Lecture 4: Dynamic programming I

Size: px
Start display at page:

Download "Lecture 4: Dynamic programming I"

Transcription

1 Lecture : Dynamic programming I Dynamic programming is a powerful, tabular method that solves problems by combining solutions to subproblems. It was introduced by Bellman in the 950 s (when programming meant planning ), and is typically applied to optimization problems. Dynamic programming is used to solve problems which have overlapping subproblems. Each subproblem is solved only once and the solution stored in a table for later lookup. Four steps in the development of a dynamic programming algorithm:. Characterize the structure of an optimal solution.. Recursively define the value of an optimal solution.. Compute the value of an optimal solution bottom-up.. Construct an optimal solution from computed information. Rod cutting Given a rod of length n cm and a table of prices p i, for i =,...,n, determine the maximum revenue r n for cutting up the rod in lengths l i. There are n different cuttings, since we may or may not cut at distance l cm from the left end, for l =,...,n. If an optimal solution cuts the rod into k pieces, for some k n, then an optimal decomposition n = l + + l k gives maximum revenue r n = p l + + p lk. The problem has optimal substructure: optimal solutions to a problem incorporate optimal subsolutions, solved independently. We have Recursive top-down implementation: r n = max l n (p l + r n l ), with r 0 = 0 CUT-ROD(p, n) if n = 0 return 0 for l to n do q max(q,p[l] + CUT-ROD(p,n l)) return q The running time is Θ( n ), which we can reduce to Θ(n ) by using dynamic programming: BOTTOM-UP-CUT-ROD(p, n) let r[0..n] be a new array r[0] 0 for j to n do for l to j do q max(q,p[l] + r[j l]) r[j] q return r[n]

2 The doubly-nested loop gives Θ(n ) time complexity. Reconstructing a solution: EXTENDED-BOTTOM-UP-CUT-ROD(p, n) let r[0..n] and s[0..n] be new arrays r[0] 0 for j to n do for l to j do if q < p[l] + r[j l] then q p[l] + r[j l] s[j] l r[j] q return r and s Matrix-chain multiplication Given a sequence A,A,...,A n of n matrices, insert parentheses that determine the order of multiplication in a way that minimizes the number of scalar multiplications. Note that the number of ways to parenthesize is given by the Catalan numbers: C(n) = n k= C(k) C(n k) = n + ( ) n = Ω( n n n /) Let A i have dimension p i p i. If A is a p 0 p matrix and A a p p matrix, then their product matrix is a p 0 p matrix. The number of scalar multiplications is p 0 p p. Example: A = [0 0], A = [0 50], A = [50 ], A = [ 00] A (A (A A )) requires operations (A (A A )) A requires.00 operations Step : Structure of an optimal parenthesization If it is optimal to split A i A i+ A j between A k and A k+, then the parenthesizations of A i A k and A k+ A j must be optimal. If there were better ways to parenthesize subproblems this would produce a better parenthesization of A i A j. Step : A recursive solution Let m[i,j] denote the minimum cost for A i A j }. m[i,j] = 0 if i = j min i k<j (m[i,k] + m[k +,j] + p i p k p j ) if i < j A i A k } is a p i p k -matrix and A k+ A j } a p k p j -matrix.

3 Step : Computing the optimal costs Dynamic programming finds the cheapest order by computing m[i, j] by increasing differences j i:. m[i,i] = 0, for all i.. m[i, i + ], from the recursive equation.. m[i,i + ], etc. Thereby m[i,k] and m[k+,j] exist when m[i,j] shall be computed, which then takes O(j i) = O(n) time to find best k. The number of subproblems for i j n is O(n ). Hence the total time is O(n ). In the example above: p 0 = 0, p = 0, p = 50, p = p = 00.?? j 00? k= i m[,] = min m[,] + m[,] + p0 p p = 00 m[,] + m[,] + p 0 p p = 0500 correspond to A (A A ) and (A A ) A. m[,] + m[,] + p p m[,] = min p = m[,] + m[,] + p p p = 000 correspond to A (A A ) and (A A ) A. This gives k = for? in the figure. For the top square in the table the optimal multiplication order is (A (A A )) A (i.e. k = for?? in the figure) since m[,] + m[,] + p 0 p p = = 000 m[,] = min m[,] + m[,] + p 0 p p = = m[,] + m[,] + p 0 p p = = 00 m[,n] gives the minimum number of scalar multiplications for the whole problem. Step : Constructing an optimal solution Index k in a square [i,j] gives the optimal split of A i A j as (A i A k ) (A k+ A j ).

