Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Size: px
Start display at page:

Download "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding"

Transcription

1 Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1

2 Outline Cone programming Homogeneous embedding Operator splitting Numerical results Conclusions Cone programming 2

3 Cone programming minimize c T x subject to Ax + s = b, s K variables x R n and (slack) s R m K is a proper convex cone K nonnegative orthant LP K Lorentz cone SOCP K positive semidefinite matrices SDP the modern canonical form for convex optimization popularized by Nesterov, Nemirovsky, others, in 1990s Cone programming 3

4 Cone programming parser/solvers like CVX, CVXPY, YALMIP translate or canonicalize to cone problems focus has been on symmetric self-dual cones for medium scale problems with enough sparsity, interior-point methods reliably attain high accuracy but they scale superlinearly in problem size open source software (SDPT3, SeDuMi,... ) widely used Cone programming 4

5 This talk a new first order method that solves general cone programs finds primal and dual solutions, or certificate of primal/dual infeasibility obtains modest accuracy quickly scales to large problems and is easy parallelized is matrix-free: only requires z Az, w A T w Cone programming 5

6 Some previous work projected subgradient type methods (Polyak 1980s) primal-dual subgradient methods (Chambelle-Pock 2011) matrix-free interior-point methods (Gondzio 2012) can use iterative linear solver (CG) in any interior-point method Cone programming 6

7 Outline Cone programming Homogeneous embedding Operator splitting Numerical results Conclusions Homogeneous embedding 7

8 Primal-dual cone problem pair primal and dual cone problems: minimize c T x subject to Ax + s = b (x, s) R n K maximize b T y subject to A T y + r = c (r, y) {0} n K primal variables x R n, s R m ; dual variables r R n, y R m K is dual of closed convex proper cone K note that R n K and {0} n K are dual cones Homogeneous embedding 8

9 Example cones K is typically a Cartesian product of smaller cones, e.g., R, {0}, R + second-order cone Q = {(x, t) R k+1 x 2 t} positive semidefinite cone {X S k X 0} exponential cone cl{(x, y, z) R 3 y > 0, e x/y z/y} these cones would handle almost all convex problems that arise in applications Homogeneous embedding 9

10 Optimality conditions KKT conditions (necessary and sufficient, assuming strong duality): primal feasibility: Ax + s = b, s K dual feasibility: A T y + c = r, r = 0, y K complementary slackness: y T s = 0 equivalent to zero duality gap: c T x + b T y = 0 Homogeneous embedding 10

11 Primal-dual embedding KKT conditions as feasibility problem: find that satisfy (x, s, r, y) R n K {0} n K r 0 A T [ ] c s = A 0 x + b 0 c T b T y 0 reduces solving cone program to finding point in intersection of cone and affine set no solution if primal or dual problem infeasible/unbounded Homogeneous embedding 11

12 Homogeneous self-dual (HSD) embedding (Ye, Todd, Mizuno, 1994) find nonzero that satisfy (x, s, r, y) R n K {0} n K, τ 0, κ 0 r 0 A T c x s = A 0 b y κ c T b T 0 τ this feasibility problem is homogeneous and self-dual τ = 1, κ = 0 reduces to primal-dual embedding due to skew symmetry, any solution satisfies (x, y,τ) (r, s,κ), τκ = 0 Homogeneous embedding 12

13 Recovering solution or certificates any HSD solution (x, s, r, y,τ,κ) falls into one of three cases: 1. τ > 0, κ = 0: (ˆx, ŷ, ŝ) = (x/τ, y/τ, s/τ) is a solution 2. τ = 0, κ > 0: in this case c T x + b T y < 0 if b T y < 0, then ŷ = y/( b T y) certifies primal infeasibility if c T x < 0, then ˆx = x/( c T x) certifies dual infeasibility 3. τ = κ = 0: nothing can be said about original problem (a pathology) Homogeneous embedding 13

14 Homogeneous primal-dual embedding HSD embedding obviates need for phase I / phase II solves to handle infeasibility/unboundedness is used in all interior-point cone solvers is a particularly nice form to solve (for reasons not completely understood) Homogeneous embedding 14

15 Notation define x r 0 A T c u = y, v = s, Q = A 0 b τ κ c T b T 0 HSD embedding is: find (u, v) that satisfy v = Qu, (u, v) C C with C = R n K R + Homogeneous embedding 15

