulation Tasks 4-DoF Tracking for Robot Fine Manipulation Tasks Mennatullah Siam*, Abhineet Singh*, Camilo Perez and Martin Jagersand Faculty of Computing Science University of Alberta, Canada mennatul,asingh1,caperez,jag@ualberta.ca

More information

Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs

Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs Online Multi-Face Detection and Tracking using Detector Confidence and Structured SVMs Francesco Comaschi 1, Sander Stuijk 1, Twan Basten 1,2 and Henk Corporaal 1 1 Eindhoven University of Technology,

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

Multi-Object Tracking Based on Tracking-Learning-Detection Framework

Multi-Object Tracking Based on Tracking-Learning-Detection Framework Multi-Object Tracking Based on Tracking-Learning-Detection Framework Songlin Piao, Karsten Berns Robotics Research Lab University of Kaiserslautern Abstract. This paper shows the framework of robust long-term

More information

Learning to Detect Motion Boundaries

Learning to Detect Motion Boundaries Learning to Detect Motion Boundaries Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, Cordelia Schmid To cite this version: Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, Cordelia Schmid. Learning

More information

Bundling Features for Large Scale Partial-Duplicate Web Image Search

Bundling Features for Large Scale Partial-Duplicate Web Image Search Bundling Features for Large Scale Partial-Duplicate Web Image Search Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun Microsoft Research Abstract In state-of-the-art image retrieval systems, an image is

More information

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University Tracking Hao Guan( 管皓 ) School of Computer Science Fudan University 2014-09-29 Multimedia Video Audio Use your eyes Video Tracking Use your ears Audio Tracking Tracking Video Tracking Definition Given

More information

Learning Realistic Human Actions from Movies

Learning Realistic Human Actions from Movies Learning Realistic Human Actions from Movies Ivan Laptev*, Marcin Marszałek**, Cordelia Schmid**, Benjamin Rozenfeld*** INRIA Rennes, France ** INRIA Grenoble, France *** Bar-Ilan University, Israel Presented

More information

arxiv: v1 [cs.cv] 27 Oct 2015

arxiv: v1 [cs.cv] 27 Oct 2015 Learning Multi-Domain Convolutional Neural Networks for Visual Tracking Hyeonseob Nam Bohyung Han Dept. of Computer Science and Engineering, POSTECH, Korea {namhs9, bhhan}@postech.ac.kr arxiv:.9v [cs.cv]

More information

Lecture 18: Human Motion Recognition

Lecture 18: Human Motion Recognition Lecture 18: Human Motion Recognition Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Introduction Motion classification using template matching Motion classification i using spatio

More information

FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO

FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO Makoto Arie, Masatoshi Shibata, Kenji Terabayashi, Alessandro Moro and Kazunori Umeda Course

More information

Detecting and Segmenting Humans in Crowded Scenes

Detecting and Segmenting Humans in Crowded Scenes Detecting and Segmenting Humans in Crowded Scenes Mikel D. Rodriguez University of Central Florida 4000 Central Florida Blvd Orlando, Florida, 32816 mikel@cs.ucf.edu Mubarak Shah University of Central

More information

CREST: Convolutional Residual Learning for Visual Tracking

CREST: Convolutional Residual Learning for Visual Tracking CREST: Convolutional Residual Learning for Visual Tracking Yibing Song, Chao Ma 2, Lijun Gong 3, Jiawei Zhang, Rynson W.H. Lau, and Ming-Hsuan Yang 4 City University of Hong Kong, Hong Kong 2 The University

More information

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Anurag Arnab and Philip H.S. Torr University of Oxford {anurag.arnab, philip.torr}@eng.ox.ac.uk 1. Introduction

More information

arxiv: v1 [cs.cv] 24 Feb 2014

arxiv: v1 [cs.cv] 24 Feb 2014 EXEMPLAR-BASED LINEAR DISCRIMINANT ANALYSIS FOR ROBUST OBJECT TRACKING Changxin Gao, Feifei Chen, Jin-Gang Yu, Rui Huang, Nong Sang arxiv:1402.5697v1 [cs.cv] 24 Feb 2014 Science and Technology on Multi-spectral

More information

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Johnson Hsieh (johnsonhsieh@gmail.com), Alexander Chia (alexchia@stanford.edu) Abstract -- Object occlusion presents a major

