Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Size: px
Start display at page:

Download "Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes"

Transcription

1 Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel to the line, or given the equations of intersecting planes in space. (3,4,5,7,9,13) 2. Determine if two lines are parallel, skew, or intersecting; find the point of intersection if possible. (10,11,15,17) 3. Find the equation of a plane given three points on the plane, given a point on the plane and a vector normal to the plane, given two points on the plane and the equation of a plane perpendicular to it. (19,25,29,33) 4. Find the point of intersection of a line and a plane. (35,37) 5. Determine if two planes are parallel, perpendicular, or neither and compute the angle between planes. (41,43,45,47,49) 6. Compute the distance between a line in space and a point off the line. (59) 7. Compute the distance between a plane in space and a point off the plane. (61) 2 Assignments 1. Read Section Problems: 1,3,9,11,17,21,23,27,31,35,45,50,53,63,68,70 3. Read Section Lecture Notes In this section, we ll learn how to find equations for lines and planes in 3 dimensions. Equations for lines in two dimensions are easy; we learned how to do that in algebra. Equations for lines in three dimensions are not that different; in each case, all we want to do is find a convenient way to describe the set of points that constitute the line. In two dimensions, we only need a point and a slope to define a line. If we have two points, then we can recover the slope, so two points are all that is needed to define a line. It works much the same way in three dimensions, where now the slope is replaced by the idea of the direction vector of the line. Planes are the really new concept here. Note that a point and a vector parallel to the direction of the plane are not enough to describe a plane in three dimensions. However, if we have a point and the direction of a vector that is perpendicular to the plane, we can find the equation for the plane easily. 1

2 3.1 Equations of Lines We can find the equation of a line in three dimensions by using either two points on the line or by using one point on the line and a vector that is parallel to the line Vector Equations In three dimensions, we can equate a point P 0 (x 0, y 0, z 0 ) with a direction vector starting at the origin OP =< x 0, y 0, z 0 >. This notation will be useful when finding the equation of the line. Assume that we have two points, A(x 0, y 0, z 0 ) and B(x 1, y 1, z 1 ) on a line L. Then OA =< x 0, y 0, z 0 > and OB =< x 1, y 1, z 1 >. The direction of the line L is then the same as the direction AB =< x 1 x 0, y 1 y 0, z 1 z 0 >, that is, AB is parallel to L. We can move from A to B by noting the OB = OA + AB. We can get to a general point P (x, y, z) on the line, where OP =< x, y, z >, by moving from A a scalar multiple in the direction AB, so that OP = OA + tab. This is the vector equation for the line L, where t is called the parameter. We can generate all of the points on the line L by choosing different values for t and using the vector equation. Your text explains the vector equation in a different (and probably better) way. Let P 0 (x 0, y 0, z 0 ) be a point on L, and let v be a vector that is parallel to L. Tnen any point on the line P (x, y, z) is some distance away from P 0 in the direction of L. We can represent the points P 0 and P by their position vectors, i.e., the vectors with starting points at the origin and endpoints at the coordinates of the points. Label these vectors r 0 and r for the position vectors for P 0 and P, respectively. If P 0 P is a, then a = tv for some t IR. We can use the triangle law for the addition of two vectors to see that r = r 0 + tv, which gives the vector equation for the line L. (There s a good illustration in your text that I won t try to repeat here.) Parametric Equations We can get the parametric equations for L by writing out and equating the components of the vector equation for L. Thus we get r = r 0 + tv < x, y, z > = < x 0, y 0, z 0 > +t < a, b, c > x = x 0 + ta y = y 0 + tb z = z 0 + tc. The components of the direction vector v are the direction numbers of our line L. 2

3 3.1.3 Symmetric Equations We can solve each of the parametric equations for t to obtain the symmetric equations x x 0 a = y y 0 b = z z 0, c as long as none of the direction numbers are 0. If a direction number is zero, it simply means that the line is constant along that component. If, for instance, we have a = 0, then the line is constant along the x component and the symmetric equations become x = x 0, y y 0 b = z z 0. c 3.2 Example 1 In Section 13.1, we had a homework question which asked you to determine if three points were on a line. There were two sets of points in the problem: 1. P 1 (5, 1, 3), P 2 (7, 9, 1), P 3 (1, 15, 11) 2. P 1 (0, 3, 4), P 2 (1, 2, 2), P 3 (3, 0, 1) First, find the line L between P 1 and P 2. Then, try to find a t that would give P 3. The direction of the line between P 1 and P 2 is < 7 5, 9 1, 1 3 >=< 2, 8, 4 >. The vector equation for L is r =< 5, 1, 3 > +t < 2, 8, 4 >, which gives the parametric equations The symmetric equations are x = 5 + 2t y = 1 + 8t z = 3 4t. x 5 2 = y 1 8 = z 3 4. Thus, if x = 1 as in P 3, the other coordinates for the point on the line must be y = 15 and z = 11, which is what we have for P 3. Thus, all three points lie on the same line. Class Questions 1. Repeat the above exercise for the second set of three points. 2. When does the line from the previous example intersect the xy plane? The yz plane? The xz plane? Insert example 16 here about skew/parallel lines 3