4 Elements of dynamic programming Two ingredients that an optimization problem must have for dynamic programming to be applicable:. Optimal substructure. An optimal solution contains optimal subsolutions since otherwise we may get a better solution by improving subsolutions. Determine which combination of subproblems achieves the best solution. We consider the number of subproblems to combine and the number of choices we have in determining which subproblem(s) to use in the solution. Note that subproblems are independent in the sense that the solution to one subproblem does not affect the solution to another. In rod cutting, an optimal solution uses just one subproblem (of size n l) but must consider n choices for l. In matrix-chain multiplication we use two subproblems but have j i choices to consider.. Overlapping/repeated subproblems. Dynamic programming solves each subproblem only once and stores the solution for subsequent lookup. A recursive algorithm would instead revisit and solve the same problems several times. Hence, a divide-and-conquer approach should be used when new problems are generated at each step of the recursion. Consider matrix-chain multiplication for n = :,,,,,,,,,,,,,,,,,,, A top-down recursive algorithm would visit all nodes of the tree, which is exponential in n. A bottom-up dynamic programming algorithm will only solve the Θ(n ) different subproblems. Optimal polygon triangulation We consider convex polygons P defined by a sequence of vertices v 0,v,,v n where the straightline segments between consecutive vertices, called sides, form the boundary of P. Convexity means that any segment between two vertices will not go outside P. If a segment goes between two non-adjacent vertices of P it is called a chord. We also define a weight function w for triangles formed by sides and chords of P. The problem is to find a triangulation that minimizes the sum of the weights of the triangles. A natural weight function is the sum of the side lengths in a triangle: w( v i v j v k ) = v i v j + v j v k + v k v i But the algorithm below works for an arbitrary weight function. There is a correspondence with the matrix-chain problem. The paranteses which give the multiplication order can be seen as a binary tree, called a parse tree of the expression. A triangulation of a polygon with n sides uniquely corresponds to such a tree with n leaves. A triangulation and corresponding parse tree for (A A )(A (A A 5 )):

5 v A v0 root v5 A v A v A A5 v A A A A A5 Which triangulation of the polygon in the figure corresponds to A (((A A )A )A 5 )? A small change in the algorithm that computes the best multiplication order gives an algorithm for computing the optimal triangulation. Let t[i,j] be the weight of an optimal triangulation of the polygon v i,,v j. Put w( v i,v i ) = 0, for degenerated polygons which only consist of one side. Recursively we have: t[i,j] = 0 if i = j min i k<j (t[i,k] + t[k +,j] + w( v i v k v j )) if i < j We are looking for a vertex v k such that the weight of the triangle v i v k v j plus the triangulations of v i,,v k and v k,,v j is minimized. As for matrix multiplication an optimal triangulation is found in O(n ) time and O(n ) space. Consider: v0 v7 t[,] v v6 t[5,7] v v v v5 To triangulate the four-sided polygon v,v 5,v 6,v 7 there are two alternatives: k = 5 t[5,7] = t[5,5] + t[6,7] + w( v v 5 v 7 ) k = 6 t[5,7] = t[5,6] + t[7,7] + w( v v 6 v 7 ) If the distance from v to v 6 is greater than the distance from v 5 to v 7, k = 5 is chosen. For a polygon with only three vertices, v 0,v,v, we get t[,] = t[,]+t[,]+w( v 0 v v ), i.e. the sum of the side lengths of the triangle. 5

Chapter 3 Dynamic programming

Chapter 3 Dynamic programming Chapter 3 Dynamic programming 1 Dynamic programming also solve a problem by combining the solutions to subproblems. But dynamic programming considers the situation that some subproblems will be called