More information

Histogram of Oriented Gradients (HOG) for Object Detection

Histogram of Oriented Gradients (HOG) for Object Detection Histogram of Oriented Gradients (HOG) for Object Detection Navneet DALAL Joint work with Bill TRIGGS and Cordelia SCHMID Goal & Challenges Goal: Detect and localise people in images and videos n Wide variety

More information

Compressed local descriptors for fast image and video search in large databases

Compressed local descriptors for fast image and video search in large databases Compressed local descriptors for fast image and video search in large databases Matthijs Douze2 joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3 1: INRIA Rennes, TEXMEX team, France 2:

More information

SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking

SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking Han-Ul Kim 1, Dae-Youn Lee 2, Jae-Young Sim 3, and Chang-Su Kim 1 1 School of Electrical Engineering, Korea University 2 Samsung

More information

Automatic Adaptation of a Generic Pedestrian Detector to a Specific Traffic Scene

Automatic Adaptation of a Generic Pedestrian Detector to a Specific Traffic Scene Automatic Adaptation of a Generic Pedestrian Detector to a Specific Traffic Scene Meng Wang and Xiaogang Wang {mwang,xgwang}@ee.cuhk.edu.hk Department of Electronic Engineering, The Chinese University

More information

Multiple Kernel Learning for Emotion Recognition in the Wild

Multiple Kernel Learning for Emotion Recognition in the Wild Multiple Kernel Learning for Emotion Recognition in the Wild Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett Machine Perception Laboratory UCSD EmotiW Challenge,

More information

LEARNING TO SEGMENT MOVING OBJECTS IN VIDEOS FRAGKIADAKI ET AL. 2015

LEARNING TO SEGMENT MOVING OBJECTS IN VIDEOS FRAGKIADAKI ET AL. 2015 LEARNING TO SEGMENT MOVING OBJECTS IN VIDEOS FRAGKIADAKI ET AL. 2015 Darshan Thaker Oct 4, 2017 Problem Statement Moving object segmentation in videos Applications: security tracking, pedestrian detection,

More information

Automatic summarization of video data

Automatic summarization of video data Automatic summarization of video data Presented by Danila Potapov Joint work with: Matthijs Douze Zaid Harchaoui Cordelia Schmid LEAR team, nria Grenoble Khronos-Persyvact Spring School 1.04.2015 Definition

More information

Human detection using local shape and nonredundant

Human detection using local shape and nonredundant University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Human detection using local shape and nonredundant binary patterns

More information

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213) Recognition of Animal Skin Texture Attributes in the Wild Amey Dharwadker (aap2174) Kai Zhang (kz2213) Motivation Patterns and textures are have an important role in object description and understanding

More information

Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals

Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals Beyond Local Search: Tracking Objects verywhere with Instance-Specific Proposals Gao Zhu, Fatih Porikli,2,3, and Hongdong Li,3 Australian National University and NICTA 2 ARC Centre of xcellence for Robotic

More information

Mobile Human Detection Systems based on Sliding Windows Approach-A Review

Mobile Human Detection Systems based on Sliding Windows Approach-A Review Mobile Human Detection Systems based on Sliding Windows Approach-A Review Seminar: Mobile Human detection systems Njieutcheu Tassi cedrique Rovile Department of Computer Engineering University of Heidelberg

More information

Efficient Detector Adaptation for Object Detection in a Video

Efficient Detector Adaptation for Object Detection in a Video 2013 IEEE Conference on Computer Vision and Pattern Recognition Efficient Detector Adaptation for Object Detection in a Video Pramod Sharma and Ram Nevatia Institute for Robotics and Intelligent Systems,

More information

Coloring Channel Representations for Visual Tracking

Coloring Channel Representations for Visual Tracking Coloring Channel Representations for Visual Tracking Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan and Michael Felsberg Linköping University Post Print N.B.: When citing this work, cite the original

More information

SCENE TEXT RECOGNITION IN MULTIPLE FRAMES BASED ON TEXT TRACKING

SCENE TEXT RECOGNITION IN MULTIPLE FRAMES BASED ON TEXT TRACKING SCENE TEXT RECOGNITION IN MULTIPLE FRAMES BASED ON TEXT TRACKING Xuejian Rong 1, Chucai Yi 2, Xiaodong Yang 1 and Yingli Tian 1,2 1 The City College, 2 The Graduate Center, City University of New York

More information

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Fast Guided Global Interpolation for Depth and Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Introduction Depth upsampling and motion interpolation are often required to generate a dense, high-quality, and

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Combining Appearance and Topology for Wide

