Artificial Intelligence Lecture 6

Size: px
Start display at page:

Download "Artificial Intelligence Lecture 6"

Transcription

1 Artificial Intelligence Lecture 6

2 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization (ch. 8) applied AI techniques in robots, software agents,... Knowledge representation (ch. 2) semantic networks, frames, logic, resolution Expert systems (ch. 3) forward/backward chaining, uncertainty, baysian networks Natural language processing (ch. 5) Machine learning (ch. 7) version spaces, decision trees, classification, neural networks 2

3 Optimization Problem Given a complex function F(x) with discrete arguments x, find x that gives the maximum (or minimum) value. Often F(x) is fairly easy to compute for individual values of X, but may have a complicated structure making it impossible to solve analytically Complete evaluation of F(x) for every x too expensive 3

4 Hill climbing Start with some initial guess for x, evalute F(x) Find all the neighbours N(x) of x Evalute F(x 2 ) for each neighbour x 2 Set x to be the x 2 that gives the highest value Repeat a fix amount of times or until no change 4

5 Example problem Traveling salesman problem Given a list of cities to visit, find an order to visit tham that minimizes the total length to travel Each city is given by a name, and distances to the other cities. 5

6 Traveling salesman cities = ["a", "b", "c", "d", "e", "f"] distance={} for i in cities: distance[i] = {} distance[i][i] = 0 def dist(a,b,cost): distance[a][b] = cost distance[b][a] = cost dist("a","b",3) ; dist("a","c",1) ; dist("a","d",3) ; dist("a","e",3);... dist("b","c", 3) ; dist("b","d", 1) ; dist("b","e", 2) ; dist("b","f", 2) dist("c","d", 3) ; dist("c","e", 1) ; dist("c","f", 1) dist("d","e", 4) ; dist("d","f", 2) dist("e","f", 5) # Takes an ordered of the cities and gives the total length def evaluate(l): cost = distance[l[0]][l[ 1]] for i in range(0,len(l) 1): cost = cost + distance[l[i]][l[i+1]] return cost 6

7 Evaluating the costs >>> print(cities,"costs",evaluate(cities) ) ['a', 'b', 'c', 'd', 'e'] costs 16 >>> L=["a", "c", "b", "e", "d"] >>> print( L, "costs", evaluate(l) ) ['a', 'c', 'b', 'e', 'd'] costs 13 7

8 Using Hill climbing to find a good path def HC(): L,e = cities, evaluate(cities) while True: bestl, beste = L, e print(l, "costs", e) for i in range(0,len(l) 1): for j in range(i,len(l)): L2 = list(l) L2[i], L2[j] = L2[j], L2[i] e2 = evaluate(l2) if e2 < beste: bestl, beste = L2, e2 if beste == e: return bestl, beste L,e=bestL, beste 8

9 Using Hill climbing to find a good path ['a', 'b', 'c', 'd', 'e', 'f'] costs 20 ['a', 'e', 'c', 'd', 'b', 'f'] costs 12 ['c', 'e', 'a', 'd', 'b', 'f'] costs 11 ['c', 'f', 'a', 'd', 'b', 'e'] costs 10 ['c', 'a', 'f', 'd', 'b', 'e'] costs 9 (['c', 'a', 'f', 'd', 'b', 'e'], 9) 9

10 Gradient search Hillclimbing but for continous variables Optimizing F(x) for continous x HC equivalent to: x = x + b * d/dx f(x) 10

11 Problem with Hill climbing / gradient search Algorithm can get stuck in local minim / maxima plateau's ridge 11

12 Simulated annealing Simulated annealing Inspired by the physical process of annealing Reduces the chance of getting stuck in local optima Algorithm Start at random state X and with a radius R Find a random neighbour X2 that is within radius D from X Evalute X2, if better than X then set X = X2 Iterate, with smaller and smaller value on R TSP example Random neighbour X2 is the result of doing R switches of cities (eg. 3, 4 switches at once). 12

13 Genetic algorithms Basic idea Genomes that represent solutions Evaluation of genomes performance The fittest individuals (best solutions) survive and create offspring (slightly different solutions) mutations and cross over in offspring Typical problems Optimization problems (TSP), circuit layout, electric design... Genetic programming (each genome is a functional program) 13

14 Genetic algorithms Algorithm: GeneticAlgorithm begin t = 0 P(t) = initial population evaluate P(t) while (not terminal condition): t = t+1 select and update P(t) from P(t 1) evaluate P(t) return best individual of P(t) end Initial population: Usually random solutions (individuals). Selection: Select the N fittest individuals from the whole population. Update: Create offspring by mutation and crossovers. Terminal condition: After X iterations, good enough solution, convergence speed, etc. 14