More information

Dynamic Programming. Design and Analysis of Algorithms. Entwurf und Analyse von Algorithmen. Irene Parada. Design and Analysis of Algorithms

Dynamic Programming. Design and Analysis of Algorithms. Entwurf und Analyse von Algorithmen. Irene Parada. Design and Analysis of Algorithms Entwurf und Analyse von Algorithmen Dynamic Programming Overview Introduction Example 1 When and how to apply this method Example 2 Final remarks Introduction: when recursion is inefficient Example: Calculation

More information

Unit 4: Dynamic Programming

Unit 4: Dynamic Programming Unit 4: Dynamic Programming Course contents: Assembly-line scheduling Matrix-chain multiplication Longest common subsequence Optimal binary search trees Applications: Cell flipping, rod cutting, optimal

More information

Algorithms. Ch.15 Dynamic Programming

Algorithms. Ch.15 Dynamic Programming Algorithms Ch.15 Dynamic Programming Dynamic Programming Not a specific algorithm, but a technique (like divide-and-conquer). Developed back in the day when programming meant tabular method (like linear

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 29 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

Lecture 13: Chain Matrix Multiplication

Lecture 13: Chain Matrix Multiplication Lecture 3: Chain Matrix Multiplication CLRS Section 5.2 Revised April 7, 2003 Outline of this Lecture Recalling matrix multiplication. The chain matrix multiplication problem. A dynamic programming algorithm

More information

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 1 Dynamic Programming 1 Introduction An algorithm design paradigm like divide-and-conquer Programming : A tabular method (not writing computer code) Divide-and-Conquer (DAC):

More information

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees Reminders > HW4 is due today > HW5 will be posted shortly Dynamic Programming Review > Apply the steps... 1. Describe solution in terms of solution

More information

CS141: Intermediate Data Structures and Algorithms Dynamic Programming

CS141: Intermediate Data Structures and Algorithms Dynamic Programming CS141: Intermediate Data Structures and Algorithms Dynamic Programming Amr Magdy Programming? In this context, programming is a tabular method Other examples: Linear programing Integer programming 2 Rod

More information

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares 12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution to the original

More information

Chain Matrix Multiplication

Chain Matrix Multiplication Chain Matrix Multiplication Version of November 5, 2014 Version of November 5, 2014 Chain Matrix Multiplication 1 / 27 Outline Outline Review of matrix multiplication. The chain matrix multiplication problem.

More information

Homework3: Dynamic Programming - Answers

Homework3: Dynamic Programming - Answers Most Exercises are from your textbook: Homework3: Dynamic Programming - Answers 1. For the Rod Cutting problem (covered in lecture) modify the given top-down memoized algorithm (includes two procedures)

More information

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left 13.2 Rotations MAT-72006 AA+DS, Fall 2013 24-Oct-13 368 LEFT-ROTATE(, ) 1. // set 2. // s left subtree s right subtree 3. if 4. 5. // link s parent to 6. if == 7. 8. elseif == 9. 10. else 11. // put x

More information

/463 Algorithms - Fall 2013 Solution to Assignment 3

/463 Algorithms - Fall 2013 Solution to Assignment 3 600.363/463 Algorithms - Fall 2013 Solution to Assignment 3 (120 points) I (30 points) (Hint: This problem is similar to parenthesization in matrix-chain multiplication, except the special treatment on

More information

Dynamic Programming II

Dynamic Programming II June 9, 214 DP: Longest common subsequence biologists often need to find out how similar are 2 DNA sequences DNA sequences are strings of bases: A, C, T and G how to define similarity? DP: Longest common

More information

F(0)=0 F(1)=1 F(n)=F(n-1)+F(n-2)

F(0)=0 F(1)=1 F(n)=F(n-1)+F(n-2) Algorithms Dana Shapira Lesson #4: Dynamic programming Fibonacci Series F()= F()= F(n)=F(n-)+F(n-) Write a Divide and Conquer Algorithm! What is its running time? Binomial Coefficients n! n = ( )! n! Recursive

More information

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real 14.3 Interval trees We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real numbers ], with Interval ]represents the set Open and half-open intervals