4 3.3 Planes A plane in space is determined by a point P 0 (x 0, y 0, z 0 ) in the plane and a vector n perpendicular to the plane. The vector n is called the normal vector. Let P (x, y, z) be an arbitrary point in the plane. Since n is orthogonal to the plane, it is orthogonal to every vector in the plane. In particular, n is orthogonal to the vector defined by P 0 P, which is clearly in the plane. If we again use position vectors n and r 0 to represent our points P and P 0, respectively, then we can see that P 0 P =< x x 0, y y 0, z z 0 >= n r 0, and since n is orthogonal to this vector, we must have n (n r 0 ) = 0. This last equation defines the vector equation for the plane. The scalar equation for the plane is obtained by writing out the vector equation of the plane, using n =< n x, n y, n z >. This gives n (n r 0 ) = 0 < n x, n y, n z > < x x 0, y y0, z z 0 > = 0 n x (x x 0 ) + n y (y y 0 ) + n z (z z 0 ) = 0. The above equation is the scalar equation of the plane through the point P 0 (x 0, y 0, z 0 ) with normal vector n =< n x, n y, n z >. We can simplify the scalar equation of the plane to get the linear equation of the plane. The linear equation of the plane is where d = (n x x 0 + n y y 0 + n z z 0 ). Class Questions: n x x + n y y + n z z + d = 0, 1. What are the vector equations for the xy, yz and xz planes? 2. What is the normal vector to each of these planes? Example 3: Problems , Example 4: Problem If we know two vectors in a plane, then we can also find the equation of the plane. Problem is a good problem to work because you are given three point in the plane and asked to find the equation for the plane. In this case, you need to find two vectors that define the plane and a vector that is orthogonal to the plane. The plane through the origin P 0 and P 1 (2, 4, 6) and P 2 (5, 1, 3) contains the vectors P 0 P 1 and P 0 P 2. These vectors are v 1 =< 2, 4, 6 > and v 2 < 5, 1, 3 >, respectively. (Why?) A vector orthogonal to the plane containing these vectors is n = v 1 v 2. Thus, n = 18i + 24j + 22k. Thus, the equation of the plane is given by 18(x 0) + 24(y 0) + 22(z 0) = 0. 4

5 3.3.3 Other facts about planes In three-dimensional space, either two planes are parallel or they intersect. Two planes are parallel if their corresponding normal vectors are parallel, that is, if n A = αn B. If two planes intersect, then the angle between the planes is the acute angle between their normal vectors Example 5: Problem To find the cosine of the angle between the two planes x+y+z = 0 and x+2y+3z = 1, we first note that the vectors normal to the respective planes are n 1 =< 1, 1, 1 > and n 2 =< 1, 2, 3 >. (Why?) Then, we know that cos θ = n 1 n 2 n 1 n 2 = =

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in R 3 In Section 8.1, we discussed vector and parametric equations of a line in. In this section, we will continue our discussion, but,

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

Suggested problems - solutions

Suggested problems - solutions Suggested problems - solutions Writing equations of lines and planes Some of these are similar to ones you have examples for... most of them aren t. P1: Write the general form of the equation of the plane

More information

1 EquationsofLinesandPlanesin 3-D

1 EquationsofLinesandPlanesin 3-D 1 EquationsofLinesandPlanesin 3-D Recall that given a point P (a, b, c), one can draw a vector from the origin to P. Such a vector is called the position vector of the point P and its coordinates are a,

More information

Lines and Planes in 3D

Lines and Planes in 3D Lines and Planes in 3D Philippe B. Laval KSU January 28, 2013 Philippe B. Laval (KSU) Lines and Planes in 3D January 28, 2013 1 / 20 Introduction Recall that given a point P = (a, b, c), one can draw a

