Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM

Size: px
Start display at page:

Download "Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM"

Transcription

1 Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM Shuvomoy Das Gupta Thales Canada 56th Allerton Conference on Communication, Control and Computing,

2 What is this talk about? this talk is about ADMM and Douglas-Rachford splitting for nonconvex problems the alternating direction method of multipliers (ADMM) originally designed to solve convex optimization problem Douglas-Rachford splitting algorithm ADMM is its special case in a convex setup both guaranteed to converge for convex problems 2

3 Motivation nonconvex ADMM (NC-ADMM) has become a popular heuristic to tackle nonconvex problems recently, NC-ADMM heuristic has been applied to [Erseghe, 2014] optimal power flow problem, [Takapoui et al., 2017] mixed integer quadratic optimization, [Iyer et al., 2014] submodular minimization with nonconvex constraints... [Diamond et al., 2018] Python package NCVX (extension of CVXPY) implements ADMM heuristic (NC-ADMM) often produces lower objective values compared with exact solvers within a time limit nonconvex Douglas-Rachford splitting (NC-DRS): analogous nonconvex heuristic based on Douglas-Rachford splitting not much has been done to improve the theoretical understanding of such heuristics

4 Summary of the results NC-DRS attacks the original problem directly optimal solutions can be characterized via the NC-DRS operator if deviation from a convex setup is bounded it will converge or oscillate in a compact connected set NC-ADMM works on a modified dual problem, not the original nonconvex problem not equivalent to NC-DRS, but there is a relationship between them likely to produce a lower objective value 4

5 Problem in consideration minimize a convex cost function with nonconvex constraint set minimize x subject to f (x) x C (OPT) f is closed, proper, and convex C is compact, but not necessarily convex

6 Reformulation through indicator function indicator function of set C: δ C (x) = { 0, if x C, if x / C δ C is closed and proper, but not necessarily convex we can write ( minimizex f (x) subject to x C ) = minimize x f(x) + δ C (x)

7 Proximal operator of f and projection onto C both NC-DRS and NC-ADMM have same subroutines: first prox γf, then Π C and finally proximal operator of f evaluated at point x with parameter γ > 0: ( 1 prox γf (x) = argmin y f(y) + y x 2) 2γ single-valued, continuous projection onto C: prox γδc (x) = Π C (x) = argmin y C ( y x 2 ) there can be multiple projections one such projection is denoted by Π C ( )

8 NC-ADMM and NC-DRS: NC-ADMM: x n+1 = prox γf (y n z n ) y n+1 = Π C (x n+1 + z n ) z n+1 = z n y n+1 + x n+1 NC-DRS: x n+1 = prox γf (z n ) y n+1 = Π C (2x n+1 z n ) z n+1 = z n + y n+1 x n+1 both have same subroutines, but different inputs 8

9 Pretend C is convex f is closed, proper, convex pretend C is convex x n,y n converge to an optimal solution for any initial condition but C is not necessarily convex in our setup convergence conditions are messy 9

10 Why are convergence conditions messy? the convergence conditions are messy because: subdifferential operator of δ C is monotone, but not maximally monotone Π C : is expansive i.e., not nonexpansive the underlying reflection operator is expansive Little bit of review...

11 Monotone and maximally monotone operators T is monotone if for every (x,u),(y,v) grat x y u v 0 T is maximally monotone if gra T is not properly contained by any other monotone operator s graph monotone, but not maximally monotone maximally monotone 11

12 Subdifferential operator for a nonconvex function g: closed, proper, but not necessarily convex g: subdifferential of g is monotone, but not maximally monotone g (x) = {u R n ( y R n ) g (y) g (x) + u y x } no subgradient at

13 Why are convergence conditions messy? our problem: minimize x f(x) + δ C (x) f: maximally monotone δ C : monotone, but not maximally monotone Π C is expansive (not nonexpansive) What is a nonexpansive operator?