More information

Data Structures and Algorithms Week 8

Data Structures and Algorithms Week 8 Data Structures and Algorithms Week 8 Dynamic programming Fibonacci numbers Optimization problems Matrix multiplication optimization Principles of dynamic programming Longest Common Subsequence Algorithm

More information

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12 Algorithms Theory 14 Dynamic Programming (2) Matrix-chain multiplication P.D. Dr. Alexander Souza Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 5 Date of this version: June 14, 2018 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Lecture 8. Dynamic Programming

Lecture 8. Dynamic Programming Lecture 8. Dynamic Programming T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information

Algorithm Design Techniques part I

Algorithm Design Techniques part I Algorithm Design Techniques part I Divide-and-Conquer. Dynamic Programming DSA - lecture 8 - T.U.Cluj-Napoca - M. Joldos 1 Some Algorithm Design Techniques Top-Down Algorithms: Divide-and-Conquer Bottom-Up

More information

15.Dynamic Programming

15.Dynamic Programming 15.Dynamic Programming Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing. Like divide and conquer, DP solves problems by combining solutions

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 14: Dynamic Programming Text Reference: Chapter 15 Dynamic Programming We know that we can use the divide-and-conquer technique to obtain efficient algorithms

More information

ECE250: Algorithms and Data Structures Dynamic Programming Part B

ECE250: Algorithms and Data Structures Dynamic Programming Part B ECE250: Algorithms and Data Structures Dynamic Programming Part B Ladan Tahvildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University

More information

- Main approach is recursive, but holds answers to subproblems in a table so that can be used again without re-computing

- Main approach is recursive, but holds answers to subproblems in a table so that can be used again without re-computing Dynamic Programming class 2 - Main approach is recursive, but holds answers to subproblems in a table so that can be used again without re-computing - Can be formulated both via recursion and saving in

More information

y j LCS-Length(X,Y) Running time: O(st) set c[i,0] s and c[0,j] s to 0 for i=1 to s for j=1 to t if x i =y j then else if

y j LCS-Length(X,Y) Running time: O(st) set c[i,0] s and c[0,j] s to 0 for i=1 to s for j=1 to t if x i =y j then else if Recursive solution for finding LCS of X and Y if x s =y t, then find an LCS of X s-1 and Y t-1, and then append x s =y t to this LCS if x s y t, then solve two subproblems: (1) find an LCS of X s-1 and

More information

Steven Skiena. skiena

Steven Skiena.   skiena Lecture 12: Examples of Dynamic Programming (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Give an O(n 2 )

More information

Dynamic Programming Group Exercises

Dynamic Programming Group Exercises Name: Name: Name: Dynamic Programming Group Exercises Adapted from material by Cole Frederick Please work the following problems in groups of 2 or 3. Use additional paper as needed, and staple the sheets

More information

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31)

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31) Programming, Data Structures and Algorithms Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institution Technology, Madras Lecture 57 Dynamic Programming (Refer Slide Time:

More information

Dynamic Programming Matrix-chain Multiplication

Dynamic Programming Matrix-chain Multiplication 1 / 32 Dynamic Programming Matrix-chain Multiplication CS 584: Algorithm Design and Analysis Daniel Leblanc 1 1 Senior Adjunct Instructor Portland State University Maseeh College of Engineering and Computer

More information

(Feodor F. Dragan) Department of Computer Science Kent State University. Advanced Algorithms, Feodor F. Dragan, Kent State University 1

(Feodor F. Dragan) Department of Computer Science Kent State University. Advanced Algorithms, Feodor F. Dragan, Kent State University 1 $GYDQFH $OJRULWKPV (Feodor F. Dragan) Department of Computer Science Kent State University Advanced Algorithms, Feodor F. Dragan, Kent State University Textbook: Thomas Cormen, Charles Leisterson, Ronald

More information

Dynamic Programming (Part #2)

Dynamic Programming (Part #2) Dynamic Programming (Part #) Introduction to Algorithms MIT Press (Chapter 5) Matrix-Chain Multiplication Problem: given a sequence A, A,, A n, compute the product: A A A n Matrix compatibility: C = A

More information

We ve done. Now. Next

We ve done. Now. Next We ve done Matroid Theory Task scheduling problem (another matroid example) Dijkstra s algorithm (another greedy example) Dynamic Programming Now Matrix Chain Multiplication Longest Common Subsequence

More information

So far... Finished looking at lower bounds and linear sorts.

