Optical coherence tomography with the "Spectral Radar" - Fast optical analysis in volume scatterers by short coherence interferometry

Size: px
Start display at page:

Download "Optical coherence tomography with the "Spectral Radar" - Fast optical analysis in volume scatterers by short coherence interferometry"

Transcription

1 Optical coherence tomography with the "Spectral Radar" - Fast optical analysis in volume scatterers by short coherence interferometry M. Bail, G. Häusler, J. M. Herrmann, M. W. Lindner, R. Ringler Physics Institute, University of Erlangen-Nürnberg, Staudtstrasse 7/B2, Erlangen, Germany ABSTRACT We present a sensor for acquisition of cross-sectional images of volume scatterers (e.g. biological tissue), we call it "spectral radar". Medical and technical applications are possible. The sensor is a modified Michelson-interferometer, with a broad bandwidth light source. The scattering amplitude a(z) along one vertical axis from the surface into the bulk can be measured with-in one exposure. No reference arm scanning is necessary. Measurement results of stationary and non stationary scattering phantoms, human skin and of a fish eye in vitro are shown. Optical tomography, white light interferometry, scattering media, cross-sectional imaging, biological tissue. 1. INTRODUCTION An important medical aim is the early diagnosis of pathological tissue alterations (e.g. skin cancer). High resolution imaging methods not harmful to the healthy tissue are necessary. During the last years noninvasive cross-sectional optical imaging methods under the heading "optical tomo graphy" have been developed. An overview about perspectives of optical tomography is given in Ref. 1. The sensing methods are manifold, but are based on one common feature: the tis sue (which is a volume scatterer) is illuminated, and it is measured how many photons are scattered back to the detector, dependent on the path length in the tissue. This gives, to a certain extent, access to the scattering amplitude a(z), which is the key to exa mine the local scattering and absorption behavior in the tissue. The hope is that pathological tissue displays significant scattering properties and can therefore be separated from healthy tissue. Measurement of path length distribution of the photons can be done directly by time of flight measurements or utilizing short coherence interferometry. Optical coherence tomography 2 (OCT) uses a broad bandwidth light source in an interferometrical setup, interference is detected only, if the object path length equals the reference path length. The path length of the photons to be detected (backscattered from the tissue) can be adjusted by the reference path length. The main advantage of OCT is, that the path length resolution is roughly given by the coherence length of the light, which can be in the µm range. However, the spatial resolution of internal structure in strongly scattering biological tissue will be worse, due to multiple scattering of the photons 3. One dis advantage of the conventional OCT-setup is that the reference path has to be scanned through the depth range. This is often time consuming. But there are new OCT-setups 4, which use piezo-electric fiber stretching and obtain fiber length variations at rates of some m/s. During the last few years we developed several interferometrical methods for shape measurements of rough surfaces, called coherence radar 5,6,7. These methods were based on a modified Michelson interferometer. On basis of these sensors we developed the "spectral radar" 8,9, which is specifically suited for morphological analysis of volume scatterers. We use the spectral radar for cross-sectional imaging of the internal structure of strongly scattering phantoms and biological tissue. A similar principle has been suggested for measurements in the weakly scattering eye 10.

2 2. MEASUREMENT PRINCIPLE The spectral radar measures the scattering amplitude a(z) along one axis from the surface into the bulk within one detector exposure, no scanning in depth is necessary, hence a short measurement time is possible. Non stationary processes can be monitored. For two dimensional imaging a transverse scanning is necessary. The sensor is a modified Michelson-Interferometer. A broad bandwidth superluminescent diode (SLD) is used as a light source (fig.1), instead of a SLD also a wavelength-scanning narrow band light sourse could be used. The SLD is imaged onto the object surface and onto a reference mirror. Elementary waves are scattered back from different depths of the object. These waves interfere with the plane reference wave. Light is spectrally separated by a grating spectrograph and detected with a high dynamic linear detector (1024 photodiodes). Fig.1 Spectral radar, basic setup. The measured detector signal I, a function of wave number k, can be calculated from a simplified approach: we assume that the photons, we measure, are scattered only once. Only then we can be sure that the photons are really scattered in the depth z (the half of their total path length). This is a good approximation for scatterers, which exhibit a forward peaked scattering characteristic (gfactor near +1). The depth should be only a few mm and a the scattering coefficient should be not much larger than 10mm -1. Then the object signal o (i.e. the signal re-emitted from the scatterring media) can be regarded as a sum of elementary waves emerging from depth z with (scattering) amplitude a(z). s(k) is the spectral amplitude dis tribution of the light source (k=2π/λ, λ is the wavelength), n is the refractive index