14 What is a nonexpansive operator? T : single-valued operator on R n T is nonexpansive on R n if for every x,y we have T (x) T (y) x y prox γf is nonexpansive ) (2prox γf I n is nonexpansive 14

15 Operators that are expansive T is a single-valued operator on R n T is expansive if there exist x,y such that T (x) T (y) > x y ΠC is expansive 15

16 Characterization of minimizers: NC-DRS operator and its reflection T : NC-DRS operator T = Π C ( 2prox γf I n ) + I n prox γf. R: reflection operator of T NC-DRS in compact form: R = 2 T I n z n+1 = T z n = 1 2 ( R + In ) z n ΠC : expansive R: expansive root of all convergence issues 16

17 Characterization of minimizers argmin(f + δ C ) is the set of minimizers of min. x f(x) + δ C (x) prox γf ( fix T ) argmin(f + δc ) underlying assumptions: 1. zer ( f + δ C ) is nonempty 2. fix T is nonempty 3. fix {( 2Π C I n )( 2proxγf I n )} is nonempty

18 Convergence of NC-DRS: setup ε R xy : expansiveness of R at x,y ε R xy = { R(x) R(y) x y, if x y < R(x) R(y) 0, else σ R xy = ε R xy R(x) R(y) + x y

19 Convergence of NC-DRS: conditions (z n ) n N : sequence of vectors generated for some chosen initial point z 0 if the following holds: there exists a z fix T, such that n=0 (σ R znz) 2 is bounded then... above, and z 0 z 2 is finite z 0 z 2 + n=0 B(z;r): compact ball with center z and radius r define r := ( ) 2 σ R zn z

20 Convergence of NC-DRS then one of the following will happen: 1. convergence to a point: the sequence (z n ) n N converges to a point z B(z;r) 2. cluster points form a continuum: the set of cluster points of (z n ) n N forms a nonempty compact connected set in B(z; r) if situation 1 occurs and lim n (σ R znz ) 2 = 0, then x n = prox γf (z n 1 ) converges to an optimal solution

21 Some comments on convergence for convergence total deviation of R from being a nonexpansive operator over the sequence {(z n,z)} n N is bounded depends on the initial point in our case C is not necessarily convex sanity check: pretend C is convex total deviation of R from being a nonexpansive operator over the sequence {(z n,z)} n N is zero our convergence proof coincides with known convergence results for convex setup

22 Constructing NC-ADMM original problem: minimize x C f(x) take dual and apply NC-DRS to the dual resultant algorithm is relaxed NC-ADMM x n+1 = prox γf (y n z n ) y n+1 = Π convc (z n + x n+1 ) z n+1 = z n y n+1 + x n+1 relaxed NC-ADMM solves minimize x convc f(x)

23 Constructing NC-ADMM (continued) relaxed NC-ADMM x n+1 = prox γf (y n z n ) y n+1 = Π convc (z n + x n+1 ) z n+1 = z n y n+1 + x n+1 solves minimize x convc f(x) replace Π convc with Π C to solve minimize x C f(x) resultant algorithm is NC-ADMM: x n+1 = prox γf (y n z n ) y n+1 = Π C (x n+1 + z n ) z n+1 = z n y n+1 + x n+1

24 Constructing NC-ADMM

25 Pretend C is convex pretend C is convex strong duality holds Π convc = Π C Moreau s decomposition can be applied to δ C : prox δc + prox δ = I C n then: no information loss in constructing NC-ADMM from NC-DRS NC-ADMM and NC-DRS are equivalent to each other

26 However... C is nonconvex NC-ADMM and NC-DRS are not equivalent reasons for the loss of equivalency: 1. strict duality gap 2. Π conv C Π C 3. Moreau s decomposition does not hold NC-ADMM in NCVX-CVXPY works on a modified dual, hence produces a lower objective value relationship between minimizers of the original problem and the NC-ADMM operator breaks down