Combining Appearance and Topology for Wide Combining Appearance and Topology for Wide Baseline Matching Dennis Tell and Stefan Carlsson Presented by: Josh Wills Image Point Correspondences Critical foundation for many vision applications 3-D reconstruction,

More information

An Evaluation of Volumetric Interest Points

An Evaluation of Volumetric Interest Points An Evaluation of Volumetric Interest Points Tsz-Ho YU Oliver WOODFORD Roberto CIPOLLA Machine Intelligence Lab Department of Engineering, University of Cambridge About this project We conducted the first

More information

Learning Spatial Context: Using Stuff to Find Things

Learning Spatial Context: Using Stuff to Find Things Learning Spatial Context: Using Stuff to Find Things Wei-Cheng Su Motivation 2 Leverage contextual information to enhance detection Some context objects are non-rigid and are more naturally classified

More information

Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation

Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation Pia Bideau Aruni RoyChowdhury Rakesh R Menon Erik Learned-Miller University

More information

Robust visual tracking by exploiting the historical tracker snapshots

Robust visual tracking by exploiting the historical tracker snapshots Robust visual tracking by exploiting the historical tracker snapshots Jiatong Li,2, Zhibin Hong 2, and Baojun Zhao School of Information and Electronics, Beijing Institute of Technology 5 South Zhongguancun

More information

A multi-view model for visual tracking via correlation filters

A multi-view model for visual tracking via correlation filters A multi-view model for visual tracking via correlation filters Xin Li a,, Qiao Liu a,, Zhenyu He a,, Hongpeng Wang a, Chunkai Zhang a, Wen-Sheng Chen b a School of Computer Science, Harbin Institute of

More information

CS 231A Computer Vision (Fall 2011) Problem Set 4

CS 231A Computer Vision (Fall 2011) Problem Set 4 CS 231A Computer Vision (Fall 2011) Problem Set 4 Due: Nov. 30 th, 2011 (9:30am) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable part-based

More information

Convolutional Features for Correlation Filter Based Visual Tracking

Convolutional Features for Correlation Filter Based Visual Tracking Convolutional Features for Correlation Filter Based Visual Tracking Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, Michael Felsberg Computer Vision Laboratory, Linköping University, Sweden {martin.danelljan,

More information

Learning Representations for Visual Object Class Recognition

Learning Representations for Visual Object Class Recognition Learning Representations for Visual Object Class Recognition Marcin Marszałek Cordelia Schmid Hedi Harzallah Joost van de Weijer LEAR, INRIA Grenoble, Rhône-Alpes, France October 15th, 2007 Bag-of-Features

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

DPM Configurations for Human Interaction Detection

DPM Configurations for Human Interaction Detection DPM Configurations for Human Interaction Detection Coert van Gemeren Ronald Poppe Remco C. Veltkamp Interaction Technology Group, Department of Information and Computing Sciences, Utrecht University, The

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking

Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking Heng Fan Haibin Ling Meitu HiScene Lab, HiScene Information Technologies, Shanghai, China Department of Computer

More information

Multi-kernel Correlation Filter for Visual Tracking

Multi-kernel Correlation Filter for Visual Tracking Multi-kernel Correlation Filter for Visual Tracking Ming TANG and Jiayi FENG National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 119, China {tangm,jiayi.feng}@nlpr.ia.ac.cn

More information

Multiple-Person Tracking by Detection

Multiple-Person Tracking by Detection http://excel.fit.vutbr.cz Multiple-Person Tracking by Detection Jakub Vojvoda* Abstract Detection and tracking of multiple person is challenging problem mainly due to complexity of scene and large intra-class

More information

arxiv: v1 [cs.cv] 5 Jul 2018

arxiv: v1 [cs.cv] 5 Jul 2018 Subpixel-Precise Tracking of Rigid Objects in Real-time arxiv:1807.01952v1 [cs.cv] 5 Jul 2018 Tobias Böttger Markus Ulrich Carsten Steger MVTec Software GmbH, Munich, Germany http://www.mvtec.com September

More information

arxiv: v1 [cs.cv] 5 Sep 2018

arxiv: v1 [cs.cv] 5 Sep 2018 arxiv:1809.01368v1 [cs.cv] 5 Sep 2018 Towards a Better Match in Siamese Network Based Visual Object Tracker Anfeng He 1, Chong Luo 2, Xinmei Tian 1, and Wenjun Zeng 2 1 CAS Key Laboratory of Technology

