# Introduction to Design Optimization: Search Methods

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Introduction to Design Optimization: Search Methods

2 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape of the curve, and to find the minimum, α* numerically, using as few function evaluation as possible. The procedure can be divided into two parts: a) Finding the range or region known to contain α*. b) Calculating the value of α* as accurately as designed or as possible within the range narrowing down the range.

3 N-Dimensional Search The Problem now has N Design Variables. Solving the Multiple Design Variable Optimization (Minimization) Problem Using the 1-D Search Methods This is carried out by: To choose a direction of search o To deal with one variable each time, in sequential order - easy, but take a long time (e.g. x 1, x 2,, x N ) o To introduce a new variable/direction that changes all variables simultaneously, more complex, but quicker (e.g. S) Then to decide how far to go in the search direction (small step ε = Δx, or large step determining α by 1D search)

4 Search Methods Typical approaches include: Quadratic Interpolation (Interpolation Based) Cubic Interpolation Newton-Raphson Scheme (Derivative Based) Fibonacei Search (Pattern Search Based) Guided Random Random Iterative Optimization Process: Start point α o OPTIMIZATION Estimated point α k New start point α k+1 Repeat this process until the stopping rules are satisfied, then α* =α n.

5 N-D Search Methods Calculus Based Guided Random Random Enumerative Cubic, Gradient Based, Newton-Raphson Genetic Algorithm Simulated Annealing Monte Carlo

6 Calculus Based N-D Search Methods Indirect method: knowing the objective function set the gradient to Zero. If we need to treat the function as a black box we cannot do this. We only know F(X) at the point we evaluate the function. Direct Methods: Steepest Descent method Different flavors of Newton methods Guided random search-combinatory techniques Genetic method Simulated annealing Random: Monte Carlo Enumerative method: scan the whole domain. This is simple but time consuming

7 Steepest Descent or Gradient Descent The gradient of a scalar field is a vector field which points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change. This means that if we move in its negative direction we should go downhill and find a minimum. This is the same path a river would follow. Given a point in the domain the next point is chosen as it follows: isoline isoline X 3 X 2 isoline X 1 isoline X 0 Gradient always normal to isoline

8 Steepest descent and ill-conditioned, badly scaled functions Gradient descent has problems with ill-conditioned functions such as the Rosenbrock function shown here. The function has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

9 Newton-Raphson Method The Newton-Raphson method is defined by the recurring relation: An illustration of one iteration of Newton's method (the function ƒ is shown in blue and the tangent line is in red). We see that x n+1 is a better approximation than x n for the root x of the function f.

10 Secant Method The Secant method is defined by the recurrence relation: The first two iterations of the secant method. The red curve shows the function f and the blue lines are the secants.

11 Quadratic Interpolation Method 2 f ( α) H( α) = a+ bα + cα H(α) f(α) Quadratic Interpolation uses a quadratic function, H(α), to approximate the unknown objective function, f(α). Parameters of the quadratic function are determined by several points of the objective function, f(α). The known optimum of the interpolation quadratic function is used to provide an estimated optimum of the objective function through an iterative process. The estimated optimum approaches the true optimum. The method requires proper range being found before started. It is relatively efficient, but sensitive to the shape of the objective

12 Combinatory Search: Genetic Algorithm Valid for discrete variables One of the best all purposes search method. Emulates the genetic evolution due to the survival of the fittest Each variable value >a GENE, a binary string value in the variable range Vector variables X> a CHROMOSOME, a concatenation of a random combinations of Genes (strings) one per type (one value per variable). A Chromosome (X i ) is a point in the X domain and is also defined as genotype. Objective Function F(X)>phenotype. F(X i ) is a point in the Objective Function domain corresponding to X i.