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

Problems of Plane analytic geometry

Problems of Plane analytic geometry 1) Consider the vectors u(16, 1) and v( 1, 1). Find out a vector w perpendicular (orthogonal) to v and verifies u w = 0. 2) Consider the vectors u( 6, p) and v(10, 2). Find out the value(s) of parameter

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Topic 1.6: Lines and Planes

Topic 1.6: Lines and Planes Math 275 Notes (Ultman) Topic 1.6: Lines and Planes Textbook Section: 12.5 From the Toolbox (what you need from previous classes): Plotting points, sketching vectors. Be able to find the component form

More information

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up:

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Closing Thu: 12.4(1)(2), 12.5(1) Closing next Tue: 12.5(2)(3), 12.6 Closing next Thu: 13.1, 13.2 12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Consider

More information

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4).

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4). MATH 00 (Fall 016) Exam 1 Solutions 1 1. (a) (10 points) Find an equation of the sphere with center (, 1, 4). (x ( )) + (y 1) + (z ( 4)) 3 (x + ) + (y 1) + (z + 4) 9 (b) (10 points) Find an equation of

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

MATH Additional Examples Page 4.24

MATH Additional Examples Page 4.24 MAH 050 4.4 Additional Examples Page 4.4 4.4 Additional Examples for Chapter 4 Example 4.4. Prove that the line joining the midpoints of two sides of a triangle is parallel to and exactly half as long

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 12.5 Equations of Lines and Planes Definition 1: Vector Equation of a Line L Let L be a line in three-dimensional space. P (x,

More information

Vector Calculus: Understanding the Cross Product

Vector Calculus: Understanding the Cross Product University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / 2016 2016 \ 2017 Vector Calculus: Understanding the Cross

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

TA101 : Engineering Graphics Review of Lines. Dr. Ashish Dutta Professor Dept. of Mechanical Engineering IIT Kanpur Kanpur, INDIA

TA101 : Engineering Graphics Review of Lines. Dr. Ashish Dutta Professor Dept. of Mechanical Engineering IIT Kanpur Kanpur, INDIA TA101 : Engineering Graphics Review of Lines Dr. Ashish Dutta Professor Dept. of Mechanical Engineering IIT Kanpur Kanpur, INDIA Projection of a point in space A point is behind the frontal plane by d

More information

Def.: a, b, and c are called the for the line L. x = y = z =

Def.: a, b, and c are called the for the line L. x = y = z = Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed Lines in Space Eercise : Consider the vector v = Sketch and describe the following set: t v ta, tb, tc : t a, b, c. Let P =,,. Sketch

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

GEOMETRY APPLICATIONS

GEOMETRY APPLICATIONS GEOMETRY APPLICATIONS Chapter 3: Parallel & Perpendicular Lines Name: Teacher: Pd: 0 Table of Contents DAY 1: (Ch. 3-1 & 3-2) SWBAT: Identify parallel, perpendicular, and skew lines. Identify the angles

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

3-1 Study Guide Parallel Lines and Transversals

3-1 Study Guide Parallel Lines and Transversals 3-1 Study Guide Parallel Lines and Transversals Relationships Between Lines and Planes When two lines lie in the same plane and do not intersect, they are parallel. Lines that do not intersect and are

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Writing Equations of Lines and Midpoint

Writing Equations of Lines and Midpoint Writing Equations of Lines and Midpoint MGSE9 12.G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel

More information

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2 CHAPTER 10 Straight lines Learning Objectives (i) Slope (m) of a non-vertical line passing through the points (x 1 ) is given by (ii) If a line makes an angle α with the positive direction of x-axis, then

More information

Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 17 Notes These notes correspond to Section 10.1 in the text. Three-Dimensional Coordinate Systems Over the course of the next several lectures, we will

More information

HOMEWORK ASSIGNMENT #4, MATH 253

HOMEWORK ASSIGNMENT #4, MATH 253 HOMEWORK ASSIGNMENT #4, MATH 253. Prove that the following differential equations are satisfied by the given functions: (a) 2 u 2 + 2 u y 2 + 2 u z 2 =0,whereu =(x2 + y 2 + z 2 ) /2. (b) x w + y w y +

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

CHAPTER - 10 STRAIGHT LINES Slope or gradient of a line is defined as m = tan, ( 90 ), where is angle which the line makes with positive direction of x-axis measured in anticlockwise direction, 0 < 180

More information

Geometry Midterm Review Vocabulary:

Geometry Midterm Review Vocabulary: Name Date Period Geometry Midterm Review 2016-2017 Vocabulary: 1. Points that lie on the same line. 1. 2. Having the same size, same shape 2. 3. These are non-adjacent angles formed by intersecting lines.