15 Coding in GA Assumption: a potential solution to the problem can be represented as a set of parameters. The parameters are joined together to form a string of values. Example: Maximize the function f(x,y,z). A solution is a triple with values for x, y and z. If we represent these values in binary notation with 16 digits we may get as a possible solution: x = y = z = Possible encoding:

16 Fitness function Fitness function: Return a numerical value for each individual representing it's utility. Example: Problem: Maximize the function f(x,y,z). fitness function = f The fitness function can measure a combination of things: Eg: Design of product. Fitness function is combination of size of product, functionality of product, construction cost, construction time, transportion cost etc. 16

17 Reproduction Selection: favouring good solutions. Crossover: for rapid exploration of the search space. Mutation: For randomness, no point has zero probability. 17

18 Example: Genetic Algorithm for TSP How can the genome code only valid solutions List of cities: risk visiting same city twice! Crossover Combining half of the list from each parent risk missing some cities in child solution! Mutation Changing permutation of list ok? 18

19 Example: choice of genome for TSP Let the genome be a list of priorities London 10, Paris 20, Örebro 5, Stockholm 8 means visit Paris London Stockholm > Örebro Paris Mutation Add/decrease priority of random city Crossover Take half the priorities from each parent Mix: [(L,10), (P, 20), (O, 5), (S, 8)] and [(L, 30), (P, 20), (O, 11), (S, 3)] using crossover point at index 2 gives: [(L, 10), (P, 20), (O, 11), (S, 3)] and [(L, 30), (P, 20), (O, 5), (S, 8) This guarantees that only valid solutions can be generated! 19

20 Example: initial population, breeding Let the genome be a list of priorities London 10, Paris 20, Örebro 5, Stockholm 8 means visit Paris London Stockholm > Örebro Paris Initial population: Random list of priorities Breeding a solution Population size, Mutation rate, Crossover selection scheme Stopping critera? Ex: 500 individuals, 10% mutation rate, keep 100 best individuals. 400 children with random parents from survivors. Run 50 generations. 20

21 Example: initial population, breeding def GA(): Individuals=[] for i in range(0,500): Individuals.append([randomGenome(),0]) for generation in range(0,50): # Evaluate all individuals for Ind in Individuals: Ind[1] = evaluate(genome2list(ind[0])) # Sort all individuals Individuals.sort(key=lambda g: g[1]) best=individuals[0][1] for i in range(100,len(individuals)): Individuals[i][0]=mixGenomes(Individuals[random.randrange(0,100)][0], Individuals[random.randrange(0,100)][0]) for i in range(0,len(individuals)): mutategenome(individuals[i][0]) return best 21

22 Characteristics of GA Blind search, non optimal solutions Use of codings, not decision variables Search from set of possible solutions, not from a point Use of randomized operators, non deterministic Good for hard problems / problems lacking specialized solutions Acceptably good solutions acceptably fast Genetic algorithms have no guarantee to work Depends on problem type, problem representation (genomes), implementation of mutations/crossover, population size etc. 22

23 Application of GA Numerical function optimisations Eg. sensor calibration, training of neural networks Image processing Eg. recognising persons, objects Combinatorial optimization task Eg. the traveling salesman problem, job scheduling, bin packing Design tasks Eg. graph layout, floor layout, circuit layouts Machine learning in control... 23

24 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization (ch. 8) applied AI techniques in robots, software agents,... Knowledge representation (ch. 2) semantic networks, frames, logic, resolution Expert systems (ch. 3) forward/backward chaining, uncertainty, baysian networks Natural language processing (ch. 5) Machine learning (ch. 7) version spaces, decision trees, classification, neural networks 24

25 What is an agent? Russel and Norvig: An agent is anything that can be viewed as perceiving it's environment through sensors and acting upon that environment through effectors. Franklin's definition: An autonomous agent is a system situated within and as part of an environment that senses that environment and acts on it, over time, in pursuit of it's own agenda and so as to effect what it senses in the future. 25

26 What is an agent An agent interacts with its environments Perceive through sensors Human agent: eyes, ears, nose etc. Robotic agent: cameras, infrared range finder etc. Soft agent: receiving keystrokes, network packages etc. Act through actuators Human agent: hands, legs, mouse etc. Robotic agent: arms, wheels, motors etc. Soft agent: display, sending network packages etc. A rational agent is One that does the right thing Or one that acts so as to achieve best expected outcome 26

