Modeling Cone Optimization Problems with COIN OS

Size: px
Start display at page:

Download "Modeling Cone Optimization Problems with COIN OS"

Transcription

1 instance Modeling Cone Optimization s with COIN OS Joint work with Gus Gassman, Jun Ma, Kipp Martin Lehigh University Department of ISE INFORMS 2009, San Diego October 12, 2009

2 instance 1 Cone optimization Semidefinite optimization Special problems 2 instance Existing formats layout How to best represent the problems? 3 Design philosophy Declarations Data, functions 4

3 General cone optimization Cone optimization Semidefinite optimization Special problems instance min c T x Ax = b x K The cone K can be Linear: x 0 max b T y A T y + s = c s K Second-order: x 0 x 2 Rotated second-order: x 0 x 1 x 2:n, and x 0 0 Semidefinite: x is (can be assembled into) a symmetric, positive semidefinite matrix, or a product/intersection of these. robust control, combinatorics, polynomial and SOS, truss-topology, materials structure,...

4 Cone optimization Semidefinite optimization Special problems instance Semidefinite optimization Standard form min C X max b T y AX = b A y + S = C (P-D) X 0 S 0, where b, y R m, X, S, C R n2, A : R n2 R m Linear operator A AX = (A i X) m i=1 m A y = A i y i i=1 too restrictive

5 Cone optimization Semidefinite optimization Special problems instance Special forms Rank one, low rank A i A i = aa T, A i X = a T Xa can be exploited inside the IPM cannot be recovered exactly from A i General operators AX = AX + XA, or AX = AXB + BXA A is a large Kronecker product huge savings in storage and computation one needs to have A Cone intersections

6 instance Existing formats layout How to best represent the problems? Input formats What s out there SDP: SeDuMi, SDPT3, SDPpack, PENSDP, Sparse SDPA, extensions SOCP: MOSEK, LOQO, CPLEX CVX, Yalmip COIN-OS (first attempt) Common features based on the standard problem form not flexible hard to extend

7 instance Existing formats layout How to best represent the problems? layout x 1:2 x 3:7 0 mat(x 8:16 ) 0 C 1 C 2 C 3 A 11 A 12 A 13 = 3 A 21 A 22 A 23 I A 31 A 32 A 33 0 Declare variables and constraints Define the C j, A ij mappings and the RHS Very similar to LP The basic unit is different

8 instance Existing formats layout How to best represent the problems? A collection of cone optimization problems s/problem structures from robust optimization combinatorics stability and control polynomial optimization... Necessary language components a T Xa Tr(X) det(x) AXB + BXA X 1... Collection to be published later Joint work with Johan Löfberg and Michael C. Grant

9 instance Design philosophy Declarations Data, functions Current COIN OS conic constructs LP + cone constraints (our fault) very inefficient all the drawbacks of existing formats does not allow advanced operators Use matrix variables instead smallest unit further subdivision is artificial Use functions of matrices extend the OSnL library Goal: preprocessing

10 instance Design philosophy Declarations Data, functions Declarations Matrix variable from new/existing scalar variables verification is done here matrices can share variables Attributes symmetric, positive semidefinite Hermitian integer (MICLP!) matrix size bounds (interpreted according to the matrix type) Matrix parameters to be used in new functions det(m + X)

11 instance Design philosophy Declarations Data, functions Functions Create a library of matrix functions det(x) AX AXB + BXA λ min (X)... The arguments are matrices, not n 2 numbers! Verification is easier Extends the OSnL library

12 instance Conclusions We have a... collection of various cone problems list of constructs needed loose syntax We need an... exact syntax, documentation implementation into COIN OS XML-parser example library extensible preprocessing library OSsL extension

YALMIP. Yet another LMI parser. Version 1.1. Johan Löfberg

YALMIP. Yet another LMI parser. Version 1.1. Johan Löfberg YALMIP Yet another LMI parser Version 1.1 Johan Löfberg 2 Command overview Category Workspace Symbolic variable LMI definition Solution of SDP Other & test Syntax yalmip( clear ) yalmip( info ) yalmip(

More information

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1 Outline Cone programming Homogeneous

More information

Disciplined Convex Programming and CVX

Disciplined Convex Programming and CVX EE364a Review Disciplined Convex Programming and CVX convex optimization solvers modeling systems disciplined convex programming CVX 1 Convex optimization solvers LP solvers lots available (GLPK, Excel,