13 Genetic Algorithm Construction of a chromosome X i (x i,y i,z i ) x 1 y 1 z 1 X 1

14 Genetic Algorithm 1) Construct a population of genotypes (chromosomes) and evaluate the phenotypes (objective function). 2) Associate a fitness value between 0 and 1 to each phenotype with a fitness function. This function normalizes the phenotype (objective function) and assigns to its genotype an estimate (between 0 and 1) of its ability to survive. 3) Reproduction. The ability of a genotype to reproduce is a probabilistic law biased by the value given by the fitness function. Reproduction is done as it follows: Given 2 candidate for reproduction, we have: a) Cloning. The offspring is the same as the parents b) Crossover. Chromosomes are split in two (head and tail) at a random point between genes and rejoined swapping the tails. When crossover is performed Mutation takes place. Each Gene is slightly changed to explore more possible outcomes. 4) Convergence. The algorithm stops when all genes in all individuals are at 95% percentile

15

16 Genetic Algorithm. Example

17 Genetic Algorithm. Example

18 Genetic Algorithm. Example Results Outcome:

19 Simulated Annealing (wikipedia) The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. In the simulated annealing (SA) method, each point s of the search space is analogous to a state of some physical system, and the function E(s) to be minimized is analogous to the internal energy of the system in that state. The goal is to bring the system, from an arbitrary initial state, to a state with the minimum possible energy.

20 By analogy with this physical process, each step of the SA algorithm attempts to replace the current solution by a random solution (chosen according to a candidate distribution, often constructed to sample from solutions near the current solution). The new solution may then be accepted with a probability that depends both on the difference between the corresponding function values and also on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the choice between the previous and current solution is almost random when T is large, but increasingly selects the better or "downhill" solution (for a minimization problem) as T goes to zero. The allowance for "uphill" moves potentially saves the method from becoming stuck at local optima.

21 Monte Carlo Method Monte Carlo methods vary, but tend to follow a particular pattern: Define a domain of possible inputs. Generate inputs randomly from a probability distribution over the domain. Perform a deterministic computation on the inputs. Aggregate the results.

22 For example, consider a circle inscribed in a unit square. Given that the circle and the square have a ratio of areas that is π/4, the value of π can be approximated using a Monte Carlo method: Draw a square on the ground, then inscribe a circle within it. Uniformly scatter some objects of uniform size (grains of rice or sand) over the square. Count the number of objects inside the circle and the total number of objects. The ratio of the two counts is an estimate of the ratio of the two areas, which is π/4. Multiply the result by 4 to estimate π. In this procedure the domain of inputs is the square that circumscribes our circle. We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the circle). Finally, we aggregate the results to obtain our final result, the approximation of π.

23 To get an accurate approximation for π this procedure should have two other common properties of Monte Carlo methods. First, the inputs should truly be random. If grains are purposefully dropped into only the center of the circle, they will not be uniformly distributed, and so our approximation will be poor. Second, there should be a large number of inputs. The approximation will generally be poor if only a few grains are randomly dropped into the whole square. On average, the approximation improves as more grains are dropped.

### Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman

Lecture 4 3B1B Optimization Michaelmas 2017 A. Zisserman Convexity Robust cost functions Optimizing non-convex functions grid search branch and bound simulated annealing evolutionary optimization The Optimization

### Machine Learning for Software Engineering

Machine Learning for Software Engineering Single-State Meta-Heuristics Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Recap: Goal is to Find the Optimum Challenges of general optimization

### An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

### SIMULATED ANNEALING TECHNIQUES AND OVERVIEW. Daniel Kitchener Young Scholars Program Florida State University Tallahassee, Florida, USA

SIMULATED ANNEALING TECHNIQUES AND OVERVIEW Daniel Kitchener Young Scholars Program Florida State University Tallahassee, Florida, USA 1. INTRODUCTION Simulated annealing is a global optimization algorithm

### Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.

Chapter 7: Derivative-Free Optimization Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.5) Jyh-Shing Roger Jang et al.,

### Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

### GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

### Ar#ficial)Intelligence!!

Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic We know how to use heuristics in search BFS, A*, IDA*, RBFS, SMA* Today: What if the

### Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

### Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable.