So far... Finished looking at lower bounds and linear sorts. So far... Finished looking at lower bounds and linear sorts. Next: Memoization -- Optimization problems - Dynamic programming A scheduling problem Matrix multiplication optimization Longest Common Subsequence

More information

Dynamic Programming. December 15, CMPE 250 Dynamic Programming December 15, / 60

Dynamic Programming. December 15, CMPE 250 Dynamic Programming December 15, / 60 Dynamic Programming December 15, 2016 CMPE 250 Dynamic Programming December 15, 2016 1 / 60 Why Dynamic Programming Often recursive algorithms solve fairly difficult problems efficiently BUT in other cases

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Thursday, October 1, 2015 Outline 1 Recap 2 Shortest paths in graphs with non-negative edge weights (Dijkstra

More information

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2 CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 11: Dynamic Programming, Part 2 Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Goal: continue with DP (Knapsack, All-Pairs SPs, )

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Dynamic Programming What is Dynamic Programming? Technique for avoiding redundant work in recursive algorithms Works best with optimization problems that have a nice underlying structure Can often be used

More information

Dynamic Programming 1

Dynamic Programming 1 Dynamic Programming 1 Jie Wang University of Massachusetts Lowell Department of Computer Science 1 I thank Prof. Zachary Kissel of Merrimack College for sharing his lecture notes with me; some of the examples

More information

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced 13 Red-Black Trees A red-black tree (RBT) is a BST with one extra bit of storage per node: color, either RED or BLACK Constraining the node colors on any path from the root to a leaf Ensures that no such

More information

1 i n (p i + r n i ) (Note that by allowing i to be n, we handle the case where the rod is not cut at all.)

1 i n (p i + r n i ) (Note that by allowing i to be n, we handle the case where the rod is not cut at all.) Dynamic programming is a problem solving method that is applicable to many different types of problems. I think it is best learned by example, so we will mostly do examples today. 1 Rod cutting Suppose

More information

Today: Matrix Subarray (Divide & Conquer) Intro to Dynamic Programming (Rod cutting) COSC 581, Algorithms January 21, 2014

Today: Matrix Subarray (Divide & Conquer) Intro to Dynamic Programming (Rod cutting) COSC 581, Algorithms January 21, 2014 Today: Matrix Subarray (Divide & Conquer) Intro to Dynamic Programming (Rod cutting) COSC 581, Algorithms January 21, 2014 Reading Assignments Today s class: Chapter 4.1, 15.1 Reading assignment for next

More information

Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm

Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm This module 27 focuses on introducing dynamic programming design strategy and applying it to problems like chained matrix

More information

Unit-5 Dynamic Programming 2016

Unit-5 Dynamic Programming 2016 5 Dynamic programming Overview, Applications - shortest path in graph, matrix multiplication, travelling salesman problem, Fibonacci Series. 20% 12 Origin: Richard Bellman, 1957 Programming referred to

More information

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book)

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book) Matrix Chain-Products (not in book) is a general algorithm design paradigm. Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products Review: Matrix Multiplication.

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms Dynamic Programming Well known algorithm design techniques: Brute-Force (iterative) ti algorithms Divide-and-conquer algorithms Another strategy for designing algorithms is dynamic

More information

Dynamic programming II - The Recursion Strikes Back

Dynamic programming II - The Recursion Strikes Back Chapter 5 Dynamic programming II - The Recursion Strikes Back By Sariel Har-Peled, December 17, 2012 1 Version: 0.4 No, mademoiselle, I don t capture elephants. I content myself with living among them.