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Improving Multiple Object Tracking with Optical Flow and Edge Preprocessing

Improving Multiple Object Tracking with Optical Flow and Edge Preprocessing Improving Multiple Object Tracking with Optical Flow and Edge Preprocessing David-Alexandre Beaupré, Guillaume-Alexandre Bilodeau LITIV lab., Dept. of Computer & Software Eng. Polytechnique Montréal Montréal,

More information

Object Category Detection: Sliding Windows

Object Category Detection: Sliding Windows 04/10/12 Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical

More information

https://en.wikipedia.org/wiki/the_dress Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola

More information

Selection of Scale-Invariant Parts for Object Class Recognition

Selection of Scale-Invariant Parts for Object Class Recognition Selection of Scale-Invariant Parts for Object Class Recognition Gy. Dorkó and C. Schmid INRIA Rhône-Alpes, GRAVIR-CNRS 655, av. de l Europe, 3833 Montbonnot, France fdorko,schmidg@inrialpes.fr Abstract

More information

arxiv: v1 [cs.cv] 24 Apr 2017

arxiv: v1 [cs.cv] 24 Apr 2017 Measuring the Accuracy of Object Detectors and Trackers Tobias Böttger + Patrick Follmann + Michael Fauser + arxiv:1704.07293v1 [cs.cv] 24 Apr 2017 + MVTec Software GmbH, Munich, Germany Technical University

More information

Perceptual Grouping from Motion Cues Using Tensor Voting

Perceptual Grouping from Motion Cues Using Tensor Voting Perceptual Grouping from Motion Cues Using Tensor Voting 1. Research Team Project Leader: Graduate Students: Prof. Gérard Medioni, Computer Science Mircea Nicolescu, Changki Min 2. Statement of Project

More information

Clustering Local Motion Estimates for Robust and Efficient Object Tracking

Clustering Local Motion Estimates for Robust and Efficient Object Tracking Clustering Local Motion Estimates for Robust and Efficient Object Tracking Mario Edoardo Maresca and Alfredo Petrosino Department of Science and Technology, University of Naples Parthenope mariomaresca@hotmail.it

More information

Segmenting Objects in Weakly Labeled Videos

Segmenting Objects in Weakly Labeled Videos Segmenting Objects in Weakly Labeled Videos Mrigank Rochan, Shafin Rahman, Neil D.B. Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, Canada {mrochan, shafin12, bruce, ywang}@cs.umanitoba.ca

More information

Shape Descriptor using Polar Plot for Shape Recognition.

Shape Descriptor using Polar Plot for Shape Recognition. Shape Descriptor using Polar Plot for Shape Recognition. Brijesh Pillai ECE Graduate Student, Clemson University bpillai@clemson.edu Abstract : This paper presents my work on computing shape models that

More information

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds 9 1th International Conference on Document Analysis and Recognition Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds Weihan Sun, Koichi Kise Graduate School

More information

Robust UAV-based Tracking Using Hybrid Classifiers

Robust UAV-based Tracking Using Hybrid Classifiers Robust UAV-based Tracking Using Hybrid Classifiers Yong Wang University of Ottawa 75 Laurier Ave E, Ottawa, ON K1N 6N5 ywang6@uottawa.ca Wei Shi INSKY Lab, Leotail Intelligent Tech 1628, Pudong District,

More information

Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking

Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking International Journal of Computer Vision manuscript No. (will be inserted by the editor) Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking Chao Ma Jia-Bin Huang Xiaokang

More information

Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF)

Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF) Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF) Alan Lukežič 1, Andrej Muhič 1, Tomáš Vojíř 2, Luka Čehovin 1, Jiří Matas 2, Matej Kristan 1 1 Faculty of Computer and Information

More information

How to Make an RGBD Tracker?

How to Make an RGBD Tracker? How to Make an RGBD Tracker? Uğur Kart 1[0000 0002 3728 2473] Joni-Kristian Kämäräinen 1[0000 0002 5801 4371] Jiří Matas 2[0000 0003 0863 4844] 1 Laboratory of Signal Processing Tampere University of Technology,

More information

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid LEAR team, INRIA Rhône-Alpes, Grenoble, France

More information

CS229: Action Recognition in Tennis

CS229: Action Recognition in Tennis CS229: Action Recognition in Tennis Aman Sikka Stanford University Stanford, CA 94305 Rajbir Kataria Stanford University Stanford, CA 94305 asikka@stanford.edu rkataria@stanford.edu 1. Motivation As active

More information