16 Outline Cone programming Homogeneous embedding Operator splitting Numerical results Conclusions Operator splitting 16

17 Consensus problem consensus problem: minimize f(x)+g(z) subject to x = z f, g convex, not necessarily smooth, can take infinite values p is optimal objective value Operator splitting 17

18 Alternating direction method of multipliers ADMM is: for k = 0,..., ( x k+1 = argmin x ρ > 0 step-size z k+1 = argmin z λ k+1 = λ k x k+1 + z k+1 f(x)+(ρ/2) x z k λ k 2 2 ( g(z)+(ρ/2) x k+1 z λ k 2 2 λ (scaled) dual variable for x = z constraint same as many other operator splitting methods for consensus problem, e.g., Douglas-Rachford method ) ) Operator splitting 18

19 Convergence of ADMM under benign conditions ADMM guarantees: f(x k )+g(z k ) p λ k λ, an optimal dual variable x k z k 0 Operator splitting 19

20 ADMM applied to HSD embedding HSD in consensus form minimize I C C (u, v)+i Qũ=ṽ (ũ, ṽ) subject to (u, v) = (ũ, ṽ) I S is indicator function of set S ADMM is: (ũ k+1, ṽ k+1 ) = Π Qu=v (u k +λ k, v k +µ k ) u k+1 = Π C (ũ k+1 λ k ) v k+1 = Π C (ṽ k+1 µ k ) λ k+1 = λ k ũ k+1 + u k+1 µ k+1 = µ k ṽ k+1 + v k+1 Π S (x) is Euclidean projection of x onto S Operator splitting 20

21 Simplifications (straightforward, but not immediate) if λ 0 = v 0 and µ 0 = u 0, then λ k = v k and µ k = u k for all k simplify projection onto Qu = v using Q T = Q nothing depends on ṽ k, so can be eliminated Operator splitting 21

22 Final algorithm for k = 0,..., ũ k+1 = (I + Q) 1 (u k + v k ) u k+1 = Π C (ũk+1 v k) v k+1 = v k ũ k+1 + u k+1 parameter free homogeneous same complexity as ADMM applied to primal or dual alone Operator splitting 22

23 Variation: Approximate projection replace exact projection with any ũ k+1 that satisfies ũ k+1 (I + Q) 1 (u k + v k ) 2 µ k, where µ k > 0 satisfy k µ k < useful when an iterative method is used to compute ũ k+1 implied by the (more easily verified) inequality (Q + I)ũ k+1 (u k + v k ) 2 µ k by skew-symmetry of Q Operator splitting 23

24 Convergence can show the following (even with approximate projection): for all iterations k > 0 we have u k C, v k C, (u k ) T v k = 0 as k, Qu k v k 0 with τ 0 = 1, κ 0 = 1, (u k, v k ) bounded away from zero Operator splitting 24

25 Solving the linear system in first step need to solve equations I A T c ũ x A I b ũ y = c T b T 1 ũ τ w x w y w τ let so [ I A T M = A I I + Q = ], h = [ M ] h h T 1 [ ] c b it follows that ] ([ ] ) [ũx = (M + hh T ) 1 wx w ũ y w τ h, y Operator splitting 25

26 Solving the linear system, contd. applying matrix inversion lemma to (M + hh T ) 1 yields and ] [ũx = (M 1 M 1 hh T M 1 )([ ] ) wx (1+h T M 1 w τ h h) ũ y first compute and cache M 1 h ũ τ = w τ + c T ũ x + b T ũ y so each iteration requires that we compute [ ] M 1 wx w y and perform vector operations with cached quantities Operator splitting 26 w y

27 Direct method to solve [ I A T A I ] = z y ][ zx [ wx compute sparse permuted LDL factorization of matrix re-use cached factorization for subsequent solves factorization guaranteed to exist for all permutations, since matrix is symmetric quasi-definite w y ] Operator splitting 27

28 Indirect method by elimination z x = (I + A T A) 1 (w x A T w y ) z y = w y + Az x can apply conjugate gradient (CG) to first equation CG requires only multiplies by A and A T terminate CG iterations when residual smaller than µ k easily parallelized; can exploit warm-starting Operator splitting 28