3 of the scatterer. iknz o = s( k ) a( z ) e dz ( 1) 0 The reference wave is a plane wave: r = s( k ) e ikr ( 2) R is the reference path length. Reference and object wave are superimposed, and at the detector we get the intensity I(k): 2 I( k) = s( k) a( z)cos( 2knz) dz +... ( 3) 0 The valuable term of equation (3) describes a Fourier transformation of a symmetrized version ã(z): ã(z) =½(a(z)+a(-z)). Hence, we can retrieve a(z) by inverse Fourier transformation of I(k). This can be compared with the Fourier diffraction theorem described by Wolf 11. The equation is valid for single scattering and a constant refractive index. As in the experiment, the reference is placed virtually onto the object surface (R=0). I(k) is a sum of cosine functions with varying frequency and amplitude a(z). For example, if all light is backscattered from the same depth in the sample, I(k) would contain only one frequency, in interferometry this is known as Müller fringes 12. An analysis of the frequency content of I(k) is possible by Fourier transformation. Inverse Fourier transformation of I(k) delivers the scattering amplitude ã(z). The high frequency content of the detected signal represents larger depth. One technical problem is that already for a depth of only a few mm the frequency is rather high. For z=2mm one period in the spectrum is about 0.2nm (λ=850nm). Hence, a spectrograph with high resolution is required. z max = ( 4 ) 4n λ What is the maximum depth zmax, that can be measured with a spectrometer resolving λ? From Eq.(3) it can be seen that for z=zmax, the period of the cosine fringes is: k=π/nzmax. The spectrometer has to resolve at least k/2. With k = 2π λ/λ 2, we get: zmax is proportional to the "coherence length" of a virtual source with spectral width λ. Our SLD has a spectral half width of 30nm and a mean wavelength of 853nm. The light from the interferometer exit illuminates via a fibre the entrance slit of a high resolution grating spectrograph. The spectrograph resolves λ=0.05nm, therefore zmax=2.4mm (n=1.5). The spectrum is detected by a cooled photodiode array with 16bit dynamical range (SNR is about 10 4 ). 3. EXPERIMENTAL RESULTS Figure 2 shows measurement results of a dynamic phantom: two metal pins (diameter 160µm, distance center-center 320µm) in a vessel filled with an emulsion of milk/water.

4 Fig.2 Measurement of two metal pins (diameter 160µm, distance 320µm, depth 670µm ) in milk/water emulsion (25% milk) with the spectral radar. The concentration of the milk is about 25%, the scatterting properties of this dynamic phantom are similar to skin. We focus onto the pins into the emulsion and shoot several depth scans, while moving the object laterally in steps of 20µm. The spectrally separated interferograms are evaluated by Fourier transformation. The measured scattering amplitude a(z) versus depth z and lateral coordinate x is displayed in Fig. 2. The signal from the metal pins (depth 670µm) can be clearly detected and the pins are resolved. Despite of the strong scattering medium the resolution of the sensor is high. This is surprising. But the scatterers around the pins are moving. Therefore scattered light becomes incoherent over the integration time of our detector. Then the scattered light contributes only to frequency zero after Fourier transformation of the detector signal. It is possible to separate the multiple scattered light of the milk/water emulsion from the light scattered from the stationary metal pins. In a second experiment we measure the thickness of layers in a multilayer phantom (given to us for experimental use from Prof. Rinneberg, Physikalisch Technische Bundesanstalt, Berlin). The phantom is built up from 3 homogeneous 0.5mm layers of different scattering coefficients µs: 21cm -1, 86cm -1, 151cm -1 (850nm), g 0.8 (800nm). A lateral scan across the surface shows the profile of the surface and of the boundary layer 1 / layer 2 (fig.3). This boundary in the depth of 0.5mm was measured with a longitudinal uncertainty of about 13µm. The longitudinal rms measurement uncertainty of the surface is 3µm. This quite good accuracy is also interesting for many technical applications, where a rough surface of a diaphanous object has to be measured. The ratio of the scattering amplitudes for the surface peak and for the boundary layer 1 / layer 2 is 500:1. This shows that high SNR is absolutely necessary.