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009 Lecture 6 Sections 4.3, 4.6, 4.7 Hampden-Sydney College Wed, Sep 9, 2009 Outline 1 2 3 4 re are three mutually orthogonal axes: the x-axis, the y-axis, and the z-axis. In the standard viewing position,

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Parametric Curves, Lines in Space

Parametric Curves, Lines in Space Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September 2014 1 / 37 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer

More information

Geometry CP Constructions Part I Page 1 of 4. Steps for copying a segment (TB 16): Copying a segment consists of making segments.

Geometry CP Constructions Part I Page 1 of 4. Steps for copying a segment (TB 16): Copying a segment consists of making segments. Geometry CP Constructions Part I Page 1 of 4 Steps for copying a segment (TB 16): Copying a segment consists of making segments. Geometry CP Constructions Part I Page 2 of 4 Steps for bisecting a segment

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space:

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space: Three-Dimensional Coordinate Systems The plane is a two-dimensional coordinate system in the sense that any point in the plane can be uniquely described using two coordinates (usually x and y, but we have

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Section A1: Gradients of straight lines

Section A1: Gradients of straight lines Time To study this unit will take you about 10 hours. Trying out and evaluating the activities with your pupils in the class will be spread over the weeks you have planned to cover the topic. 31 Section

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

11 Jan 72 Alien Newell

11 Jan 72 Alien Newell 11 Jan 72 Alien Newell Comments on Alexandra Forsythe's "What Points are Equidistant from Two Skew Lines," The Mathematics Teacher, 62, 2 February 1969, 97-101. 1. Before the analysis is over a rather

More information

A Short Introduction to Projective Geometry

A Short Introduction to Projective Geometry A Short Introduction to Projective Geometry Vector Spaces over Finite Fields We are interested only in vector spaces of finite dimension. To avoid a notational difficulty that will become apparent later,

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4 73 3-D Notes Honors Precalculus Date: Adapted from 111 & 114 The Three-Variable Coordinate System I Cartesian Plane The familiar xy-coordinate system is used to represent pairs of numbers (ordered pairs

More information

Lesson 5: Perpendicular Lines

Lesson 5: Perpendicular Lines : Perpendicular Lines Learning Target I can generalize the criterion for perpendicularity of two segments that meet at a point I can determine if two segments are perpendicular and write the equation of

More information

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS SLIDES NUMBER 5.2 GEOMETRY 2 (The straight line) by A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2.3 Perpendicular straight lines 5.2.4 Change of origin UNIT 5.2

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

Notes on Spherical Geometry

Notes on Spherical Geometry Notes on Spherical Geometry Abhijit Champanerkar College of Staten Island & The Graduate Center, CUNY Spring 2018 1. Vectors and planes in R 3 To review vector, dot and cross products, lines and planes

More information

8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties

8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties 8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties Student Objectives I can perform translations of figures along a specific vector. I can label the image of the figure using

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

CV: 3D sensing and calibration

CV: 3D sensing and calibration CV: 3D sensing and calibration Coordinate system changes; perspective transformation; Stereo and structured light MSU CSE 803 1 roadmap using multiple cameras using structured light projector 3D transformations

More information

The mathematics behind projections

The mathematics behind projections The mathematics behind projections This is an article from my home page: www.olewitthansen.dk Ole Witt-Hansen 2005 (2015) Contents 1. The mathematics behind projections and 3-dim graphics...1 1.1 Central

More information

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3.

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3. Name CP Algebra II Midterm Review Packet 018-019 Unit 1: Linear Equations and Inequalities Solve each equation. 1. x. x 4( x 5) 6x. 8x 5(x 1) 5 4. ( k ) k 4 5. x 4 x 6 6. V lhw for h 7. x y b for x z Find

More information

Homework Worksheets: Chapter 7 HW#36: Problems #1-17

Homework Worksheets: Chapter 7 HW#36: Problems #1-17 Homework Worksheets: Chapter 7 HW#36: Problems #1-17 1.) Which of the following in an eample of an undefined term:. ray B. segment C. line D. skew E. angle 3.) Identify a countereample to the given statement.