More information

Algorithms: Dynamic Programming

Algorithms: Dynamic Programming Algorithms: Dynamic Programming Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Dynamic Programming Spring 2012 1 / 58 Dynamic Programming General Strategy: Solve recursively the problem top-down based

More information

Optimization II: Dynamic Programming

Optimization II: Dynamic Programming Chapter 12 Optimization II: Dynamic Programming In the last chapter, we saw that greedy algorithms are efficient solutions to certain optimization problems. However, there are optimization problems for

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 15, 2015 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 15, 2015 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 7 April 15, 2015 洪國寶 1 Course information (5/5) Grading (Tentative) Homework 25% (You may collaborate when solving the homework, however when writing

More information

CSE 4/531 Solution 3

CSE 4/531 Solution 3 CSE 4/531 Solution 3 Edited by Le Fang November 7, 2017 Problem 1 M is a given n n matrix and we want to find a longest sequence S from elements of M such that the indexes of elements in M increase and

More information

Computer Sciences Department 1

Computer Sciences Department 1 1 Advanced Design and Analysis Techniques (15.1, 15.2, 15.3, 15.4 and 15.5) 3 Objectives Problem Formulation Examples The Basic Problem Principle of optimality Important techniques: dynamic programming

More information

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples Elements of Dynamic Programming COSC 3A - Design and Analysis of Algorithms 8 Elements of DP Memoization Longest Common Subsequence Greedy Algorithms Many of these slides are taken from Monica Nicolescu,

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

Dynamic Programming. Outline and Reading. Computing Fibonacci

Dynamic Programming. Outline and Reading. Computing Fibonacci Dynamic Programming Dynamic Programming version 1.2 1 Outline and Reading Matrix Chain-Product ( 5.3.1) The General Technique ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Dynamic Programming version 1.2 2 Computing

More information

Efficient Sequential Algorithms, Comp309. Problems. Part 1: Algorithmic Paradigms

Efficient Sequential Algorithms, Comp309. Problems. Part 1: Algorithmic Paradigms Efficient Sequential Algorithms, Comp309 Part 1: Algorithmic Paradigms University of Liverpool References: T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Second Edition. MIT Press

More information

ECE608 - Chapter 15 answers

ECE608 - Chapter 15 answers ¼ À ÈÌ Ê ½ ÈÊÇ Ä ÅË ½µ ½ º¾¹¾ ¾µ ½ º¾¹ µ ½ º¾¹ µ ½ º ¹½ µ ½ º ¹¾ µ ½ º ¹ µ ½ º ¹¾ µ ½ º ¹ µ ½ º ¹ ½¼µ ½ º ¹ ½½µ ½ ¹ ½ ECE608 - Chapter 15 answers (1) CLR 15.2-2 MATRIX CHAIN MULTIPLY(A, s, i, j) 1. if

More information

DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017)

DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017) DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017) Veli Mäkinen Design and Analysis of Algorithms 2017 week 4 11.8.2017 1 Dynamic Programming Week 4 2 Design and Analysis of Algorithms 2017 week 4 11.8.2017

More information

Dynamic programming 4/9/18

Dynamic programming 4/9/18 Dynamic programming 4/9/18 Administrivia HW 3 due Wednesday night Exam out Thursday, due next week Multi-day takehome, open book, closed web, written problems Induction, AVL trees, recurrences, D&C, multithreaded

More information

1 Introduction 2. 2 A Simple Algorithm 2. 3 A Fast Algorithm 2

1 Introduction 2. 2 A Simple Algorithm 2. 3 A Fast Algorithm 2 Polyline Reduction David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Data Structure and Algorithm II Homework #2 Due: 13pm, Monday, October 31, === Homework submission instructions ===

Data Structure and Algorithm II Homework #2 Due: 13pm, Monday, October 31, === Homework submission instructions === Data Structure and Algorithm II Homework #2 Due: 13pm, Monday, October 31, 2011 === Homework submission instructions === Submit the answers for writing problems (including your programming report) through

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms Dynamic Programming Algorithms Introduction In our study of divide-and-conquer algorithms, we noticed that a problem seemed conducive to a divide-and-conquer approach provided 1. it could be divided into