29 Scaling / preconditioning convergence greatly improved by scaling / preconditioning: replace original data A, b, c with  = DAE, ˆb = Db, ĉ = Ec D and E are diagonal positive; D respects cone boundaries D and E chosen by equilibrating A (details in paper) stopping condition retains unscaled (original) data Operator splitting 29

30 Outline Cone programming Homogeneous embedding Operator splitting Numerical results Conclusions Numerical results 30

31 SCS software package available from: written in C with matlab and python hooks can be called from CVX and CVXPY solves LPs, SOCPs, ECPs, and SDPs includes sparse direct and indirect linear system solvers can use single or double precision, ints or longs for indices Numerical results 31

32 Portfolio optimization z R p gives weights of (long-only) portfolio with p assets maximize risk-adjusted portfolio return: maximize µ T z γ(z T Σz) subject to 1 T z = 1, z 0 µ, Σ are return mean, covariance γ > 0 is risk aversion parameter Σ given as factor model Σ = FF T + D F R q p is factor loading matrix can be transformed to SOCP Numerical results 32

33 Portfolio optimization results assets p factors q SOCP variables n SOCP constraints m nonzeros in A SDPT3: solve time 1.14 sec sec OOM SCS direct: solve time 0.17 sec 4.7 sec 37.1 sec iterations SCS indirect: solve time 0.23 sec 12.2 sec 101 sec average CG iterations iterations Numerical results 33

34 l 1 -regularized logistic regression fit logistic model, with l 1 regularization data z i R p, i = 1,...,q with labels y i { 1, 1} solve minimize q i=1 log(1+exp(y iw T z i ))+µ w 1 over variable w R p ; µ > 0 regularization parameter can be transformed to exponential cone program (ECP) Numerical results 34

35 l 1 -regularized logistic regression results small medium large features p samples q ECP variables n ECP constraints m nonzeros in A SCS direct: solve time 22.1 sec 165 sec 1020 sec iterations SCS indirect: solve time 24.0 sec 199 sec 1290 sec average CG iterations iterations Numerical results 35

36 Large random SOCP randomly generated SOCP with known optimal value n = variables, m = constraints nonzeros in A, 22.5Gb memory to store indirect solver, tolerance 10 3, parallelized over 32 threads results: 740 SCS iterations, about 5000 matrix multiplies 10 hours wall-clock time c T x c T x / c T x = b T y b T y / b T y = Numerical results 36

37 Outline Cone programming Homogeneous embedding Operator splitting Numerical results Conclusions Conclusions 37

38 Conclusions HSD embedding is great for first-order methods diagonal preconditioning critical matrix-free algorithm: only z Az, w A T w SCS is now standard large scale solver in CVXPY Conclusions 38

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Stephen Boyd Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley Electrical Engineering Department, Stanford University Springer Lectures,

More information

Domain Specific Languages for Convex Optimization

Domain Specific Languages for Convex Optimization Domain Specific Languages for Convex Optimization Stephen Boyd joint work with E. Chu, J. Mattingley, M. Grant Electrical Engineering Department, Stanford University ROKS 2013, Leuven, 9 July 2013 1 Outline

More information

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization FOCM 02 Infeasible Interior Point Methods 1 Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization Slide 1 Michael J. Todd, School of Operations Research and Industrial Engineering,

More information

Convex Optimization. Stephen Boyd

Convex Optimization. Stephen Boyd Convex Optimization Stephen Boyd Electrical Engineering Computer Science Management Science and Engineering Institute for Computational Mathematics & Engineering Stanford University Institute for Advanced

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

Large-Scale Convex Optimization for Dense Wireless Cooperative Networks

Large-Scale Convex Optimization for Dense Wireless Cooperative Networks 1 Large-Scale Convex Optimization for Dense Wireless Cooperative Networks Yuanming Shi, Jun Zhang, Brendan O Donoghue, and Khaled B. Letaief, Fellow, IEEE arxiv:156.749v1 [cs.it] 2 Jun 215 Abstract Convex

More information

A Primal-Dual Operator Splitting Method for Conic Optimization

A Primal-Dual Operator Splitting Method for Conic Optimization A Primal-Dual Operator Splitting Method for Conic Optimization Eric Chu Brendan O Donoghue Neal Parikh Stephen Boyd December 6, 2013 Abstract We develop a simple operator splitting method for solving a