5 Fig. 3 Measurement of a multilayer phantom. The boundary between the first two layers with different scattering coefficients could be accurately localized; the longitudinal rms measurement uncertainty is σ= 13µm. The uncertainty for the surface is σ=3µm. As a biological sample we measured human skin (from hand and back) in vitro. The fresh skin was placed in a vessel filled with an isotonic NaCl solution. We call the obtained cross-sectional images optograms, because the sensor is sensitive to the optical parameters inside the measured sample. A comparison (fig. 4) of the optograms, of the spectral radar with the histological images of the skin shows that the thickness of the stratum corneum could be measured (thickness at the hand about 160µm, at the back about 50µm). Small differences are caused by the histological preparation, which leads to a skrinking of the sample of 10%-30%.

6 Fig. 4 Comparison of "optograms", measured with the spectral radar, of hand 4a) and back 4c) together with the histological images of hand 4b) and back 4d). The thickness of the stratum corneum was measured. As another biological object, we measured the small fish eye (brocade-barbel) in vitro (fig.5). The eye was embedded in isotonic NaCl solution. Cornea and iris can be clearly seen.

7 4. CONCLUSIONS For the spectral radar we expect the same resolution as for reference arm scanning OCT. An accurate comparision is difficult, because the results depend stronly upon the scattering coefficient of the sample and the measured depth. The main advantage of the spectral radar is that no scanning in depth is necessary, measurement time can be short, in principle. With the first laboratory setup of the spectral radar we could detect and measure structures in different samples: a dynamic object (pins in milk), a stationary multilayer phantom (variation of scattering coefficient) and biological samples (skin, fish eye). Unfortunately, present SLDs deliver only a few mw. This limits the SNR. With a stronger light source we expect to measure deeper into the media. More medical applications are being investigated. 5. ACKNOWLEDGEMENTS The research reported here was supported by the BMBF, registration 13N6301. Fig. 5 Optogram of a fish eye (brocade-barbel). 6. REFERENCES 1. D. Benaron, G. Müller, B. Chance, A Medical Perspective at the Threshold of Clinical Optical Tomography, in Medical optical tomography: functional imaging and monitoring, G. J. Müller, ed., 3-9, SPIE (1993) 2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimo to, Optical Coherence Tomography, Science 254, (1991) 3. G. Häusler, J. M. Herrmann, R. Kummer, M. W. Lindner, "Observation of light propagation within volume scatterers with fold slow motion", Opt. Lett. 21 (1996) 4. S. A: Boppart, G. J. Tearney, B. Bouma, J. G. Fujimoto, M. E. Brezinsky, Optical coherence tomography of developing embryonic morphology CLEO 96, (1996) 5. G. Häusler, German Patent DE (1991) 6. T. Dresel, G. Häusler, H. Venzke, 3D-sensing of rough surfaces by coherence radar, Appl. Opt. 31, (1992) 7. G. Häusler, J. Neumann, Coherence radar - an accurate 3D-sensor for rough surfaces, in Optics,

8 Illumination, and Image Sensing for Machine Vision VII, D. J. Svetkoff, ed., Proc. SPIE 1822, , (1992) 8. G. Häusler, J. M. Herrmann, J. Neumann, German Patent DE (1993) 9. M. Bail, B. Gebhardt, G. Häusler, J. M. Herrmann, V. Höfer, M. Lindner, P. Pavlicek, R. Ringler, Optical Range-Sensing with Spatially Modulated Coherence, in Optical Metrology Vol.2: Simulation and Experiment in Laser Metrology, ed. Z. Füzessy, W. Jüptner, W. Osten, Proc. of the Int. Symposium in Laser Applications in Precision Measurements, Hungary, (1996) 10. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, I. Strasser, H. C. Li, In vivo Optical Coherence Tomography in Ophtalmology, in Medical optical tomography: functional imaging and monitoring, G. J. Müller, ed., , SPIE (1993) 11. E. Wolf, Three-dimensional structure determination of semi-transparent objects from holographic data, Opt. Comm (1969) 12. J. Müller, Poggendorfs Annalen, 69, p.98 (1846)

Roughness parameters and surface deformation measured by "Coherence Radar" P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, G. Häusler

Roughness parameters and surface deformation measured by Coherence Radar P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, G. Häusler Roughness parameters and surface deformation measured by "Coherence Radar" P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, G. Häusler University of Erlangen, Chair for Optics Staudtstr. 7/B2, 91058 Erlangen,