27 What if? is it possible to establish convergence NC-ADMM ignoring NC-DRS? our convergence analysis is established for nonempty, compact, but not necessarily convex constraint sets it is equally applicable to the smaller subclass of problems with convex constraint sets in this smaller subclass of convex problems NC-ADMM and NC-DRS have the same convergence properties 27

28 Summary NC-DRS and NC-ADMM are very similar looking, but very different heuristics the theoretical rationale to use NC-DRS could be stronger than NC-ADMM... 28

29 Limitations strong assumptions in minimizer characterization step size is 1, does not consider adaptive step sizes no numerical experiments in the paper

30 End of talk if you are working on nonconvex problems using ADMM/DRS, please talk to me! Thank you! Questions?

31 Diamond, S, Takapoui, R, & Boyd, S A general system for heuristic minimization of convex functions over non-convex sets. Optimization Methods and Software, 33(1), Erseghe, Tomaso Distributed optimal power flow using ADMM. IEEE transactions on power systems, 29(5), Iyer, Rishabh, Jegelka, Stefanie, & Bilmes, Jeff Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization. Pages of: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence. UAI 14. Arlington, Virginia, United States: AUAI Press. 30

32 Takapoui, Reza, Moehle, Nicholas, Boyd, Stephen, & Bemporad, Alberto A simple effective heuristic for embedded mixed-integer quadratic programming. International Journal of Control,

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1 Outline Cone programming Homogeneous

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

A More Efficient Approach to Large Scale Matrix Completion Problems

A More Efficient Approach to Large Scale Matrix Completion Problems A More Efficient Approach to Large Scale Matrix Completion Problems Matthew Olson August 25, 2014 Abstract This paper investigates a scalable optimization procedure to the low-rank matrix completion problem

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version

Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version Rishabh Iyer Dept. of Electrical Engineering University of Washington

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers Alternating Direction Method of Multipliers CS 584: Big Data Analytics Material adapted from Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) & Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

IDENTIFYING ACTIVE MANIFOLDS

IDENTIFYING ACTIVE MANIFOLDS Algorithmic Operations Research Vol.2 (2007) 75 82 IDENTIFYING ACTIVE MANIFOLDS W.L. Hare a a Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. A.S. Lewis b b School of ORIE,

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers Customizable software solver package Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein April 27, 2016 1 / 28 Background The Dual Problem Consider

More information

DISTRIBUTED NETWORK RESOURCE ALLOCATION WITH INTEGER CONSTRAINTS. Yujiao Cheng, Houfeng Huang, Gang Wu, Qing Ling

DISTRIBUTED NETWORK RESOURCE ALLOCATION WITH INTEGER CONSTRAINTS. Yujiao Cheng, Houfeng Huang, Gang Wu, Qing Ling DISTRIBUTED NETWORK RESOURCE ALLOCATION WITH INTEGER CONSTRAINTS Yuao Cheng, Houfeng Huang, Gang Wu, Qing Ling Department of Automation, University of Science and Technology of China, Hefei, China ABSTRACT

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

A general system for heuristic minimization of convex functions over non-convex sets

A general system for heuristic minimization of convex functions over non-convex sets Optimization Methods & Software, 2017 http://dx.doi.org/10.1080/10556788.2017.1304548 A general system for heuristic minimization of convex functions over non-convex sets S. Diamond,R.TakapouiandS.Boyd

More information

A General System for Heuristic Solution of Convex Problems over Nonconvex Sets

A General System for Heuristic Solution of Convex Problems over Nonconvex Sets arxiv:1601.07277v1 [math.oc] 27 Jan 2016 A General System for Heuristic Solution of Convex Problems over Nonconvex Sets Steven Diamond Reza Takapoui Stephen Boyd January 28, 2016 Abstract We describe general

More information

A proximal center-based decomposition method for multi-agent convex optimization

A proximal center-based decomposition method for multi-agent convex optimization Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 2008 A proximal center-based decomposition method for multi-agent convex optimization Ion Necoara and Johan A.K.