Hill Climbing Many search spaces are too big for systematic search. A useful method in practice for some consistency and optimization problems is hill climbing: Assume a heuristic value for each assignment

### Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

### Dr. Stephan Steigele Vorlesung im SS 2008

Dr. Vorlesung im SS 2008 Bioinf / Universität Leipzig Recombination issues Genetic algorithms Holland s original GA is now known as the simple genetic algorithm (SGA) Other GAs use different: Representations

### Simulated annealing/metropolis and genetic optimization

Simulated annealing/metropolis and genetic optimization Eugeniy E. Mikhailov The College of William & Mary Lecture 18 Eugeniy Mikhailov (W&M) Practical Computing Lecture 18 1 / 8 Nature s way to find a

### Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

### 10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

### LINEAR AND NONLINEAR IMAGE RESTORATION METHODS FOR EDDY

LINEAR AND NONLINEAR IMAGE RESTORATION METHODS FOR EDDY CURRENT NONDESTRUCTIVE EVALUATION Bing Wang:12 John P. Basart,12 and John C. Moulderl lcenter for NDE 2Department of Electrical and Computer Engineering

### Genetic Algorithms for Vision and Pattern Recognition

Genetic Algorithms for Vision and Pattern Recognition Faiz Ul Wahab 11/8/2014 1 Objective To solve for optimization of computer vision problems using genetic algorithms 11/8/2014 2 Timeline Problem: Computer

### Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

### Genetic Algorithm for FPGA Placement

Genetic Algorithm for FPGA Placement Zoltan Baruch, Octavian Creţ, and Horia Giurgiu Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

### Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms

Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

### Artificial Intelligence Application (Genetic Algorithm)

Babylon University College of Information Technology Software Department Artificial Intelligence Application (Genetic Algorithm) By Dr. Asaad Sabah Hadi 2014-2015 EVOLUTIONARY ALGORITHM The main idea about

### CS5401 FS2015 Exam 1 Key

CS5401 FS2015 Exam 1 Key This is a closed-book, closed-notes exam. The only items you are allowed to use are writing implements. Mark each sheet of paper you use with your name and the string cs5401fs2015

### Comparison of TSP Algorithms

Comparison of TSP Algorithms Project for Models in Facilities Planning and Materials Handling December 1998 Participants: Byung-In Kim Jae-Ik Shim Min Zhang Executive Summary Our purpose in this term project

### Artificial Intelligence

Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

### Simulated Annealing. Slides based on lecture by Van Larhoven

Simulated Annealing Slides based on lecture by Van Larhoven Iterative Improvement 1 General method to solve combinatorial optimization problems Principle: Start with initial configuration Repeatedly search

### Optimization of Benchmark Functions Using Genetic Algorithm

Optimization of Benchmark s Using Genetic Algorithm Vinod Goyal GJUS&T, Hisar Sakshi Dhingra GJUS&T, Hisar Jyoti Goyat GJUS&T, Hisar Dr Sanjay Singla IET Bhaddal Technical Campus, Ropar, Punjab Abstrat

### Random Search Report An objective look at random search performance for 4 problem sets

Random Search Report An objective look at random search performance for 4 problem sets Dudon Wai Georgia Institute of Technology CS 7641: Machine Learning Atlanta, GA dwai3@gatech.edu Abstract: This report

### A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

### Simulated Annealing for Placement Problem to minimise the wire length

Simulated Annealing for Placement Problem to minimise the wire length Ajay Sharma 2nd May 05 Contents 1 Algorithm 3 1.1 Definition of Algorithm...................... 3 1.1.1 Algorithm.........................