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

The role of light source in coherence scanning interferometry and optical coherence tomography

The role of light source in coherence scanning interferometry and optical coherence tomography The role of light source in coherence scanning interferometry and optical coherence tomography Dr Rong Su Research Fellow Advanced Manufacturing Research Group Manufacturing Metrology Team Precision manufacturing

More information

Optical 3D Sensors for Real Applications Potentials and Limits Applications pratiques de capteurs optiques tridimensionnels: potentiel et limites

Optical 3D Sensors for Real Applications Potentials and Limits Applications pratiques de capteurs optiques tridimensionnels: potentiel et limites Optical 3D Sensors for Real Applications Potentials and Limits Applications pratiques de capteurs optiques tridimensionnels: potentiel et limites Abstract Optical 3D-sensors measure local distances or

More information

The Future of OCT? Swept Source. Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015

The Future of OCT? Swept Source. Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015 The Future of OCT? Swept Source Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015 Background on OCT Optical Coherence Tomography Optical When a light wave meets the interface of two differing

More information

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields EPJ Web of Conferences 6, 6 10007 (2010) DOI:10.1051/epjconf/20100610007 Owned by the authors, published by EDP Sciences, 2010 Hyperspectral interferometry for single-shot absolute measurement of 3-D shape

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OCT Medical imaging modality with 1-10 µ m resolutions and 1-2 mm penetration depths High-resolution, sub-surface non-invasive or minimally

More information

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Katsuichi Kitagawa Toray Engineering Co. Ltd., 1-1-45 Oe, Otsu 50-141, Japan Corresponding

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography. Theory Dr. Gereon Hüttmann / 009 What is OCT? ( for the MD ) Lichtquelle Probe Detektor Display OCT is Ultrasound with

More information

Techniques of Noninvasive Optical Tomographic Imaging

Techniques of Noninvasive Optical Tomographic Imaging Techniques of Noninvasive Optical Tomographic Imaging Joseph Rosen*, David Abookasis and Mark Gokhler Ben-Gurion University of the Negev Department of Electrical and Computer Engineering P. O. Box 653,

More information

Double-Shot 3-D Displacement Field Measurement Using Hyperspectral Interferometry

Double-Shot 3-D Displacement Field Measurement Using Hyperspectral Interferometry Proceedings Double-Shot 3-D Displacement Field Measurement Using Hyperspectral Interferometry Tobias V. Reichold *, Pablo D. Ruiz and Jonathan M. Huntley Wolfson School of Mechanical, Electrical and Manufacturing

More information

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM)

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) http:// QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) Pradeep Kumar Behera 1, Dalip Singh Mehta 2 1,2 Physics,Indian Institute

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Introduction: Wave Optics January 2018 Wave optics: coherence Temporal coherence Review interference

More information

A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES

A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES Andre R. Sousa 1 ; Armando Albertazzi 2 ; Alex Dal Pont 3 CEFET/SC Federal Center for Technological Education of Sta. Catarina

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) KAIST PH880 11/10/2010 Overview of week 11 Monday: Digital Holographic Tomography Optical Coherence Tomography Wednesday: PhotoacousticTomography

More information

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Spectrographs C A Griffith, Class Notes, PTYS 521, 2016 Not for distribution 1 Spectrographs and their characteristics A spectrograph is an instrument that disperses light into a frequency spectrum, which

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Jeremy M. Coupland Tel.: ++44 (0)1509 227506; Fax: ++44 (0)1509 227502; Email: j.m.coupland@lboro.ac.uk Wolfson School of

More information

White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting

White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting Maitreyee Roy 1, *, Joanna Schmit 2 and Parameswaran Hariharan 1 1 School of Physics, University

More information

Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing

Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing Fraunhofer Institute for Production Technology, Aachen M. Sc. Guilherme Mallmann Prof. Dr.-Ing. Robert

More information

Light and tissue: 2. Two-photon, Optical Coherence Tomography, Photoacoustics

Light and tissue: 2. Two-photon, Optical Coherence Tomography, Photoacoustics Light and tissue: 2 Two-photon, Optical Coherence Tomography, Photoacoustics Last lecture: Absorption and Scattering Last lecture: Mean free path Mean free path Transport mean free path Ntziachristos (2010)