More information

SDLS: a Matlab package for solving conic least-squares problems

SDLS: a Matlab package for solving conic least-squares problems SDLS: a Matlab package for solving conic least-squares problems Didier Henrion 1,2 Jérôme Malick 3 June 28, 2007 Abstract This document is an introduction to the Matlab package SDLS (Semi-Definite Least-Squares)

More information

13. Cones and semidefinite constraints

13. Cones and semidefinite constraints CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 13. Cones and semidefinite constraints ˆ Geometry of cones ˆ Second order cone programs ˆ Example: robust linear program ˆ Semidefinite constraints

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

RESEARCH ARTICLE. Dualize it: software for automatic primal and dual conversions of conic programs

RESEARCH ARTICLE. Dualize it: software for automatic primal and dual conversions of conic programs Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 14 RESEARCH ARTICLE Dualize it: software for automatic primal and dual conversions of conic programs Johan Löfberg Division of Automatic

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

USER S GUIDE FOR TOMLAB /PENOPT 1

USER S GUIDE FOR TOMLAB /PENOPT 1 USER S GUIDE FOR TOMLAB /PENOPT 1 Kenneth Holmström 2, Anders O. Göran 3 and Marcus M. Edvall 4 November 6, 26 1 More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.

More information

A primal-dual Dikin affine scaling method for symmetric conic optimization

A primal-dual Dikin affine scaling method for symmetric conic optimization A primal-dual Dikin affine scaling method for symmetric conic optimization Ali Mohammad-Nezhad Tamás Terlaky Department of Industrial and Systems Engineering Lehigh University July 15, 2015 A primal-dual

More information

Package Rcsdp. April 25, 2016

Package Rcsdp. April 25, 2016 Package Rcsdp April 25, 2016 Version 0.1.55 Title R Interface to the CSDP Semidefinite Programming Library Author Hector Corrada Bravo (CSDP by Brian Borchers) Maintainer Hector Corrada Bravo

More information

SDLS: a Matlab package for solving conic least-squares problems

SDLS: a Matlab package for solving conic least-squares problems SDLS: a Matlab package for solving conic least-squares problems Didier Henrion, Jérôme Malick To cite this version: Didier Henrion, Jérôme Malick. SDLS: a Matlab package for solving conic least-squares

More information

Benchmarking of Optimization Software

Benchmarking of Optimization Software Benchmarking of Optimization Software INFORMS Annual Meeting Pittsburgh, PA 6 November 2006 H. D. Mittelmann Dept of Math and Stats Arizona State University 1 Services we provide Guide to Software: Decision

More information

Domain Specific Languages for Convex Optimization

Domain Specific Languages for Convex Optimization Domain Specific Languages for Convex Optimization Stephen Boyd joint work with E. Chu, J. Mattingley, M. Grant Electrical Engineering Department, Stanford University ROKS 2013, Leuven, 9 July 2013 1 Outline

More information

SDPA Project: Solving Large-scale Semidefinite Programs

SDPA Project: Solving Large-scale Semidefinite Programs SDPA Project: Solving Large-scale Semidefinite Programs 12/May/2008 Katsuki Fujisawa Chuo University, Japan Masakazu Kojima & Mituhiro Fukuda & Kazuhide Nakata & Makoto Yamashita Tokyo Institute of Technology,

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

The State-of-the-Art in Conic Optimization Software

The State-of-the-Art in Conic Optimization Software The State-of-the-Art in Conic Optimization Software H. D. Mittelmann School of Mathematical and Statistical Sciences, Arizona State University, mittelmann@asu.edu Abstract This work gives an overview of

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

CSDP User s Guide. Brian Borchers. August 15, 2006

CSDP User s Guide. Brian Borchers. August 15, 2006 CSDP User s Guide Brian Borchers August 5, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Mixed Integer Second Order Cone Optimization (MISOCO): Cuts, Warm Start, and Rounding

Mixed Integer Second Order Cone Optimization (MISOCO): Cuts, Warm Start, and Rounding Mixed Integer Second Order Cone Optimization (MISOCO): Conic Tamás Terlaky, Mohammad Shahabsafa, Julio C. Góez, Sertalp Cay, Imre Pólik OPDGTP, Tel Aviv, Israel April 2018 1/35 Outline 1 Disjunctive Conic

