Vector Calculus: Understanding the Cross Product

Size: px
Start display at page:

Download "Vector Calculus: Understanding the Cross Product"

Transcription

1 University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / \ 2017 Vector Calculus: Understanding the Cross Product The cross product accumulates interactions between different dimensions. Taking two vectors, we can write every combination of components in a grid: This completed grid is the outer product, which can be separated into the: Dot product, the interactions between similar dimensions (x*x, y*y, z*z) Cross product, the interactions between different dimensions (x*y, y*z, z*x, etc.) The dot product (a b ) measures similarity because it only accumulates interactions in matching dimensions. It s a simple calculation with 3 components.

2 The cross product (written a b ) has to measure a half-dozen cross interactions. The calculation looks complex but the concept is simple: accumulate 6 individual differences for the total. Instead of thinking When do I need the cross product? think When do I need interactions between different dimensions?. Area, for example, is formed by vectors pointing in different directions (the more orthogonal, the better). Indeed, the cross product measures the area spanned by two 3d vectors: (The cross product assumes 3d vectors, but the concept extends to higher dimensions.) Defining the Cross Product The dot product represents vector similarity with a single number: (Remember that trig functions are percentages.) Should the cross product (difference between interacting vectors) be a single number too? Let s try. Sine is the percentage difference, so we could use: Instead, let s express these unique differences as a vector: The size of the cross product is the numeric amount of difference (with sin(θ) as the percentage) The direction of the cross product is based on both inputs: it s the direction orthogonal to both (i.e., favoring neither)

3 A vector result represents the x*y and x*z separately, even though y and z are both 100% different from x. (Should the dot product be turned into a vector too? Well, we have the inputs and a similarity percentage. There s no new direction that isn t available from either input.) Geometric Interpretation Two vectors determine a plane, and the cross product points in a direction different from both (source): Here s the problem: there s two perpendicular directions. By convention, we assume a right-handed system (source): If you hold your first two fingers like the diagram shows, your thumb will point in the direction of the cross product. I make sure the orientation is correct by sweeping my

4 first finger from a to b. With the direction figured out, the magnitude of the cross product is a b sin(θ), which is proportional to the magnitude of each vector and the difference percentage (sine). The Cross Product For Orthogonal Vectors To remember the right hand rule, write the xyz order twice: xyzxyz. Next, find the pattern you re looking for: xy => z (x cross y is z) yz => x (y cross z is x; we looped around: y to z to x) zx => y Now, xy and yx have opposite signs because they are forward and backward in our xyzxyz setup. So, without a formula, you should be able to calculate: Again, this is because x cross y is positive z in a right-handed coordinate system. I used unit vectors, but we could scale the terms: Calculating The Cross Product A single vector can be decomposed into its 3 orthogonal parts: When the vectors are crossed, each pair of orthogonal components (like ax by ) casts a vote for where the orthogonal vector should point. 6 components, 6 votes, and their total is the cross product. (Similar to the gradient, where each axis casts a vote for the direction of greatest increase.)

5 xy => z and yx => -z (assume a is first, so xy means ax by) yz => x and zy => -x zx => y and xz => -y xy and yx fight it out in the z direction. If those terms are equal, such as in (2,1,0) (2,1,1), there is no cross product component in the z direction (2 2 = 0). The final combination is: where n is the unit vector normal to a and b. Don t let this scare you: There s 6 terms, 3 positive and 3 negative Two dimensions vote on the third (so the z term must only have y and x components) The positive/negative order is based on the xyzxyz pattern If you like, there is an algebraic proof, that the formula is both orthogonal and of size a b sin(θ) Example Time Again, we should do simple cross products in our head: Why? We crossed the x and y axes, giving us z (or i j =k, using those unit vectors). Crossing the other way gives k Here s how I walk through more complex examples:

6 Let s do the last term, the z-component. That s (1)(5) minus (4)(2), or 5 8 = -3. I did z first because it uses x and y, the first two terms. Try seeing (1)(5) as forward as you scan from the first vector to the second, and (4)(2) as backwards as you move from the second vector to the first. Now the y component: (3)(4) (6)(1) = 12 6 = 6 Now the x component: (2)(6) (5)(3) = = -3 So, the total is ( 3,6, 3) So, let s start with the two vectors and then the cross product is given by the formula, This is not an easy formula to remember. There are two ways to derive this formula. Both of them use the fact that the cross product is really the determinant of a 3x3 matrix. If you don t know what this is that is don t worry about it. You don t need to know anything about matrices or determinants to use either of the methods. The notation for the determinant is as follows,

7 The first row is the standard basis vectors and must appear in the order given here. The second row is the components of and the third row is the components of. Now, let s take a look at the different methods for getting the formula. The first method uses the Method of Cofactors. If you don t know the method of cofactors that is fine, the result is all that we need. Here is the formula. where, This formula is not as difficult to remember as it might at first appear to be. First, the terms alternate in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it as well as the row of standard basis vectors. The second method is slightly easier; however, many textbooks don t cover this method as it will only work on 3x3 determinants. This method says to take the determinant as listed above and then copy the first two columns onto the end as shown below.