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

EXAM ELEMENTARY MATH FOR GMT: ALGORITHM ANALYSIS NOVEMBER 7, 2013, 13:15-16:15, RUPPERT D

EXAM ELEMENTARY MATH FOR GMT: ALGORITHM ANALYSIS NOVEMBER 7, 2013, 13:15-16:15, RUPPERT D SOLUTIONS EXAM ELEMENTARY MATH FOR GMT: ALGORITHM ANALYSIS NOVEMBER 7, 2013, 13:15-16:15, RUPPERT D This exam consists of 6 questions, worth 10 points in total, and a bonus question for 1 more point. Using

More information

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 Dynamic Programming is a powerful technique that allows one to solve many different types

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

Dynamic Programming CS 445. Example: Floyd Warshll Algorithm: Computing all pairs shortest paths

Dynamic Programming CS 445. Example: Floyd Warshll Algorithm: Computing all pairs shortest paths CS 44 Dynamic Programming Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk Example: Floyd Warshll lgorithm: Computing all pairs shortest paths Given G(V,E), with weight

More information

Rec 8 Notes. 1 Divide-and-Conquer Convex Hull. 1.1 Algorithm Idea. 1.2 Algorithm. Here s another random Divide-And-Conquer algorithm.

Rec 8 Notes. 1 Divide-and-Conquer Convex Hull. 1.1 Algorithm Idea. 1.2 Algorithm. Here s another random Divide-And-Conquer algorithm. Divide-and-Conquer Convex Hull Here s another random Divide-And-Conquer algorithm. Recall, possibly from CS 2, that the convex hull H(Q) of a set of points Q is the smallest convex set containing Q (that

More information

1 Closest Pair Problem

1 Closest Pair Problem 1 Closest Pair Problem Computational Geometry, Lectures 3,4 Closest Pair Problem Scribe Varun Nayyar Given a set of n points determine points a,b such that the interpoint distance ( Euclidean ) is the

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem.

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem. EE/CSCI 451 Spring 2018 Homework 8 Total Points: 100 1 [10 points] Explain the following terms: EREW PRAM CRCW PRAM Brent s Theorem BSP model 1 2 [15 points] Assume two sorted sequences of size n can be

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression

Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression Chapter 5 Dynamic Programming Exercise 5.1 Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression x 1 /x /x 3 /... x n 1 /x n, where

More information

COMP Parallel Computing. PRAM (2) PRAM algorithm design techniques

COMP Parallel Computing. PRAM (2) PRAM algorithm design techniques COMP 633 - Parallel Computing Lecture 3 Aug 29, 2017 PRAM algorithm design techniques Reading for next class (Thu Aug 31): PRAM handout secns 3.6, 4.1, skim section 5. Written assignment 1 is posted, due

More information

Recitation 12. Dynamic Programming Announcements. SegmentLab has been released and is due Apr 14.

Recitation 12. Dynamic Programming Announcements. SegmentLab has been released and is due Apr 14. Recitation 12 Dynamic Programming 12.1 Announcements SegmentLab has been released and is due Apr 14. 73 74 RECITATION 12. DYNAMIC PROGRAMMING 12.2 Matrix Chain Product Definition 12.1. In the matrix chain

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon into triangles). Computational Geometry [csci 3250] Polygon Triangulation Laura Toma

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon

More information

CSC 373: Algorithm Design and Analysis Lecture 8

CSC 373: Algorithm Design and Analysis Lecture 8 CSC 373: Algorithm Design and Analysis Lecture 8 Allan Borodin January 23, 2013 1 / 19 Lecture 8: Announcements and Outline Announcements No lecture (or tutorial) this Friday. Lecture and tutorials as

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J LECTURE 12 Dynamic programming Longest common subsequence Optimal substructure Overlapping subproblems Prof. Charles E. Leiserson Dynamic programming Design technique,

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Lecture 6: Combinatorics Steven Skiena. skiena

Lecture 6: Combinatorics Steven Skiena.  skiena Lecture 6: Combinatorics Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Learning to Count Combinatorics problems are

More information

CSED233: Data Structures (2017F) Lecture12: Strings and Dynamic Programming

CSED233: Data Structures (2017F) Lecture12: Strings and Dynamic Programming (2017F) Lecture12: Strings and Dynamic Programming Daijin Kim CSE, POSTECH dkim@postech.ac.kr Strings A string is a sequence of characters Examples of strings: Python program HTML document DNA sequence