More information

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs 1 / 34 Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal (joint work with

More information

The Optimization Services Project on COIN-OR

The Optimization Services Project on COIN-OR The Optimization Services Project on COIN-OR Robert Fourer, Jun Ma Industrial Engineering & Management Sciences Northwestern University [4er,maj]@iems.northwestern.edu Kipp Martin Graduate School of Business

More information

A Conversion of an SDP Having Free Variables into the Standard Form SDP

A Conversion of an SDP Having Free Variables into the Standard Form SDP A Conversion of an SDP Having Free Variables into the Standard Form SDP Kazuhiro Kobayashi, Kazuhide Nakata and Masakazu Kojima June 2005. Revised April 2006 Abstract. This paper deals with a semidefinite

More information

Optimization Services (OS) Jun Ma. -- A Framework for Optimization Software -- A Computational Infrastructure -- The Next Generation NEOS

Optimization Services (OS) Jun Ma. -- A Framework for Optimization Software -- A Computational Infrastructure -- The Next Generation NEOS Optimization Services (OS) -- A Framework for Optimization Software -- A Computational Infrastructure -- The Next Generation NEOS -- The OR Internet Jun Ma Industrial Engineering and Management Sciences

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

CSDP User s Guide. Brian Borchers. November 1, 2006

CSDP User s Guide. Brian Borchers. November 1, 2006 CSDP User s Guide Brian Borchers November, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Robust Optimization in AIMMS

Robust Optimization in AIMMS Robust Optimization in AIMMS Peter Nieuwesteeg Senior AIMMS specialist Online webinar July 20, 2010 Paragon Decision Technology Inc 5400 Carillon Point, Kirkland, WA, USA E-mail: info@aimms.com Internet:

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Towards a practical simplex method for second order cone programming

Towards a practical simplex method for second order cone programming Towards a practical simplex method for second order cone programming Kartik Krishnan Department of Computing and Software McMaster University Joint work with Gábor Pataki (UNC), Neha Gupta (IIT Delhi),

More information

Javad Lavaei. Department of Electrical Engineering Columbia University

Javad Lavaei. Department of Electrical Engineering Columbia University Graph Theoretic Algorithm for Nonlinear Power Optimization Problems Javad Lavaei Department of Electrical Engineering Columbia University Joint work with: Ramtin Madani, Ghazal Fazelnia and Abdulrahman

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Open problems in convex optimisation

Open problems in convex optimisation Open problems in convex optimisation 26 30 June 2017 AMSI Optimise Vera Roshchina RMIT University and Federation University Australia Perceptron algorithm and its complexity Find an x R n such that a T

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Auckland University 15th September 2004; Version 1.1 Design Intent

More information

A new library of structured semidefinite programming instances

A new library of structured semidefinite programming instances A new library of structured semidefinite programming instances Etienne de Klerk Renata Sotirov September 2, 2008 Abstract Solvers for semidefinite programming (SDP) have evolved a great deal in the last

More information

A Parallel Primal-Dual Interior-Point Method for Semidefinite Programs Using Positive Definite Matrix Completion

A Parallel Primal-Dual Interior-Point Method for Semidefinite Programs Using Positive Definite Matrix Completion Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

Enclosures of Roundoff Errors using SDP

Enclosures of Roundoff Errors using SDP Enclosures of Roundoff Errors using SDP Victor Magron, CNRS Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson Metalibm workshop: Elementary functions, digital filters and beyond 12-13

More information

Sparse and large-scale learning with heterogeneous data

Sparse and large-scale learning with heterogeneous data Sparse and large-scale learning with heterogeneous data February 15, 2007 Gert Lanckriet (gert@ece.ucsd.edu) IEEE-SDCIS In this talk Statistical machine learning Techniques: roots in classical statistics

More information

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting

Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Exploiting Low-Rank Structure in Semidenite Programming by Approximate Operator Splitting Mario Souto, Joaquim D. Garcia and Álvaro Veiga June 26, 2018 Outline Introduction Algorithm Exploiting low-rank

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Massey University 22nd September 2004; Version 1.0 Design Intent

More information

FAQs on Convex Optimization

FAQs on Convex Optimization FAQs on Convex Optimization. What is a convex programming problem? A convex programming problem is the minimization of a convex function on a convex set, i.e. min f(x) X C where f: R n R and C R n. f is