### mywbut.com Informed Search Strategies-II

Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

### Heuristic Optimization Introduction and Simple Heuristics

Heuristic Optimization Introduction and Simple Heuristics José M PEÑA (jmpena@fi.upm.es) (Universidad Politécnica de Madrid) 1 Outline 1. What are optimization problems? 2. Exhaustive vs. Heuristic approaches

### Derivative-Free Optimization

Derivative-Free Optimization Chapter 7 from Jang Outline Simulated Annealing (SA) Downhill simplex search Random search Genetic algorithms (GA) 2 The Big Picture Model space Adaptive networks Neural networks

OPTIMIZATION METHODS modefrontier is a registered product of ESTECO srl Copyright ESTECO srl 1999-2007 For more information visit: www.esteco.com or send an e-mail to: modefrontier@esteco.com NEOS Optimization

### Abstract. 1 Introduction

Shape optimal design using GA and BEM Eisuke Kita & Hisashi Tanie Department of Mechano-Informatics and Systems, Nagoya University, Nagoya 464-01, Japan Abstract This paper describes a shape optimization

### Ant Colony Optimization

Ant Colony Optimization CompSci 760 Patricia J Riddle 1 Natural Inspiration The name Ant Colony Optimization was chosen to reflect its original inspiration: the foraging behavior of some ant species. It

### Automated Test Data Generation and Optimization Scheme Using Genetic Algorithm

2011 International Conference on Software and Computer Applications IPCSIT vol.9 (2011) (2011) IACSIT Press, Singapore Automated Test Data Generation and Optimization Scheme Using Genetic Algorithm Roshni

### Machine Evolution. Machine Evolution. Let s look at. Machine Evolution. Machine Evolution. Machine Evolution. Machine Evolution

Let s look at As you will see later in this course, neural networks can learn, that is, adapt to given constraints. For example, NNs can approximate a given function. In biology, such learning corresponds

### Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search

Outline Genetic Algorithm Motivation Genetic algorithms An illustrative example Hypothesis space search Motivation Evolution is known to be a successful, robust method for adaptation within biological

### Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

### VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung

POLYTECHNIC UNIVERSITY Department of Computer and Information Science VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung Abstract: Techniques for reducing the variance in Monte Carlo

### Introduction to ANSYS DesignXplorer

Lecture 5 Goal Driven Optimization 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 Goal Driven Optimization (GDO) Goal Driven Optimization (GDO) is a multi objective

### Constrained Functions of N Variables: Non-Gradient Based Methods

onstrained Functions of N Variables: Non-Gradient Based Methods Gerhard Venter Stellenbosch University Outline Outline onstrained Optimization Non-gradient based methods Genetic Algorithms (GA) Particle

### Monte Carlo Integration

Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

### Numerical Optimization: Introduction and gradient-based methods

Numerical Optimization: Introduction and gradient-based methods Master 2 Recherche LRI Apprentissage Statistique et Optimisation Anne Auger Inria Saclay-Ile-de-France November 2011 http://tao.lri.fr/tiki-index.php?page=courses

### Introduction to optimization methods and line search

Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

### Engineering design using genetic algorithms

Retrospective Theses and Dissertations 2007 Engineering design using genetic algorithms Xiaopeng Fang Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/rtd Part of the

### Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

### THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECHNOLOGY METAHEURISTICS

METAHEURISTICS 1. Objectives The goals of the laboratory workshop are as follows: to learn basic properties of evolutionary computation techniques and other metaheuristics for solving various global optimization

### CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines

### CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM

1 CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM John R. Koza Computer Science Department Stanford University Stanford, California 94305 USA E-MAIL: Koza@Sunburn.Stanford.Edu

### GCSE Higher Revision List

GCSE Higher Revision List Level 8/9 Topics I can work with exponential growth and decay on the calculator. I can convert a recurring decimal to a fraction. I can simplify expressions involving powers or

### Perceptron: This is convolution!

Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

### Experience with the IMMa tyre test bench for the determination of tyre model parameters using genetic techniques

Vehicle System Dynamics Vol. 43, Supplement, 2005, 253 266 Experience with the IMMa tyre test bench for the determination of tyre model parameters using genetic techniques J. A. CABRERA*, A. ORTIZ, E.

### Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Sucharith Vanguri 1, Travis W. Hill 2, Allen G. Greenwood 1 1 Department of Industrial Engineering 260 McCain

### CHAPTER 4 GENETIC ALGORITHM

69 CHAPTER 4 GENETIC ALGORITHM 4.1 INTRODUCTION Genetic Algorithms (GAs) were first proposed by John Holland (Holland 1975) whose ideas were applied and expanded on by Goldberg (Goldberg 1989). GAs is

### Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

### An Evolutionary Algorithm for Minimizing Multimodal Functions

An Evolutionary Algorithm for Minimizing Multimodal Functions D.G. Sotiropoulos, V.P. Plagianakos and M.N. Vrahatis University of Patras, Department of Mamatics, Division of Computational Mamatics & Informatics,

### Introduction to Genetic Algorithms

Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

### A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2

Chapter 5 A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Graph Matching has attracted the exploration of applying new computing paradigms because of the large number of applications

### MAXIMUM LIKELIHOOD ESTIMATION USING ACCELERATED GENETIC ALGORITHMS

In: Journal of Applied Statistical Science Volume 18, Number 3, pp. 1 7 ISSN: 1067-5817 c 2011 Nova Science Publishers, Inc. MAXIMUM LIKELIHOOD ESTIMATION USING ACCELERATED GENETIC ALGORITHMS Füsun Akman

### Optimization. (Lectures on Numerical Analysis for Economists III) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 20, 2018

Optimization (Lectures on Numerical Analysis for Economists III) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 20, 2018 1 University of Pennsylvania 2 Boston College Optimization Optimization

### What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool

Lecture 5: GOSET 1 What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool GOSET is a MATLAB based genetic algorithm toolbox for solving optimization problems 2 GOSET Features Wide

### A grid representation for Distributed Virtual Environments

A grid representation for Distributed Virtual Environments Pedro Morillo, Marcos Fernández, Nuria Pelechano Instituto de Robótica, Universidad de Valencia. Polígono Coma S/N. Aptdo.Correos 22085, CP: 46071

Chapter 09.04 Multidimensional Gradient Method After reading this chapter, you should be able to: 1. Understand how multi-dimensional gradient methods are different from direct search methods. Understand

### GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL

3 rd Research/Expert Conference with International Participations QUALITY 2003, Zenica, B&H, 13 and 14 November, 2003 GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL Miha Kovacic, Miran Brezocnik

### Artificial Intelligence

Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 16 rd November, 2011 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

### Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

CS 188: Artificial Intelligence Fall 2007 Lecture 5: CSPs II 9/11/2007 More CSPs Applications Tree Algorithms Cutset Conditioning Today Dan Klein UC Berkeley Many slides over the course adapted from either

### Discussion of Various Techniques for Solving Economic Load Dispatch

International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 4 Issue 7, July-2015 Discussion of Various Techniques for Solving Economic Load Dispatch Veerpal Kaur

### Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm

Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm Dr. Ian D. Wilson School of Technology, University of Glamorgan, Pontypridd CF37 1DL, UK Dr. J. Mark Ware School of Computing,

### Artificial Intelligence

Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

### Simplex of Nelder & Mead Algorithm

Simplex of N & M Simplex of Nelder & Mead Algorithm AKA the Amoeba algorithm In the class of direct search methods Unconstrained (although constraints can be added as part of error function) nonlinear

### Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms

Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms B. D. Phulpagar Computer Engg. Dept. P. E. S. M. C. O. E., Pune, India. R. S. Bichkar Prof. ( Dept.