More information

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 IMRE PÓLIK 1. Introduction The main goal of this reference guide is to give a summary of all the options in SeDuMi. The default value of the options is satisfactory

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Mario Souto, Joaquim D. Garcia and Álvaro Veiga June 26, 2018 Outline Introduction Algorithm Exploiting low-rank

More information

7 Large-Scale Convex Optimization for C-RANs

7 Large-Scale Convex Optimization for C-RANs 9781107142664c07 CUP/QUEK-L1 September 3, 2016 13:33 Page-149 7 Large-Scale Convex Optimization for C-RANs Yuanming Shi, Jun Zhang, Khaled B. Letaief, Bo Bai, and Wei Chen 7.1 Introduction 7.1.1 C-RANs

More information

New Directions in Linear Programming

New Directions in Linear Programming New Directions in Linear Programming Robert Vanderbei November 5, 2001 INFORMS Miami Beach NOTE: This is a talk mostly on pedagogy. There will be some new results. It is not a talk on state-of-the-art

More information

ML Detection via SDP Relaxation

ML Detection via SDP Relaxation ML Detection via SDP Relaxation Junxiao Song and Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) ELEC 5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Geometry and Statistics in High-Dimensional Structured Optimization

Geometry and Statistics in High-Dimensional Structured Optimization Geometry and Statistics in High-Dimensional Structured Optimization Yuanming Shi ShanghaiTech University 1 Outline Motivations Issues on computation, storage, nonconvexity, Two Vignettes: Structured Sparse

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers Stephen Boyd MIIS Xi An, 1/7/12 source: Distributed Optimization and Statistical Learning via the Alternating

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

arxiv: v1 [math.oc] 6 Nov 2016

arxiv: v1 [math.oc] 6 Nov 2016 Fast ADMM for homogeneous self-dual embeddings of sparse SDPs arxiv:6.828v [math.oc] 6 Nov 26 Yang Zheng Giovanni Fantuzzi Antonis Papachristodoulou Paul Goulart and Andrew Wynn Department of Engineering

More information

POGS Proximal Operator Graph Solver

POGS Proximal Operator Graph Solver POGS Proximal Operator Graph Solver Chris Fougner June 4, 2014 1 Introduction As data sets continue to increase in size, it becomes increasingly important to design algorithms that scale with the size

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Epigraph proximal algorithms for general convex programming

Epigraph proximal algorithms for general convex programming Epigraph proimal algorithms for general conve programming Matt Wytock, Po-Wei Wang and J. Zico Kolter Machine Learning Department Carnegie Mellon University mwytock@cs.cmu.edu Abstract This work aims at

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers Customizable software solver package Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein April 27, 2016 1 / 28 Background The Dual Problem Consider

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

The Affine Scaling Method

The Affine Scaling Method MA33 Linear Programming W. J. Martin October 9, 8 The Affine Scaling Method Overview Given a linear programming problem in equality form with full rank constraint matrix and a strictly positive feasible

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM

Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM Shuvomoy Das Gupta Thales Canada 56th Allerton Conference on Communication, Control and Computing, 2018 1 What is this talk about?

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery Mathematical Programming Computation manuscript No. (will be inserted by the editor) Templates for Convex Cone Problems with Applications to Sparse Signal Recovery Stephen R. Becer Emmanuel J. Candès Michael

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

A More Efficient Approach to Large Scale Matrix Completion Problems

A More Efficient Approach to Large Scale Matrix Completion Problems A More Efficient Approach to Large Scale Matrix Completion Problems Matthew Olson August 25, 2014 Abstract This paper investigates a scalable optimization procedure to the low-rank matrix completion problem

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

WE consider the gate-sizing problem, that is, the problem

WE consider the gate-sizing problem, that is, the problem 2760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL 55, NO 9, OCTOBER 2008 An Efficient Method for Large-Scale Gate Sizing Siddharth Joshi and Stephen Boyd, Fellow, IEEE Abstract We consider

More information

mixed-integer convex optimization

mixed-integer convex optimization mixed-integer convex optimization Miles Lubin with Emre Yamangil, Russell Bent, Juan Pablo Vielma, Chris Coey April 1, 2016 MIT & Los Alamos National Laboratory First, Mixed-integer linear programming