More information

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light Experimental Observation of Invariance of Spectral Degree of Coherence with Change in Bandwidth of Light Bhaskar Kanseri* and Hem Chandra Kandpal Optical Radiation Standards, National Physical Laboratory,

More information

Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic

Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic vessels no blood in throat Patient eat & drink just

More information

Optical Topography Measurement of Patterned Wafers

Optical Topography Measurement of Patterned Wafers Optical Topography Measurement of Patterned Wafers Xavier Colonna de Lega and Peter de Groot Zygo Corporation, Laurel Brook Road, Middlefield CT 6455, USA xcolonna@zygo.com Abstract. We model the measurement

More information

Wavelength-tuning interferometry of intraocular distances

Wavelength-tuning interferometry of intraocular distances Wavelength-tuning interferometry of intraocular distances F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy We describe basic principles of wavelength-tuning interferometry and demonstrate its

More information

Signal post processing in frequency domain OCT and OCM using a filter bank approach

Signal post processing in frequency domain OCT and OCM using a filter bank approach Signal post processing in frequency domain OCT and OCM using a filter bank approach Bernd Hofer 1,2, Boris Považay 1, Boris Hermann 1, Angelika Unterhuber 1, Gerald Matz 2, Franz Hlawatsch 2, Wolfgang

More information

Roughness Measurement Methodology according to DIN 4768 Using Optical Coherence Tomography (OCT)

Roughness Measurement Methodology according to DIN 4768 Using Optical Coherence Tomography (OCT) Roughness Measurement Methodology according to DIN 4768 Using Optical Coherence Tomography (OCT) Marcello M. Amaral a *, Marcus P. Raele a, José P. Caly b, Ricardo E. Samad a, Nilson D. Vieira Jr. a, Anderson

More information

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube T. Donath* a, F. Pfeiffer a,b, O. Bunk a, W. Groot a, M. Bednarzik a, C. Grünzweig a, E. Hempel c, S. Popescu c, M. Hoheisel

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Fringe modulation skewing effect in white-light vertical scanning interferometry

Fringe modulation skewing effect in white-light vertical scanning interferometry Fringe modulation skewing effect in white-light vertical scanning interferometry Akiko Harasaki and James C. Wyant An interference fringe modulation skewing effect in white-light vertical scanning interferometry

More information

What is Frequency Domain Analysis?

What is Frequency Domain Analysis? R&D Technical Bulletin P. de Groot 9/3/93 What is Frequency Domain Analysis? Abstract: The Zygo NewView is a scanning white-light interferometer that uses frequency domain analysis (FDA) to generate quantitative

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Application of Photopolymer Holographic Gratings

Application of Photopolymer Holographic Gratings Dublin Institute of Technology ARROW@DIT Conference Papers Centre for Industrial and Engineering Optics 2004-2 Application of Photopolymer Holographic Gratings Emilia Mihaylova Dublin Institute of Technology,

More information

Broadband Interferometry - a non-contact optical method for measuring the thickness of transparent thin films and coatings

Broadband Interferometry - a non-contact optical method for measuring the thickness of transparent thin films and coatings Broadband Interferometry - a non-contact optical method for measuring the thickness of transparent thin films and coatings Ian Bain Scalar Technologies Ltd 9 Cochrane Square Livingston EH54 9DR United

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Fourier Transform Imaging Spectrometer at Visible Wavelengths

Fourier Transform Imaging Spectrometer at Visible Wavelengths Fourier Transform Imaging Spectrometer at Visible Wavelengths Noah R. Block Advisor: Dr. Roger Easton Chester F. Carlson Center for Imaging Science Rochester Institute of Technology May 20, 2002 1 Abstract

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

Efficient residual error reduction in complex spectral optical coherence tomography with arbitrary or unknown phase

Efficient residual error reduction in complex spectral optical coherence tomography with arbitrary or unknown phase Optica Applicata, Vol. XXXVI, No. 1, 2006 Efficient residual error reduction in complex spectral optical coherence tomography with arbitrary or unknown phase MACIEJ SZKULMOWSKI *, TOMASZ BAJRASZEWSKI,

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer

Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer Yuuki Watanabe, Yasuhiro Hayasaka, Manabu Sato, and Naohiro Tanno We demonstrate two-dimensional detection

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

INTERFERENCE. Interf - 1

INTERFERENCE. Interf - 1 INTERFERENCE This laboratory will investigate the phenomenon of interference. The interference and diffraction of light waves will be studied. Specifically, the interference patterns of a single slit,