More information

CSDP User s Guide

CSDP User s Guide CSDP 6.. User s Guide Brian Borchers July 4, 7 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Lifts of convex sets and cone factorizations

Lifts of convex sets and cone factorizations Lifts of convex sets and cone factorizations João Gouveia Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington) Lifts of

More information

Abstract Primal dual interior point methods and the HKM method in particular

Abstract Primal dual interior point methods and the HKM method in particular Mathematical Programming manuscript No. (will be inserted by the editor) Brian Borchers Joseph Young How Far Can We Go With Primal Dual Interior Point Methods for SDP? Received: date / Accepted: date Abstract

More information

A semidefinite hierarchy for containment of spectrahedra

A semidefinite hierarchy for containment of spectrahedra A semidefinite hierarchy for containment of spectrahedra Thorsten Theobald (joint work with Kai Kellner and Christian Trabandt, arxiv: 1308.5076) Spectrahedra Given a linear pencil A(x) = A 0 + n i=1 x

More information

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster I.D. Ivanov E. de Klerk March 5, 2008 Abstract In this paper we present the algorithmic framework

More information

Recent Advances In The New Mosek 8

Recent Advances In The New Mosek 8 Recent Advances In The New Mosek 8 16-November-2016 Erling D. Andersen www.mosek.com Improvements in version 8 An overview Presolve Reduce memory requirements in the eliminator. Conic presolve. Conic optimizer

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations

3D Computer Vision II. Reminder Projective Geometry, Transformations 3D Computer Vision II Reminder Projective Geometry, Transformations Nassir Navab" based on a course given at UNC by Marc Pollefeys & the book Multiple View Geometry by Hartley & Zisserman" October 21,

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 IMRE PÓLIK 1. Introduction The main goal of this reference guide is to give a summary of all the options in SeDuMi. The default value of the options is satisfactory

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

The Affine Scaling Method

The Affine Scaling Method MA33 Linear Programming W. J. Martin October 9, 8 The Affine Scaling Method Overview Given a linear programming problem in equality form with full rank constraint matrix and a strictly positive feasible

More information

The convex geometry of inverse problems

The convex geometry of inverse problems The convex geometry of inverse problems Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky Linear Inverse Problems

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Optimization Services Modeling Language (OSmL)

Optimization Services Modeling Language (OSmL) Optimization Services Modeling Language (OSmL) Jun Ma Northwestern University Kipp Martin University of Chicago November 15, 2005 Outline ntroduction and Motivation The OSmL Philosophy OSmL Syntax Data

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information

Introduction to Operations Research

Introduction to Operations Research - Introduction to Operations Research Peng Zhang April, 5 School of Computer Science and Technology, Shandong University, Ji nan 5, China. Email: algzhang@sdu.edu.cn. Introduction Overview of the Operations

More information

EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION

EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR NETWORK LOCALIZATION SUNYOUNG KIM, MASAKAZU KOJIMA, AND HAYATO WAKI Abstract. A sensor network localization problem can be formulated as a quadratic optimization

More information

Convex Hull Representation Conversion (cddlib, lrslib)

Convex Hull Representation Conversion (cddlib, lrslib) Convex Hull Representation Conversion (cddlib, lrslib) Student Seminar in Combinatorics: Mathematical Software Niklas Pfister October 31, 2014 1 Introduction In this report we try to give a short overview

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre Introduction to CVX Olivier Fercoq and Rachael Tappenden 24 June 2014 4-5 pm, ICMS Newhaven Lecture Theatre What is optimization? Wikipedia: an optimization problem consists of maximizing or minimizing

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

Automated Precision Tuning using Semidefinite Programming

Automated Precision Tuning using Semidefinite Programming Automated Precision Tuning using Semidefinite Programming Victor Magron, RA Imperial College joint work with G. Constantinides and A. Donaldson British-French-German Conference on Optimization 15 June

More information

cvx Users Guide for cvx version 1.2 (build 667) Michael Grant Yinyu Ye June 24, 2008

cvx Users Guide for cvx version 1.2 (build 667) Michael Grant Yinyu Ye June 24, 2008 cvx Users Guide for cvx version 1.2 (build 667) Michael Grant mcgrant@stanford.edu Yinyu Ye yyye@stanford.edu June 24, 2008 Stephen Boyd boyd@stanford.edu 1 Contents 1 Introduction 4 1.1 What is cvx?...............................