8 We now have three diagonals that move from left to right and three diagonals that move from right to left. We multiply along each diagonal and add those that move from left to right and subtract those that move from right to left. This is best seen in an example. We ll also use this example to illustrate a fact about cross products. Example If and compute each of the following. (a) (b) Solution (a) Here is the computation for this one.

9 (b) And here is the computation for this one. Notice that switching the order of the vectors in the cross product simply changed all the signs in the result. Note as well that this means that the two cross products will point in exactly opposite directions since they only differ by a sign. We ll formalize up this fact shortly when we list several facts.

10 There is also a geometric interpretation of the cross product. First we will let θ be the angle between the two vectors and and assume that, then we have the following fact, and the following figure. There should be a natural question at this point. How did we know that the cross product pointed in the direction that we ve given it here? First, as this figure, implies the cross product is orthogonal to both of the original vectors. This will always be the case with one exception that we ll get to in a second. Second, we knew that it pointed in the upward direction (in this case) by the right hand rule. This says that if we take our right hand, start at and rotate our fingers towards our thumb will point in the direction of the cross product. Therefore, if we d sketched in above we would have gotten a vector in the downward direction.

11 Example A plane is defined by any three points that are in the plane. If a plane contains the points, and find a vector that is orthogonal to the plane. Solution The one way that we know to get an orthogonal vector is to take a cross product. So, if we could find two vectors that we knew were in the plane and took the cross product of these two vectors we know that the cross product would be orthogonal to both the vectors. However, since both the vectors are in the plane the cross product would then also be orthogonal to the plane. So, we need two vectors that are in the plane. This is where the points come into the problem. Since all three points lie in the plane any vector between them must also be in the plane. There are many ways to get two vectors between these points. We will use the following two, The cross product of these two vectors will be orthogonal to the plane. So, let s find the cross product.

12 So, the vector three points. will be orthogonal to the plane containing the Now, let s address the one time where the cross product will not be orthogonal to the original vectors. If the two vectors, and, are parallel then the angle between them is either 0 or 180 degrees. From (1) this implies that, From a fact about the magnitude we saw in the first section we know that this implies In other words, it won t be orthogonal to the original vectors since we have the zero vector. This does give us another test for parallel vectors however. Fact If then and will be parallel vectors. Let s also formalize up the fact about the cross product being orthogonal to the original vectors.

13 Fact Provided then is orthogonal to both and. Here are some nice properties about the cross product. Properties If, and are vectors and c is a number then, The determinant in the last fact is computed in the same way that the cross product is computed. We will see an example of this computation shortly. There are a couple of geometric applications to the cross product as well. Suppose we have three vectors, and and we form the three dimensional figure shown below.

14 The area of the parallelogram (two dimensional front of this object) is given by, and the volume of the parallelepiped (the whole three dimensional object) is given by, Note that the absolute value bars are required since the quantity could be negative and volume isn t negative. We can use this volume fact to determine if three vectors lie in the same plane or not. If three vectors lie in the same plane then the volume of the parallelepiped will be zero.

15 Example Determine if the three vectors, Solution and lie in the same plane or not. So, as we noted prior to this example all we need to do is compute the volume of the parallelepiped formed by these three vectors. If the volume is zero they lie in the same plane and if the volume isn t zero they don t lie in the same plane. the volume is zero and so they lie in the same plane. So,

16 Appendix Connection with the Determinant You can calculate the cross product using the determinant of this matrix: There s a neat connection here, as the determinant ( signed area/volume ) tracks the contributions from orthogonal components. There are theoretical reasons why the cross product (as an orthogonal vector) is only available in 0, 1, 3 or 7 dimensions. However, the cross product as a single number is essentially the determinant (a signed area, volume, or hypervolume as a scalar). Connection with Curl Curl measures the twisting force a vector field applies to a point, and is measured with a vector perpendicular to the surface. Whenever you hear perpendicular vector start thinking cross product. We take the determinant of this matrix: Instead of multiplication, the interaction is taking a partial derivative. As before, the i component of curl is based on the vectors and derivatives in the j and k