More information

Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium

Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium Lihong Wang and Steven L. Jacques A simple and quick approach is used to measure

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

1 Introduction. Teresa C. Chen Harvard Medical School and Massachusetts Eye and Ear Infirmary 243 Charles Street Boston, Massachusetts 02114

1 Introduction. Teresa C. Chen Harvard Medical School and Massachusetts Eye and Ear Infirmary 243 Charles Street Boston, Massachusetts 02114 Journal of Biomedical Optics 124, 041205 July/August 2007 Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence

More information

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Michelle T. Graham 1 and Muyinatu A. Lediju Bell 1,2 1 Department of Electrical and Computer Engineering, Johns

More information

Inspection of Laser Generated Lamb Waves using Shearographic Interferometry

Inspection of Laser Generated Lamb Waves using Shearographic Interferometry 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 28, Montreal, Canada Inspection of Laser Generated Lamb Waves using Shearographic Interferometry Oliver

More information

Iterative procedure for in-situ EUV optical testing with an incoherent source

Iterative procedure for in-situ EUV optical testing with an incoherent source APS/123-QED Iterative procedure for in-situ EUV optical testing with an incoherent source Ryan Miyakawa and Patrick Naulleau Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Avideh Zakhor Dept.

More information

REMOTE SENSING OF SURFACE STRUCTURES

REMOTE SENSING OF SURFACE STRUCTURES REMOTE SENSING OF SURFACE STRUCTURES A.W. Koch, P. Evanschitzky and M. Jakobi Technische Universität München Institute for Measurement Systems and Sensor Technology D-8090 München, Germany Abstract: The

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS Chandra Sekhar Roychoudhuri and Tariq Manzur Photonics Research Center & Electrical & Systems

More information

Digitalna Holografija i Primjene

Digitalna Holografija i Primjene Digitalna Holografija i Primjene Hrvoje Skenderović Institut za fiziku 5. PIF Radionica, IRB, 16.12.2014. Holography Dennis Gabor invented holography in 1948 as a method for recording and reconstructing

More information

Second Year Optics 2017 Problem Set 1

Second Year Optics 2017 Problem Set 1 Second Year Optics 2017 Problem Set 1 Q1 (Revision of first year material): Two long slits of negligible width, separated by a distance d are illuminated by monochromatic light of wavelength λ from a point

More information

Two slit interference - Prelab questions

Two slit interference - Prelab questions Two slit interference - Prelab questions 1. Show that the intensity distribution given in equation 3 leads to bright and dark fringes at y = mλd/a and y = (m + 1/2) λd/a respectively, where m is an integer.

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22 Today s Outline - April 17, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 April 17, 2018 1 / 22 Today s Outline - April 17, 2018 Diffraction enhanced imaging C. Segre (IIT) PHYS 570 - Spring 2018 April 17,

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

LOW-COHERENCE INTERFEROMETRY, AN ADVANCED TECHNIQUE FOR OPTICAL METROLOGY IN INDUSTRY

LOW-COHERENCE INTERFEROMETRY, AN ADVANCED TECHNIQUE FOR OPTICAL METROLOGY IN INDUSTRY LOW-COHERENCE INTERFEROMETRY, AN ADVANCED TECHNIQUE FOR OPTICAL METROLOGY IN INDUSTRY M. L. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut Industrial Materials Institute, National Research

More information

Quantitative Phase Imaging in Microscopy

Quantitative Phase Imaging in Microscopy Invited Paper Quantitative Phase Imaging in Microscopy Colin JR Sheppard, Shan S Kou and Shalin Mehta Division of Bioengineering National University of Singapore Singapore 117574 1 Introduction There are

More information

Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology

Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology C. Gorecki 1, S. Bargiel 1, J. Lullin 1,, J. Albero 1, N. Passilly 1, S. Perrin 1, L. Froehly 1, W.- S. Wang

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Chapter 7. Widely Tunable Monolithic Laser Diodes

Chapter 7. Widely Tunable Monolithic Laser Diodes Chapter 7 Widely Tunable Monolithic Laser Diodes We have seen in Chapters 4 and 5 that the continuous tuning range λ is limited by λ/λ n/n g, where n is the index change and n g the group index of the

More information

Metallic Transmission Screen for Sub-wavelength Focusing

Metallic Transmission Screen for Sub-wavelength Focusing Metallic Transmission Screen for Sub-wavelength Focusing A.M.H. Wong, C.D. Sarris and G.V. leftheriades Abstract: A simple metallic transmission screen is proposed that is capable of focusing an incident

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media

Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media Mark Gokhler and Joseph Rosen The synthesis of a multiple-peak spatial degree of coherence is demonstrated.