More information

Honors Algorithms Lecture: Dynamic Programming

Honors Algorithms Lecture: Dynamic Programming Honors Algorithms Lecture: Dynamic Programming Julian Panetta (julian.panetta@gmail.com), based on material from Alan Siegel September 26, 2011 Note: We covered up through 6.3 in class. I fixed the errors

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Introduction to Algorithms

Introduction to Algorithms Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Second Edition The MIT Press Cambridge, Massachusetts London, England McGraw-Hill Book Company Boston Burr

More information

Optimal Region for Binary Search Tree, Rotation and Polytope

Optimal Region for Binary Search Tree, Rotation and Polytope Optimal Region for Binary Search Tree, Rotation and Polytope Kensuke Onishi Mamoru Hoshi 2 Department of Mathematical Sciences, School of Science Tokai University, 7 Kitakaname, Hiratsuka, Kanagawa, 259-292,

More information

Lecturers: Sanjam Garg and Prasad Raghavendra March 20, Midterm 2 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra March 20, Midterm 2 Solutions U.C. Berkeley CS70 : Algorithms Midterm 2 Solutions Lecturers: Sanjam Garg and Prasad aghavra March 20, 207 Midterm 2 Solutions. (0 points) True/False Clearly put your answers in the answer box in front

More information

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms IV Dynamic Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Dynamic Programming Shortest Paths in Dags, Revisited Shortest Paths in Dags, Revisited The special distinguishing

More information

Algorithms and Complexity. Exercise session 3+4

Algorithms and Complexity. Exercise session 3+4 Algorithms and Complexity. Exercise session 3+4 Dynamic Programming Longest Common Substring The string ALGORITHM and the string PLÅGORIS have the common substring GORI. The longest common substring of

More information

Parallel Algorithms CSE /22/2015. Outline of this lecture: 1 Implementation of cilk for. 2. Parallel Matrix Multiplication

Parallel Algorithms CSE /22/2015. Outline of this lecture: 1 Implementation of cilk for. 2. Parallel Matrix Multiplication CSE 539 01/22/2015 Parallel Algorithms Lecture 3 Scribe: Angelina Lee Outline of this lecture: 1. Implementation of cilk for 2. Parallel Matrix Multiplication 1 Implementation of cilk for We mentioned

More information

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 36 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

Dynamic Programming Homework Problems

Dynamic Programming Homework Problems CS 1510 Dynamic Programming Homework Problems 1. (2 points) Consider the recurrence relation T (0) = T (1) = 2 and for n > 1 n 1 T (n) = T (i)t (i 1) i=1 We consider the problem of computing T (n) from

More information

Memoization/Dynamic Programming. The String reconstruction problem. CS124 Lecture 11 Spring 2018

Memoization/Dynamic Programming. The String reconstruction problem. CS124 Lecture 11 Spring 2018 CS124 Lecture 11 Spring 2018 Memoization/Dynamic Programming Today s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember

More information

Dynamic Programming Assembly-Line Scheduling. Greedy Algorithms

Dynamic Programming Assembly-Line Scheduling. Greedy Algorithms Chapter 13 Greedy Algorithms Activity Selection Problem 0-1 Knapsack Problem Huffman Code Construction Dynamic Programming Assembly-Line Scheduling C-C Tsai P.1 Greedy Algorithms A greedy algorithm always

More information

Lectures 12 and 13 Dynamic programming: weighted interval scheduling

Lectures 12 and 13 Dynamic programming: weighted interval scheduling Lectures 12 and 13 Dynamic programming: weighted interval scheduling COMP 523: Advanced Algorithmic Techniques Lecturer: Dariusz Kowalski Lectures 12-13: Dynamic Programming 1 Overview Last week: Graph

More information

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University Algorithms All-Pairs Shortest Paths Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr Contents Using single source shortest path algorithms Presents O(V 4 )-time algorithm, O(V 3 log V)-time algorithm,

More information