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

A Conversion of an SDP Having Free Variables into the Standard Form SDP

A Conversion of an SDP Having Free Variables into the Standard Form SDP A Conversion of an SDP Having Free Variables into the Standard Form SDP Kazuhiro Kobayashi, Kazuhide Nakata and Masakazu Kojima June 2005. Revised April 2006 Abstract. This paper deals with a semidefinite

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

SDLS: a Matlab package for solving conic least-squares problems

SDLS: a Matlab package for solving conic least-squares problems SDLS: a Matlab package for solving conic least-squares problems Didier Henrion 1,2 Jérôme Malick 3 June 28, 2007 Abstract This document is an introduction to the Matlab package SDLS (Semi-Definite Least-Squares)

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

CSDP User s Guide. Brian Borchers. August 15, 2006

CSDP User s Guide. Brian Borchers. August 15, 2006 CSDP User s Guide Brian Borchers August 5, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Towards a practical simplex method for second order cone programming

Towards a practical simplex method for second order cone programming Towards a practical simplex method for second order cone programming Kartik Krishnan Department of Computing and Software McMaster University Joint work with Gábor Pataki (UNC), Neha Gupta (IIT Delhi),

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Lieven Vandenberghe Electrical Engineering Department, UCLA IPAM Graduate Summer School: Computer Vision August 5, 2013 Convex optimization problem minimize f 0 (x)

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions Extensions of Semidefinite Coordinate Direction Algorithm for Detecting Necessary Constraints to Unbounded Regions Susan Perrone Department of Mathematics and Statistics Northern Arizona University, Flagstaff,

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Disciplined Convex Programming and CVX

Disciplined Convex Programming and CVX EE364a Review Disciplined Convex Programming and CVX convex optimization solvers modeling systems disciplined convex programming CVX 1 Convex optimization solvers LP solvers lots available (GLPK, Excel,

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Iteratively Re-weighted Least Squares for Sums of Convex Functions

Iteratively Re-weighted Least Squares for Sums of Convex Functions Iteratively Re-weighted Least Squares for Sums of Convex Functions James Burke University of Washington Jiashan Wang LinkedIn Frank Curtis Lehigh University Hao Wang Shanghai Tech University Daiwei He

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

SVMs for Structured Output. Andrea Vedaldi

SVMs for Structured Output. Andrea Vedaldi SVMs for Structured Output Andrea Vedaldi SVM struct Tsochantaridis Hofmann Joachims Altun 04 Extending SVMs 3 Extending SVMs SVM = parametric function arbitrary input binary output 3 Extending SVMs SVM

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

CSDP User s Guide. Brian Borchers. November 1, 2006

CSDP User s Guide. Brian Borchers. November 1, 2006 CSDP User s Guide Brian Borchers November, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

EE/AA 578: Convex Optimization

EE/AA 578: Convex Optimization EE/AA 578: Convex Optimization Instructor: Maryam Fazel University of Washington Fall 2016 1. Introduction EE/AA 578, Univ of Washington, Fall 2016 course logistics mathematical optimization least-squares;

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Modeling Cone Optimization Problems with COIN OS

Modeling Cone Optimization Problems with COIN OS instance Modeling Cone Optimization s with COIN OS Joint work with Gus Gassman, Jun Ma, Kipp Martin Lehigh University Department of ISE INFORMS 2009, San Diego October 12, 2009 instance 1 Cone optimization

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

Computational issues in linear programming

Computational issues in linear programming Computational issues in linear programming Julian Hall School of Mathematics University of Edinburgh 15th May 2007 Computational issues in linear programming Overview Introduction to linear programming

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

A primal-dual Dikin affine scaling method for symmetric conic optimization

A primal-dual Dikin affine scaling method for symmetric conic optimization A primal-dual Dikin affine scaling method for symmetric conic optimization Ali Mohammad-Nezhad Tamás Terlaky Department of Industrial and Systems Engineering Lehigh University July 15, 2015 A primal-dual

More information

Gate Sizing by Lagrangian Relaxation Revisited

Gate Sizing by Lagrangian Relaxation Revisited Gate Sizing by Lagrangian Relaxation Revisited Jia Wang, Debasish Das, and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, Illinois, United States October 17, 2007

More information