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition

Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition Xiang Li Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

Lecture 4 Duality and Decomposition Techniques

Lecture 4 Duality and Decomposition Techniques Lecture 4 Duality and Decomposition Techniques Jie Lu (jielu@kth.se) Richard Combes Alexandre Proutiere Automatic Control, KTH September 19, 2013 Consider the primal problem Lagrange Duality Lagrangian

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

arxiv: v3 [math.oc] 3 Nov 2016

arxiv: v3 [math.oc] 3 Nov 2016 BILEVEL POLYNOMIAL PROGRAMS AND SEMIDEFINITE RELAXATION METHODS arxiv:1508.06985v3 [math.oc] 3 Nov 2016 JIAWANG NIE, LI WANG, AND JANE J. YE Abstract. A bilevel program is an optimization problem whose

More information

A parallel implementation of the ADMM algorithm for power network control

A parallel implementation of the ADMM algorithm for power network control Aalto University School of Science Tuomas Rintamäki A parallel implementation of the ADMM algorithm for power network control The document can be stored and made available to the public on the open internet

More information

Iteratively Re-weighted Least Squares for Sums of Convex Functions

Iteratively Re-weighted Least Squares for Sums of Convex Functions Iteratively Re-weighted Least Squares for Sums of Convex Functions James Burke University of Washington Jiashan Wang LinkedIn Frank Curtis Lehigh University Hao Wang Shanghai Tech University Daiwei He

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

A Feasible Region Contraction Algorithm (Frca) for Solving Linear Programming Problems

A Feasible Region Contraction Algorithm (Frca) for Solving Linear Programming Problems A Feasible Region Contraction Algorithm (Frca) for Solving Linear Programming Problems E. O. Effanga Department of Mathematics/Statistics and Comp. Science University of Calabar P.M.B. 1115, Calabar, Cross

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

A Little Point Set Topology

A Little Point Set Topology A Little Point Set Topology A topological space is a generalization of a metric space that allows one to talk about limits, convergence, continuity and so on without requiring the concept of a distance

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year CONLIN & MMA solvers Pierre DUYSINX LTAS Automotive Engineering Academic year 2018-2019 1 CONLIN METHOD 2 LAY-OUT CONLIN SUBPROBLEMS DUAL METHOD APPROACH FOR CONLIN SUBPROBLEMS SEQUENTIAL QUADRATIC PROGRAMMING

More information

LaGO - A solver for mixed integer nonlinear programming

LaGO - A solver for mixed integer nonlinear programming LaGO - A solver for mixed integer nonlinear programming Ivo Nowak June 1 2005 Problem formulation MINLP: min f(x, y) s.t. g(x, y) 0 h(x, y) = 0 x [x, x] y [y, y] integer MINLP: - n

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 1 Dr. Ted Ralphs ISE 418 Lecture 1 1 Reading for This Lecture N&W Sections I.1.1-I.1.4 Wolsey Chapter 1 CCZ Chapter 2 ISE 418 Lecture 1 2 Mathematical Optimization Problems

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

The Branch-and-Sandwich Algorithm for Mixed-Integer Nonlinear Bilevel Problems

The Branch-and-Sandwich Algorithm for Mixed-Integer Nonlinear Bilevel Problems The Branch-and-Sandwich Algorithm for Mixed-Integer Nonlinear Bilevel Problems Polyxeni-M. Kleniati and Claire S. Adjiman MINLP Workshop June 2, 204, CMU Funding Bodies EPSRC & LEVERHULME TRUST OUTLINE

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE We now introduce a new concept with important theoretical and algorithmic implications: polyhedral convexity, extreme points, and related issues. LECTURE 1 LECTURE OUTLINE Polar cones and polar cone theorem

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW 1! CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW Dimitri Bertsekas! M.I.T.! Taiwan! May 2010! 2! OUTLINE! Convexity issues in optimization! Common geometrical framework for duality and minimax! Unifying framework

More information

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way.