17 directions. Relation to the Pythagorean Theorem The cross and dot product are like the orthogonal sides of a triangle: For unit vectors, where a = b =1, we have:

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Answers. Chapter 2. 1) Give the coordinates of the following points:

Answers. Chapter 2. 1) Give the coordinates of the following points: Answers Chapter 2 1) Give the coordinates of the following points: a (-2.5, 3) b (1, 2) c (2.5, 2) d (-1, 1) e (0, 0) f (2, -0.5) g (-0.5, -1.5) h (0, -2) j (-3, -2) 1 2) List the 48 different possible

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space:

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space: Three-Dimensional Coordinate Systems The plane is a two-dimensional coordinate system in the sense that any point in the plane can be uniquely described using two coordinates (usually x and y, but we have

More information

(Refer Slide Time: 00:04:20)

(Refer Slide Time: 00:04:20) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 8 Three Dimensional Graphics Welcome back all of you to the lectures in Computer

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

3 Vectors and the Geometry of Space

3 Vectors and the Geometry of Space 3 Vectors and the Geometry of Space Up until this point in your career, you ve likely only done math in 2 dimensions. It s gotten you far in your problem solving abilities and you should be proud of all

More information

Table of Laplace Transforms

Table of Laplace Transforms Table of Laplace Transforms 1 1 2 3 4, p > -1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Heaviside Function 27 28. Dirac Delta Function 29 30. 31 32. 1 33 34. 35 36. 37 Laplace Transforms

More information

Section 4.1: Introduction to Trigonometry

Section 4.1: Introduction to Trigonometry Section 4.1: Introduction to Trigonometry Review of Triangles Recall that the sum of all angles in any triangle is 180. Let s look at what this means for a right triangle: A right angle is an angle which

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. Summer Review for Students Entering Pre-Calculus with Trigonometry 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Calculus II. Step 1 First, here is a quick sketch of the graph of the region we are interested in.

Calculus II. Step 1 First, here is a quick sketch of the graph of the region we are interested in. Preface Here are the solutions to the practice problems for my Calculus II notes. Some solutions will have more or less detail than other solutions. As the difficulty level of the problems increases less

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation Chapter 7 Introduction to Matrices This chapter introduces the theory and application of matrices. It is divided into two main sections. Section 7.1 discusses some of the basic properties and operations

More information

Geometry. Prof. George Wolberg Dept. of Computer Science City College of New York

Geometry. Prof. George Wolberg Dept. of Computer Science City College of New York Geometry Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce the elements of geometry -Scalars - Vectors - Points Develop mathematical operations among them in

More information

Linear Algebra Part I - Linear Spaces

Linear Algebra Part I - Linear Spaces Linear Algebra Part I - Linear Spaces Simon Julier Department of Computer Science, UCL S.Julier@cs.ucl.ac.uk http://moodle.ucl.ac.uk/course/view.php?id=11547 GV01 - Mathematical Methods, Algorithms and

More information

Equations of planes in

Equations of planes in Roberto s Notes on Linear Algebra Chapter 6: Lines, planes and other straight objects Section Equations of planes in What you need to know already: What vectors and vector operations are. What linear systems

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios and Pythagorean Theorem 4. Multiplying and Dividing Rational Expressions

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways. Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

What You ll See in This Chapter. Word Cloud. René Descartes. Introduction. Ian Parberry University of North Texas. Fletcher Dunn

What You ll See in This Chapter. Word Cloud. René Descartes. Introduction. Ian Parberry University of North Texas. Fletcher Dunn What You ll See in This Chapter Chapter 1: Cartesian Coordinate Systems Fletcher Dunn Valve Software Ian Parberry University of North Texas This chapter describes the basic concepts of 3D math. It is divided

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

TABLE 2: Mathematics College Readiness Standards for Score Range 13 15

TABLE 2: Mathematics College Readiness Standards for Score Range 13 15 TABLE 2: Mathematics College Readiness Standards for Score Range 13 15 Perform one-operation computation with whole numbers and decimals Solve problems in one or two steps using whole numbers Perform common

More information

UPCAT Reviewer Booklet

UPCAT Reviewer Booklet UPCAT Reviewer Booklet I. Linear Equations y = y-value at a certain point in the graph x = x-value at a certain point in the graph b = a constant m = the slope of the line Section 1 Mathematics Linear

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Algebra course that I teach here at Lamar University, although I have to admit that it s been years since I last taught this course. At this point in my career I

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Math 126 Number Theory

Math 126 Number Theory Math 16 Number Theory Prof. D. Joyce, Clark University 8 Mar 006 Due Friday. Page 155: exercises 1,, 7. Choose one of the three and write it up completely. Whichever one you choose, find all those solutions