More information

Downloaded from UNIT 06 Optics

Downloaded from   UNIT 06 Optics 1 Mark UNIT 06 Optics Q1: A partially plane polarised beam of light is passed through a polaroid. Show graphically the variation of the transmitted light intensity with angle of rotation of the Polaroid.

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Nanorelief measurements errors for a white-light interferometer with chromatic aberrations

Nanorelief measurements errors for a white-light interferometer with chromatic aberrations Nanorelief measurements errors for a white-light interferometer with chromatic aberrations Evgeny V. Sysoev Technological Design Institute of Scientific Instrument Engineering (TDI SIE) Siberian Branch

More information

Related topics Interference, wavelength, refractive index, speed of light, phase, virtuallight source.

Related topics Interference, wavelength, refractive index, speed of light, phase, virtuallight source. Determination of the refractive index TEP Overview Related topics Interference, wavelength, refractive index, speed of light, phase, virtuallight source. Principle Light is brought to interference by two

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers By Jeffrey L. Guttman, Ph.D., Director of Engineering, Ophir-Spiricon Abstract: The Mode-Field Diameter (MFD) and spot

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Wavelength scanning interferometry for measuring transparent films of the fusion targets

Wavelength scanning interferometry for measuring transparent films of the fusion targets Wavelength scanning interferometry for measuring transparent films of the fusion targets F. Gao *, X. Jiang, H. Muhamedsalih and H. Martin Centre for precision Technologies, University of Huddersfield,

More information

45 µm polystyrene bead embedded in scattering tissue phantom. (a,b) raw images under oblique

45 µm polystyrene bead embedded in scattering tissue phantom. (a,b) raw images under oblique Phase gradient microscopy in thick tissue with oblique back-illumination Tim N Ford, Kengyeh K Chu & Jerome Mertz Supplementary Figure 1: Comparison of added versus subtracted raw OBM images 45 µm polystyrene

More information

Secondary grating formation by readout at Bragg-null incidence

Secondary grating formation by readout at Bragg-null incidence Secondary grating formation by readout at Bragg-null incidence Ali Adibi, Jose Mumbru, Kelvin Wagner, and Demetri Psaltis We show that when a dynamic hologram is read out by illumination at the Bragg nulls

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE Object: To investigate the diffraction and interference of light, Apparatus: Lasers, optical bench, single and double slits. screen and mounts. Theory:

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 4: Fringe projection 2016-11-08 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,

More information

Chapter 9. Coherence

Chapter 9. Coherence Chapter 9. Coherence Last Lecture Michelson Interferometer Variations of the Michelson Interferometer Fabry-Perot interferometer This Lecture Fourier analysis Temporal coherence and line width Partial

More information

Synthetic spatial coherence function for optical tomography and profilometry: influence of the observation condition

Synthetic spatial coherence function for optical tomography and profilometry: influence of the observation condition ynthetic spatial coherence function for optical tomography and profilometry: influence of the observation condition Zhihui Duan *a Hirokazu Kozaki a oko Miyamoto a Joseph Rosen b and Mitsuo Takeda a a

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections David Abookasis and Joseph Rosen Ben-Gurion University of the Negev Department of Electrical and Computer

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich LECTURE 14 PHASORS & GRATINGS Instructor: Kazumi Tolich Lecture 14 2 Reading chapter 33-5 & 33-8 Phasors n Addition of two harmonic waves n Interference pattern from multiple sources n Single slit diffraction

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

To determine the wavelength of laser light using single slit diffraction

To determine the wavelength of laser light using single slit diffraction 9 To determine the wavelength of laser light using single slit diffraction pattern 91 Apparatus: Helium-Neon laser or diode laser, a single slit with adjustable aperture width, optical detector and power

More information

LED holographic imaging by spatial-domain diffraction computation of. textured models

LED holographic imaging by spatial-domain diffraction computation of. textured models LED holographic imaging by spatial-domain diffraction computation of textured models Ding-Chen Chen, Xiao-Ning Pang, Yi-Cong Ding, Yi-Gui Chen, and Jian-Wen Dong* School of Physics and Engineering, and

More information