27 Example A simulated world Array of cells: dirty, clean, obstacle... Agent (vacuum cleaner) Percepts locations and cell contents here, e.g. [A, Dirty], [B, Clean] Actions: Right, Left, Suck, NoOp 27

28 A Vacuum cleaner agent Tabulation of agent functions A simple agent program 28

29 Rational agents Select action expected to maximize the performance measure given evidence provided by percept sequence to date and any prior knowledge. Performance measure defined the success criteria Percept sequence required to not just react to local percepts Prior knowledge of environment 29

30 Rational agents Select action expected to maximize the performance measure given evidence provided by percept sequence to date and any prior knowledge. Rational thinking may still fail due to lack of information Selecting the right performance measure and collecting information part of the problem Example: build a vacuum cleaning robot and give the criteria that all visible dirt should be gone when I get home Scenario 1: it doesn't see any dirt so it does nothing Scenario 2: it hides the dirt Success criteria: collect as much dirt as possible Scenario 3: It goes outdoors and vaccums up a big pile of dirt 30

31 Rational agents What is rational? The performance measure The percept sequence What an agent knows about the environment take all previous percepts into account. Model the environment The actions that the agent can perform consider also future effects of these actions. An ideal rational agent should do whatever action is expected to maximize it's performance measure, on the basis of the evidence provided by the percept sequence and whatever built in knowledge the agent has. Not forgetting to do actions in order to obtain useful information! 31

32 Agent can be described as a mapping from percept sequences to actions. Specifying which action to take for each possible percept sequence provides the ideal agent. cf. game playing, optimal strategies Table in memory mapping percept sequences to actions Size of table too large To difficult to build that table Lack of generality 32

33 Rationality versus perfection How and when should we evaluate the performance measure? Is it better to take an immediate action giving a small increase in performance, or a an action that will/might give a larger increase in performance later? Example: should I withdraw my money from the bank, or wait until next year when I have more interest? Or 100 years after that?... Amortized costs and utilities Autonomy The utility of getting a reward in the distant future is less (but not zero!) than compared to getting it right now. How much less? Rationality requires exploration, learning and autonomy 33

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.3 4.6) Searching: So Far We ve discussed how to build goal-based and utility-based agents that search to solve problems We ve also presented

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Beyond Classical Search

Beyond Classical Search Beyond Classical Search Chapter 3 covered problems that considered the whole search space and produced a sequence of actions leading to a goal. Chapter 4 covers techniques (some developed outside of AI)

More information

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

More information

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen INF3490 - Biologically inspired computing Lecture 1: Marsland chapter 9.1, 9.4-9.6 2017 Optimization and Search Jim Tørresen Optimization and Search 2 Optimization and Search Methods (selection) 1. Exhaustive

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Beyond Classical Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed

More information

Beyond Classical Search

Beyond Classical Search Beyond Classical Search Chapter 3 covered problems that considered the whole search space and produced a sequence of actions leading to a goal. Chapter 4 covers techniques (some developed outside of AI)

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today CS 188: Artificial Intelligence Fall 2006 Lecture 5: Robot Motion Planning 9/14/2006 Local Search Methods Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

4/22/2014. Genetic Algorithms. Diwakar Yagyasen Department of Computer Science BBDNITM. Introduction

4/22/2014. Genetic Algorithms. Diwakar Yagyasen Department of Computer Science BBDNITM. Introduction 4/22/24 s Diwakar Yagyasen Department of Computer Science BBDNITM Visit dylycknow.weebly.com for detail 2 The basic purpose of a genetic algorithm () is to mimic Nature s evolutionary approach The algorithm

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence

Local Search. CS 486/686: Introduction to Artificial Intelligence Local Search CS 486/686: Introduction to Artificial Intelligence 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A* search and

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II Genetic Algorithms Genetic Algorithms Iterative method for doing optimization Inspiration from biology General idea (see Pang or Wikipedia for more details): Create a collection of organisms/individuals

More information

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Announcements Project 1 due (yesterday)! Project 2 (Pacman with ghosts) up in a few days Reminder: you are allowed to

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore Announcements Project

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Local Search CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A*

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

Escaping Local Optima: Genetic Algorithm

Escaping Local Optima: Genetic Algorithm Artificial Intelligence Escaping Local Optima: Genetic Algorithm Dae-Won Kim School of Computer Science & Engineering Chung-Ang University We re trying to escape local optima To achieve this, we have learned