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

GeoLMI Toulouse, November 2009 Approximating convex problems with AGM iterations 1

GeoLMI Toulouse, November 2009 Approximating convex problems with AGM iterations 1 GeoLMI Toulouse, November 2009 Approximating convex problems with AGM iterations 1 Quadratic approximation of some convex optimization problems using the arithmetic-geometric mean iteration François Glineur

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Dubna 2018: lines on cubic surfaces

Dubna 2018: lines on cubic surfaces Dubna 2018: lines on cubic surfaces Ivan Cheltsov 20th July 2018 Lecture 1: projective plane Complex plane Definition A line in C 2 is a subset that is given by ax + by + c = 0 for some complex numbers

More information

ML Detection via SDP Relaxation

ML Detection via SDP Relaxation ML Detection via SDP Relaxation Junxiao Song and Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) ELEC 5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture

More information

Chapter 4 Convex Optimization Problems

Chapter 4 Convex Optimization Problems Chapter 4 Convex Optimization Problems Shupeng Gui Computer Science, UR October 16, 2015 hupeng Gui (Computer Science, UR) Convex Optimization Problems October 16, 2015 1 / 58 Outline 1 Optimization problems

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 1 Dr. Ted Ralphs ISE 418 Lecture 1 1 Reading for This Lecture N&W Sections I.1.1-I.1.4 Wolsey Chapter 1 CCZ Chapter 2 ISE 418 Lecture 1 2 Mathematical Optimization Problems

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Graph bisection revisited

Graph bisection revisited Graph bisection revisited R. Sotirov Abstract The graph bisection problem is the problem of partitioning the vertex set of a graph into two sets of given sizes such that the sum of weights of edges joining

More information

Graph drawing in spectral layout

Graph drawing in spectral layout Graph drawing in spectral layout Maureen Gallagher Colleen Tygh John Urschel Ludmil Zikatanov Beginning: July 8, 203; Today is: October 2, 203 Introduction Our research focuses on the use of spectral graph

More information

Implementation of a Primal-Dual Method for. SDP on a Shared Memory Parallel Architecture

Implementation of a Primal-Dual Method for. SDP on a Shared Memory Parallel Architecture Implementation of a Primal-Dual Method for SDP on a Shared Memory Parallel Architecture Brian Borchers Joseph G. Young March 27, 2006 Abstract Primal dual interior point methods and the HKM method in particular

More information

7 Large-Scale Convex Optimization for C-RANs

7 Large-Scale Convex Optimization for C-RANs 9781107142664c07 CUP/QUEK-L1 September 3, 2016 13:33 Page-149 7 Large-Scale Convex Optimization for C-RANs Yuanming Shi, Jun Zhang, Khaled B. Letaief, Bo Bai, and Wei Chen 7.1 Introduction 7.1.1 C-RANs

More information

What's New In Gurobi 5.0. Dr. Edward Rothberg

What's New In Gurobi 5.0. Dr. Edward Rothberg What's New In Gurobi 5.0 Dr. Edward Rothberg Our Main Goals for Gurobi 5.0 Expand the reach of the product: New problem types: Quadratic constraints: QCP, SOCP, MIQCP Massive numbers of constraints: Through

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods

Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods Certification of Roundoff Errors with SDP Relaxations and Formal Interval Methods Victor Magron, CNRS VERIMAG Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson Jointly Certified Lower

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Circuit Walks in Integral Polyhedra

Circuit Walks in Integral Polyhedra Circuit Walks in Integral Polyhedra Charles Viss Steffen Borgwardt University of Colorado Denver Optimization and Discrete Geometry: Theory and Practice Tel Aviv University, April 2018 LINEAR PROGRAMMING

More information

Javad Lavaei. Graph-theoretic Algorithm for Nonlinear Power Optimization Problems. Department of Electrical Engineering Columbia University

Javad Lavaei. Graph-theoretic Algorithm for Nonlinear Power Optimization Problems. Department of Electrical Engineering Columbia University Graph-theoretic Algorithm for Nonlinear Power Optimization Problems Javad Lavaei Department of Electrical Engineering Columbia University Joint work with Ramtin Madani, Somayeh Sojoudi, Ghazal Fazelnia

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information