### Combinational Circuit Design Using Genetic Algorithms

Combinational Circuit Design Using Genetic Algorithms Nithyananthan K Bannari Amman institute of technology M.E.Embedded systems, Anna University E-mail:nithyananthan.babu@gmail.com Abstract - In the paper

### Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

### Introduction to Optimization

Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

### Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

### Origins of Operations Research: World War II

ESD.83 Historical Roots Assignment METHODOLOGICAL LINKS BETWEEN OPERATIONS RESEARCH AND STOCHASTIC OPTIMIZATION Chaiwoo Lee Jennifer Morris 11/10/2010 Origins of Operations Research: World War II Need

### A Genetic Algorithm Framework

Fast, good, cheap. Pick any two. The Project Triangle 3 A Genetic Algorithm Framework In this chapter, we develop a genetic algorithm based framework to address the problem of designing optimal networks

### GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

### Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

### Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

### Time Complexity Analysis of the Genetic Algorithm Clustering Method

Time Complexity Analysis of the Genetic Algorithm Clustering Method Z. M. NOPIAH, M. I. KHAIRIR, S. ABDULLAH, M. N. BAHARIN, and A. ARIFIN Department of Mechanical and Materials Engineering Universiti

### Vectorization Using Stochastic Local Search

Vectorization Using Stochastic Local Search Byron Knoll CPSC303, University of British Columbia March 29, 2009 Abstract: Stochastic local search can be used for the process of vectorization. In this project,

### Citation for published version (APA): Lankhorst, M. M. (1996). Genetic algorithms in data analysis Groningen: s.n.

University of Groningen Genetic algorithms in data analysis Lankhorst, Marc Martijn IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

### Path Planning Optimization Using Genetic Algorithm A Literature Review

International Journal of Computational Engineering Research Vol, 03 Issue, 4 Path Planning Optimization Using Genetic Algorithm A Literature Review 1, Er. Waghoo Parvez, 2, Er. Sonal Dhar 1, (Department

### Planning and Search. Genetic algorithms. Genetic algorithms 1

Planning and Search Genetic algorithms Genetic algorithms 1 Outline Genetic algorithms Representing states (individuals, or chromosomes) Genetic operations (mutation, crossover) Example Genetic algorithms

### Hardware-Software Codesign

Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

### An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

### Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall

Midterm Exam Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Covers topics through Decision Trees and Random Forests (does not include constraint satisfaction) Closed book 8.5 x 11 sheet with notes

### Genetic.io. Genetic Algorithms in all their shapes and forms! Genetic.io Make something of your big data

Genetic Algorithms in all their shapes and forms! Julien Sebrien Self-taught, passion for development. Java, Cassandra, Spark, JPPF. @jsebrien, julien.sebrien@genetic.io Distribution of IT solutions (SaaS,

### Estimation of Item Response Models

Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

### A Modified Genetic Algorithm for Process Scheduling in Distributed System

A Modified Genetic Algorithm for Process Scheduling in Distributed System Vinay Harsora B.V.M. Engineering College Charatar Vidya Mandal Vallabh Vidyanagar, India Dr.Apurva Shah G.H.Patel College of Engineering

### Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

### SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

### What is the Monte Carlo Method?

Program What is the Monte Carlo Method? A bit of history Applications The core of Monte Carlo: Random realizations 1st example: Initial conditions for N-body simulations 2nd example: Simulating a proper

### Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Petroleum Engineering/Reservoir Engineering Writer : Ibnu Hafidz Arief Faculty supervisor: Prof.Dr. Hans Spring semester,

### Image Reconstruction Using Rational Ball Interpolant and Genetic Algorithm

Applied Mathematical Sciences, Vol. 8, 2014, no. 74, 3683-3692 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43201 Image Reconstruction Using Rational Ball Interpolant and Genetic Algorithm

### Another Case Study: Genetic Algorithms

Chapter 4 Another Case Study: Genetic Algorithms Genetic Algorithms The section on Genetic Algorithms (GA) appears here because it is closely related to the problem of unsupervised learning. Much of what