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Search Algorithms for Regression Test Suite Minimisation

Search Algorithms for Regression Test Suite Minimisation School of Physical Sciences and Engineering King s College London MSc in Advanced Software Engineering Search Algorithms for Regression Test Suite Minimisation By Benjamin Cook Supervised by Prof. Mark

More information

Algorithms & Complexity

Algorithms & Complexity Algorithms & Complexity Nicolas Stroppa - nstroppa@computing.dcu.ie CA313@Dublin City University. 2006-2007. November 21, 2006 Classification of Algorithms O(1): Run time is independent of the size of

More information

Outline. Intelligent agents. Vacuum-cleaner world. Agents and environments

Outline. Intelligent agents. Vacuum-cleaner world. Agents and environments Outline Intelligent agents As seen from Russell & Norvig perspective Slides from Russell & Norvig book, revised by Andrea Roli s and environments Rationality PEAS (Performance measure,,, ) types s and

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function Introduction METAHEURISTICS Some problems are so complicated that are not possible to solve for an optimal solution. In these problems, it is still important to find a good feasible solution close to the

More information

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests Review Agents (2.1-2.3) Mid-term Review Chapters 2-6 Review State Space Search Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents Class Overview COMP 3501 / COMP 4704-4 Lecture 2: Search Prof. 1 2 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions?

More information

Mutations for Permutations

Mutations for Permutations Mutations for Permutations Insert mutation: Pick two allele values at random Move the second to follow the first, shifting the rest along to accommodate Note: this preserves most of the order and adjacency

More information

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable.

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable. Hill Climbing Many search spaces are too big for systematic search. A useful method in practice for some consistency and optimization problems is hill climbing: Assume a heuristic value for each assignment

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

Local Search (Ch )

Local Search (Ch ) Local Search (Ch. 4-4.1) Local search Before we tried to find a path from the start state to a goal state using a fringe set Now we will look at algorithms that do not care about a fringe, but just neighbors

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Revision Lecture Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University

More information

Intelligent agents. As seen from Russell & Norvig perspective. Slides from Russell & Norvig book, revised by Andrea Roli

Intelligent agents. As seen from Russell & Norvig perspective. Slides from Russell & Norvig book, revised by Andrea Roli Intelligent agents As seen from Russell & Norvig perspective Slides from Russell & Norvig book, revised by Andrea Roli Outline Agents and environments Rationality PEAS (Performance measure, Environment,

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Select a variable to change Select a new value for that variable Until a satisfying assignment is

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Using Genetic Algorithms to optimize ACS-TSP

Using Genetic Algorithms to optimize ACS-TSP Using Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada {mpilat,arpwhite}@scs.carleton.ca

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination Exam Date/Time: Tuesday, June 13, 2017, 8:30-9:50 pm Exam Hall:

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 9. István Szapudi Institute for Astronomy University of Hawaii March 21, 2018 Outline Reminder 1 Reminder 2 3 Reminder We have demonstrated

More information

Machine Evolution. Machine Evolution. Let s look at. Machine Evolution. Machine Evolution. Machine Evolution. Machine Evolution

Machine Evolution. Machine Evolution. Let s look at. Machine Evolution. Machine Evolution. Machine Evolution. Machine Evolution Let s look at As you will see later in this course, neural networks can learn, that is, adapt to given constraints. For example, NNs can approximate a given function. In biology, such learning corresponds

More information

Genetic Algorithm. Dr. Rajesh Kumar

Genetic Algorithm.   Dr. Rajesh Kumar Genetic Algorithm Dr. Rajesh Kumar PhD, PDF (NUS, Singapore) SMIEEE, FIETE, MIE (I),LMCSI, SMIACSIT, LMISTE, MIAENG Associate Professor, Department of Electrical Engineering Adjunct Associate Professor,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 21, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Exercise: The Knapsack

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 6, 2015 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe 2 Exercise: The Knapsack Problem

More information

Predicting Diabetes using Neural Networks and Randomized Optimization

Predicting Diabetes using Neural Networks and Randomized Optimization Predicting Diabetes using Neural Networks and Randomized Optimization Kunal Sharma GTID: ksharma74 CS 4641 Machine Learning Abstract This paper analysis the following randomized optimization techniques

More information

Comparative Analysis of Genetic Algorithm Implementations

Comparative Analysis of Genetic Algorithm Implementations Comparative Analysis of Genetic Algorithm Implementations Robert Soricone Dr. Melvin Neville Department of Computer Science Northern Arizona University Flagstaff, Arizona SIGAda 24 Outline Introduction