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

Bramhall high school Year 9 Assessment descriptor Mathematics

Bramhall high school Year 9 Assessment descriptor Mathematics Grade Description Exceeding Calculate with fractional powers. Calculate exactly with surds. 8/9 Establish the exact values of sinθ and cosθ for θ = 0, 30, 45, 60 and 90, the exact value of tanθ for θ =

More information

Linear Transformations

Linear Transformations Linear Transformations The two basic vector operations are addition and scaling From this perspective, the nicest functions are those which preserve these operations: Def: A linear transformation is a

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? Intersecting Circles This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? This is a problem that a programmer might have to solve, for example,

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

ACT Math test Plane Geometry Review

ACT Math test Plane Geometry Review Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test. If you ve taken high school geometry, you ve probably covered all of

More information

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects Mathematics 308 Geometry Chapter 9. Drawing three dimensional objects In this chapter we will see how to draw three dimensional objects with PostScript. The task will be made easier by a package of routines

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

ACT SparkNotes Test Prep: Plane Geometry

ACT SparkNotes Test Prep: Plane Geometry ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8 MATHEMATICS CURRICULUM GRADE 8 8A Numbers and Operations 1. Demonstrate an numbers, ways of representing numbers, relationships among numbers and number systems. 2. Compute accurately and fluently. a.

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Translations SLIDE. Example: If you want to move a figure 5 units to the left and 3 units up we would say (x, y) (x-5, y+3).

Translations SLIDE. Example: If you want to move a figure 5 units to the left and 3 units up we would say (x, y) (x-5, y+3). Translations SLIDE Every point in the shape must move In the same direction The same distance Example: If you want to move a figure 5 units to the left and 3 units up we would say (x, y) (x-5, y+3). Note:

More information

Unit 3 Higher topic list

Unit 3 Higher topic list This is a comprehensive list of the topics to be studied for the Edexcel unit 3 modular exam. Beside the topics listed are the relevant tasks on www.mymaths.co.uk that students can use to practice. Logon

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

Number Mulitplication and Number and Place Value Addition and Subtraction Division

Number Mulitplication and Number and Place Value Addition and Subtraction Division Number Mulitplication and Number and Place Value Addition and Subtraction Division read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to

More information

Game Engineering CS S-05 Linear Transforms

Game Engineering CS S-05 Linear Transforms Game Engineering CS420-2016S-05 Linear Transforms David Galles Department of Computer Science University of San Francisco 05-0: Matrices as Transforms Recall that Matrices are transforms Transform vectors

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

Pre-Calculus Mr. Davis

Pre-Calculus Mr. Davis Pre-Calculus 2016-2017 Mr. Davis How to use a Graphing Calculator Applications: 1. Graphing functions 2. Analyzing a function 3. Finding zeroes (or roots) 4. Regression analysis programs 5. Storing values

More information

11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS

11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS 11.2 Rectangular Coordinates in Three Dimensions Contemporary Calculus 1 11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS In this section we move into 3 dimensional space. First we examine the 3 dimensional

More information

PetShop (BYU Students, SIGGRAPH 2006)

PetShop (BYU Students, SIGGRAPH 2006) Now Playing: PetShop (BYU Students, SIGGRAPH 2006) My Mathematical Mind Spoon From Gimme Fiction Released May 10, 2005 Geometric Objects in Computer Graphics Rick Skarbez, Instructor COMP 575 August 30,

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

New Swannington Primary School 2014 Year 6

New Swannington Primary School 2014 Year 6 Number Number and Place Value Number Addition and subtraction, Multiplication and division Number fractions inc decimals & % Ratio & Proportion Algebra read, write, order and compare numbers up to 0 000

More information

Number- Algebra. Problem solving Statistics Investigations

Number- Algebra. Problem solving Statistics Investigations Place Value Addition, Subtraction, Multiplication and Division Fractions Position and Direction Decimals Percentages Algebra Converting units Perimeter, Area and Volume Ratio Properties of Shapes Problem

More information

Handout 1: Viewing an Animation

Handout 1: Viewing an Animation Handout 1: Viewing an Animation Answer the following questions about the animation your teacher shows in class. 1. Choose one character to focus on. Describe this character s range of motion and emotions,

More information

Formal Geometry Unit 9 Quadrilaterals

Formal Geometry Unit 9 Quadrilaterals Name: Period: Formal Geometry Unit 9 Quadrilaterals Date Section Topic Objectives 2/17 9.5 Symmetry I can identify line and rotational symmetries in twodimensional figures. I can identify line and rotational