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Elementary Topology Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Definition. properties: (i) T and X T, A topology on

More information

General properties of staircase and convex dual feasible functions

General properties of staircase and convex dual feasible functions General properties of staircase and convex dual feasible functions JÜRGEN RIETZ, CLÁUDIO ALVES, J. M. VALÉRIO de CARVALHO Centro de Investigação Algoritmi da Universidade do Minho, Escola de Engenharia

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences munoz@cims.nyu.edu Difference of Convex Functions Definition: A function exists f is said to be DC if there

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

A Computational Theory of Clustering

A Computational Theory of Clustering A Computational Theory of Clustering Avrim Blum Carnegie Mellon University Based on work joint with Nina Balcan, Anupam Gupta, and Santosh Vempala Point of this talk A new way to theoretically analyze

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with

Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with Parallelization in Non-hierarchical Analytical Target Cascading Yongsu Jung Department of Mechanical Engineering,

More information

The Size Robust Multiple Knapsack Problem

The Size Robust Multiple Knapsack Problem MASTER THESIS ICA-3251535 The Size Robust Multiple Knapsack Problem Branch and Price for the Separate and Combined Recovery Decomposition Model Author: D.D. Tönissen, Supervisors: dr. ir. J.M. van den

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY WILLIAM W. HAGER AND HONGCHAO ZHANG Abstract. An algorithm is developed for projecting a point onto a polyhedron. The algorithm solves a dual version

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution

Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution Ayalew Getachew Mersha and Stephan Dempe October 17, 2005 Abstract Focus in the paper is on the definition

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Unifying and extending hybrid tractable classes of CSPs

Unifying and extending hybrid tractable classes of CSPs Journal of Experimental & Theoretical Artificial Intelligence Vol. 00, No. 00, Month-Month 200x, 1 16 Unifying and extending hybrid tractable classes of CSPs Wady Naanaa Faculty of sciences, University

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

Distributed Alternating Direction Method of Multipliers

Distributed Alternating Direction Method of Multipliers Distributed Alternating Direction Method of Multipliers Ermin Wei and Asuman Ozdaglar Abstract We consider a network of agents that are cooperatively solving a global unconstrained optimization problem,

More information

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs 1 / 34 Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal (joint work with

More information

Bounded subsets of topological vector spaces

Bounded subsets of topological vector spaces Chapter 2 Bounded subsets of topological vector spaces In this chapter we will study the notion of bounded set in any t.v.s. and analyzing some properties which will be useful in the following and especially

More information

A Class of Submodular Functions for Document Summarization

A Class of Submodular Functions for Document Summarization A Class of Submodular Functions for Document Summarization Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 20, 2011 Lin and Bilmes Submodular Summarization June

More information

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions Chalmers/GU Mathematics EXAM TMA946/MAN280 APPLIED OPTIMIZATION Date: 03 05 28 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Lior Kamma 1 Introduction Embeddings and Distortion An embedding of a metric space (X, d X ) into a metric space (Y, d Y ) is

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4

Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4 Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4 Instructor: Mohammad T. Hajiaghayi Scribe: Anshul Sawant September 21, 2011 1 Overview Some problems which are hard

More information

Lagrangean Methods bounding through penalty adjustment

Lagrangean Methods bounding through penalty adjustment Lagrangean Methods bounding through penalty adjustment thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Brief introduction How to perform Lagrangean relaxation Subgradient techniques

More information

Tilburg University. Document version: Publisher final version (usually the publisher pdf) Publication date: Link to publication

Tilburg University. Document version: Publisher final version (usually the publisher pdf) Publication date: Link to publication Tilburg University Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set (Revision of CentER Discussion Paper 2014-056) Postek, Krzysztof; den Hertog,

More information

Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers

Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers Xiaojie Zhang Samsung R&D America, Dallas, Texas 758 Email: eric.zhang@samsung.com Paul H. Siegel University

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM MANAGEMENT SCIENCE doi 10.1287/mnsc.1070.0812ec pp. ec1 ec7 e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 2008 INFORMS Electronic Companion Customized Bundle Pricing for Information Goods: A Nonlinear

More information