More information

Information Fusion Dr. B. K. Panigrahi

Information Fusion Dr. B. K. Panigrahi Information Fusion By Dr. B. K. Panigrahi Asst. Professor Department of Electrical Engineering IIT Delhi, New Delhi-110016 01/12/2007 1 Introduction Classification OUTLINE K-fold cross Validation Feature

More information

1 Lab 5: Particle Swarm Optimization

1 Lab 5: Particle Swarm Optimization 1 Lab 5: Particle Swarm Optimization This laboratory requires the following: (The development tools are installed in GR B0 01 already): C development tools (gcc, make, etc.) Webots simulation software

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make), already installed in GR B001 Webots simulation software Webots User Guide Webots

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems CS 331: Artificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines

More information

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7. Chapter 7: Derivative-Free Optimization Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.5) Jyh-Shing Roger Jang et al.,

More information

Genetic Programming. and its use for learning Concepts in Description Logics

Genetic Programming. and its use for learning Concepts in Description Logics Concepts in Description Artificial Intelligence Institute Computer Science Department Dresden Technical University May 29, 2006 Outline Outline: brief introduction to explanation of the workings of a algorithm

More information

AI Programming CS S-08 Local Search / Genetic Algorithms

AI Programming CS S-08 Local Search / Genetic Algorithms AI Programming CS662-2013S-08 Local Search / Genetic Algorithms David Galles Department of Computer Science University of San Francisco 08-0: Overview Local Search Hill-Climbing Search Simulated Annealing

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lesson 4 Local Search Local improvement, no paths Look around at states in the local neighborhood and choose the one with the best value Pros: Quick (usually linear) Sometimes enough

More information

Genetic Algorithms Variations and Implementation Issues

Genetic Algorithms Variations and Implementation Issues Genetic Algorithms Variations and Implementation Issues CS 431 Advanced Topics in AI Classic Genetic Algorithms GAs as proposed by Holland had the following properties: Randomly generated population Binary

More information

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM 1 CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM John R. Koza Computer Science Department Stanford University Stanford, California 94305 USA E-MAIL: Koza@Sunburn.Stanford.Edu

More information

CS 151: Intelligent Agents, Problem Formulation and Search

CS 151: Intelligent Agents, Problem Formulation and Search CS 151: Intelligent Agents, Problem Formulation and Search How do we make a computer "smart?" Computer, clean the house! Um OK?? This one's got no chance How do we represent this problem? Hmmm where to

More information

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP Wael Raef Alkhayri Fahed Al duwairi High School Aljabereyah, Kuwait Suhail Sami Owais Applied Science Private University Amman,

More information

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

More information

Artificial Intelligence Application (Genetic Algorithm)

Artificial Intelligence Application (Genetic Algorithm) Babylon University College of Information Technology Software Department Artificial Intelligence Application (Genetic Algorithm) By Dr. Asaad Sabah Hadi 2014-2015 EVOLUTIONARY ALGORITHM The main idea about

More information

Traveling Salesman Problem. Java Genetic Algorithm Solution

Traveling Salesman Problem. Java Genetic Algorithm Solution Traveling Salesman Problem Java Genetic Algorithm Solution author: Dušan Saiko 23.08.2005 Index Introduction...2 Genetic algorithms...2 Different approaches...5 Application description...10 Summary...15

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic We know how to use heuristics in search BFS, A*, IDA*, RBFS, SMA* Today: What if the

More information

CHAPTER 4 GENETIC ALGORITHM

CHAPTER 4 GENETIC ALGORITHM 69 CHAPTER 4 GENETIC ALGORITHM 4.1 INTRODUCTION Genetic Algorithms (GAs) were first proposed by John Holland (Holland 1975) whose ideas were applied and expanded on by Goldberg (Goldberg 1989). GAs is

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

Path Planning Optimization Using Genetic Algorithm A Literature Review

Path Planning Optimization Using Genetic Algorithm A Literature Review International Journal of Computational Engineering Research Vol, 03 Issue, 4 Path Planning Optimization Using Genetic Algorithm A Literature Review 1, Er. Waghoo Parvez, 2, Er. Sonal Dhar 1, (Department

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Necmettin Kaya Uludag University, Mechanical Eng. Department, Bursa, Turkey Ferruh Öztürk Uludag University, Mechanical Eng. Department,