More information

Lesson 20: Exploiting the Connection to Cartesian Coordinates

Lesson 20: Exploiting the Connection to Cartesian Coordinates : Exploiting the Connection to Cartesian Coordinates Student Outcomes Students interpret complex multiplication as the corresponding function of two real variables. Students calculate the amount of rotation

More information

Cecil Jones Academy Mathematics Fundamentals

Cecil Jones Academy Mathematics Fundamentals Year 10 Fundamentals Core Knowledge Unit 1 Unit 2 Estimate with powers and roots Calculate with powers and roots Explore the impact of rounding Investigate similar triangles Explore trigonometry in right-angled

More information

SAT Timed Section*: Math

SAT Timed Section*: Math SAT Timed Section*: Math *These practice questions are designed to be taken within the specified time period without interruption in order to simulate an actual SAT section as much as possible. Time --

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

Parallel and perspective projections such as used in representing 3d images.

Parallel and perspective projections such as used in representing 3d images. Chapter 5 Rotations and projections In this chapter we discuss Rotations Parallel and perspective projections such as used in representing 3d images. Using coordinates and matrices, parallel projections

More information

Year 6 Mathematics Overview

Year 6 Mathematics Overview Year 6 Mathematics Overview Term Strand National Curriculum 2014 Objectives Focus Sequence Autumn 1 Number and Place Value read, write, order and compare numbers up to 10 000 000 and determine the value

More information

Year 6 programme of study

Year 6 programme of study Year 6 programme of study Number number and place value read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to a required degree of accuracy

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms:

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: point, line, and distance along a line in a plane I can

More information

2009 GCSE Maths Tutor All Rights Reserved

2009 GCSE Maths Tutor All Rights Reserved 2 This book is under copyright to GCSE Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents angles 3 bearings 8 triangle similarity 9 triangle congruency 11 Pythagoras

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

Mathematics Year 9-11 Skills and Knowledge Checklist. Name: Class: Set : Premier Date Year 9 MEG :

Mathematics Year 9-11 Skills and Knowledge Checklist. Name: Class: Set : Premier Date Year 9 MEG : Personal targets to help me achieve my grade : AFL Sheet Number 1 : Standard Form, Decimals, Fractions and Percentages Standard Form I can write a number as a product of it s prime factors I can use the

More information

LEADERS. Long and Medium Term Planning

LEADERS. Long and Medium Term Planning LEADERS Long and Medium Term Planning Medium-Term Planning W Title Curriculum objective 1 Place value and rounding off 2 Mental and written addition and subtraction of large numbers To read, write, order

More information

I can solve simultaneous equations algebraically, where one is quadratic and one is linear.

I can solve simultaneous equations algebraically, where one is quadratic and one is linear. A* I can manipulate algebraic fractions. I can use the equation of a circle. simultaneous equations algebraically, where one is quadratic and one is linear. I can transform graphs, including trig graphs.

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

SPRITES Moving Two At the Same Using Game State

SPRITES Moving Two At the Same Using Game State If you recall our collision detection lesson, you ll likely remember that you couldn t move both sprites at the same time unless you hit a movement key for each at exactly the same time. Why was that?

More information

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Kurt Nalty January 8, 204 Abstract Quaternion multiplication causes tensor stretching) and versor turning) operations. Multiplying by unit

More information

Mathematics Year 9-11 Skills and Knowledge Checklist. Name: Class: Set : 1 Date Year 9 MEG :

Mathematics Year 9-11 Skills and Knowledge Checklist. Name: Class: Set : 1 Date Year 9 MEG : Personal targets to help me achieve my grade : AFL Sheet Number 1 : Standard Form, Decimals, Fractions and Percentages Standard Form I can write a number as a product of it s prime factors I can use the

More information

Chapter 5. Transforming Shapes

Chapter 5. Transforming Shapes Chapter 5 Transforming Shapes It is difficult to walk through daily life without being able to see geometric transformations in your surroundings. Notice how the leaves of plants, for example, are almost

More information

Chapter 1. Math review. 1.1 Some sets

Chapter 1. Math review. 1.1 Some sets Chapter 1 Math review This book assumes that you understood precalculus when you took it. So you used to know how to do things like factoring polynomials, solving high school geometry problems, using trigonometric

More information

MATH Grade 6. mathematics knowledge/skills as specified in the standards. support.

MATH Grade 6. mathematics knowledge/skills as specified in the standards. support. GRADE 6 PLD Standard Below Proficient Approaching Proficient Proficient Highly Proficient The Level 1 student is below The Level 2 student is The Level 3 student is proficient in The Level 4 student is

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information