More information

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries. CS 188: Artificial Intelligence Fall 2007 Lecture 5: CSPs II 9/11/2007 More CSPs Applications Tree Algorithms Cutset Conditioning Today Dan Klein UC Berkeley Many slides over the course adapted from either

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Module 6 Evolutionary Computation Ajith Abraham Ph.D. Q What is the most powerful problem solver in the Universe? ΑThe (human) brain that created the wheel, New York, wars and

More information

The k-means Algorithm and Genetic Algorithm

The k-means Algorithm and Genetic Algorithm The k-means Algorithm and Genetic Algorithm k-means algorithm Genetic algorithm Rough set approach Fuzzy set approaches Chapter 8 2 The K-Means Algorithm The K-Means algorithm is a simple yet effective

More information

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement Outline Informed Search ECE457 Applied Artificial Intelligence Fall 2007 Lecture #3 Heuristics Informed search techniques More on heuristics Iterative improvement Russell & Norvig, chapter 4 Skip Genetic

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 17: Coping With Intractability Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Branch-and-Bound (B&B) Variant of backtrack with costs

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Genetic Algorithms and Genetic Programming Lecture 7

Genetic Algorithms and Genetic Programming Lecture 7 Genetic Algorithms and Genetic Programming Lecture 7 Gillian Hayes 13th October 2006 Lecture 7: The Building Block Hypothesis The Building Block Hypothesis Experimental evidence for the BBH The Royal Road

More information

[Premalatha, 4(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

[Premalatha, 4(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY GENETIC ALGORITHM FOR OPTIMIZATION PROBLEMS C. Premalatha Assistant Professor, Department of Information Technology Sri Ramakrishna

More information

Lecture 6: The Building Block Hypothesis. Genetic Algorithms and Genetic Programming Lecture 6. The Schema Theorem Reminder

Lecture 6: The Building Block Hypothesis. Genetic Algorithms and Genetic Programming Lecture 6. The Schema Theorem Reminder Lecture 6: The Building Block Hypothesis 1 Genetic Algorithms and Genetic Programming Lecture 6 Gillian Hayes 9th October 2007 The Building Block Hypothesis Experimental evidence for the BBH The Royal

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

The following are just some of the many possible definitions that can be written:

The following are just some of the many possible definitions that can be written: 2.1 Define in your own words the following terms: agent, agent function, agent program, rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent, learning agent. The

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

SIMULATED ANNEALING TECHNIQUES AND OVERVIEW. Daniel Kitchener Young Scholars Program Florida State University Tallahassee, Florida, USA

SIMULATED ANNEALING TECHNIQUES AND OVERVIEW. Daniel Kitchener Young Scholars Program Florida State University Tallahassee, Florida, USA SIMULATED ANNEALING TECHNIQUES AND OVERVIEW Daniel Kitchener Young Scholars Program Florida State University Tallahassee, Florida, USA 1. INTRODUCTION Simulated annealing is a global optimization algorithm

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) The problem # Unique board configurations in search space 8-puzzle 9! = 362880 15-puzzle 16! = 20922789888000 10 13 24-puzzle

More information

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization 2017 2 nd International Electrical Engineering Conference (IEEC 2017) May. 19 th -20 th, 2017 at IEP Centre, Karachi, Pakistan Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic

More information

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17 CSE 473: Artificial Intelligence Constraint Satisfaction Dieter Fox What is Search For? Models of the world: single agent, deterministic actions, fully observed state, discrete state space Planning: sequences

More information

CS 520: Introduction to Artificial Intelligence. Review

CS 520: Introduction to Artificial Intelligence. Review CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture 2: state spaces uninformed search 1 What is AI? A set of goals Review build an artificial intelligence useful subgoals A class

More information

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Sucharith Vanguri 1, Travis W. Hill 2, Allen G. Greenwood 1 1 Department of Industrial Engineering 260 McCain

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 2: Basic concepts Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

Advanced Search Genetic algorithm

Advanced Search Genetic algorithm Advanced Search Genetic algorithm Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

More information

Beyond Classical Search: Local Search. CMPSCI 383 September 23, 2011

Beyond Classical Search: Local Search. CMPSCI 383 September 23, 2011 Beyond Classical Search: Local Search CMPSCI 383 September 23, 2011 1 Today s lecture Local Search Hill-climbing Simulated annealing Local beam search Genetic algorithms Genetic programming Local search

More information

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space Local Search 1 Local Search Light-memory search method No search tree; only the current state is represented! Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is

More information