More information

Class IX Chapter 11 Constructions Maths

Class IX Chapter 11 Constructions Maths 1 Class IX Chapter 11 Constructions Maths 1: Exercise 11.1 Question Construct an angle of 90 at the initial point of a given ray and justify the construction. Answer: The below given steps will be followed

More information

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens.

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. 6. LETURE 6 Objectives I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. So far, we ve learned the definition of the gradient

More information

Geometry Quarter 1 Test - Study Guide.

Geometry Quarter 1 Test - Study Guide. Name: Geometry Quarter 1 Test - Study Guide. 1. Find the distance between the points ( 3, 3) and ( 15, 8). 2. Point S is between points R and T. P is the midpoint of. RT = 20 and PS = 4. Draw a sketch

More information

Transformations Part If then, the identity transformation.

Transformations Part If then, the identity transformation. Transformations Part 2 Definition: Given rays with common endpoint O, we define the rotation with center O and angle as follows: 1. If then, the identity transformation. 2. If A, O, and B are noncollinear,

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Did You Find a Parking Space?

Did You Find a Parking Space? Lesson.4 Skills Practice Name Date Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane Vocabulary Complete the sentence. 1. The point-slope form of the equation of the

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Geometry Review for Semester 1 Final Exam

Geometry Review for Semester 1 Final Exam Name Class Test Date POINTS, LINES & PLANES: Geometry Review for Semester 1 Final Exam Use the diagram at the right for Exercises 1 3. Note that in this diagram ST plane at T. The point S is not contained

More information

Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required

Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required Hartmann HONORS Geometry Chapter 3 Formative Assessment * Required 1. First Name * 2. Last Name * Vocabulary Match the definition to the vocabulary word. 3. Non coplanar lines that do not intersect. *

More information

Elements of three dimensional geometry

Elements of three dimensional geometry Lecture No-3 Elements of three dimensional geometr Distance formula in three dimension Let P( x1, 1, z1) and Q( x2, 2, z 2) be two points such that PQ is not parallel to one of the 2 2 2 coordinate axis

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Math 259 Winter Unit Test 1 Review Problems Set B

Math 259 Winter Unit Test 1 Review Problems Set B Math 259 Winter 2009 Unit Test 1 Review Problems Set B We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no

More information

Math-3 Lesson 6-1. Trigonometric Ratios for Right Triangles and Extending to Obtuse angles.

Math-3 Lesson 6-1. Trigonometric Ratios for Right Triangles and Extending to Obtuse angles. Math-3 Lesson 6-1 Trigonometric Ratios for Right Triangles and Extending to Obtuse angles. Right Triangle: has one angle whose measure is. 90 The short sides of the triangle are called legs. The side osite

More information

Chapter P: Preparation for Calculus

Chapter P: Preparation for Calculus 1. Which of the following is the correct graph of y = x x 3? E) Copyright Houghton Mifflin Company. All rights reserved. 1 . Which of the following is the correct graph of y = 3x x? E) Copyright Houghton

More information

Homework Questions 1 Gradient of a Line using y=mx+c

Homework Questions 1 Gradient of a Line using y=mx+c (C1-5.1a) Name: Homework Questions 1 Gradient of a Line using y=mx+c 1. State the gradient and the y-intercept of the following linear equations a) y = 2x 3 b) y = 4 6x m= 2 c = -3 c) 2y = 8x + 4 m= -6

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Analytical Solid Geometry

Analytical Solid Geometry Analytical Solid Geometry Distance formula(without proof) Division Formula Direction cosines Direction ratios Planes Straight lines Books Higher Engineering Mathematics by B S Grewal Higher Engineering

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

4. The following diagram shows the triangle AOP, where OP = 2 cm, AP = 4 cm and AO = 3 cm.

4. The following diagram shows the triangle AOP, where OP = 2 cm, AP = 4 cm and AO = 3 cm. Circular Functions and Trig - Practice Problems (to 07) 1. In the triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate (a) the size of ; (b) the area of triangle PQR. 2. The following diagram shows

More information

SUMMER WORK. Skills Review for Students Entering Geometry or Geometry with Trig

SUMMER WORK. Skills Review for Students Entering Geometry or Geometry with Trig SUMMER WORK Name: Skills Review for Students Entering Geometry or Geometry with Trig The following is a review of math skills that you will be expected to apply in your Geometry course next year. Complete

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

High School Mathematics Geometry Vocabulary Word Wall Cards

High School Mathematics Geometry Vocabulary Word Wall Cards High School Mathematics Geometry Vocabulary Word Wall Cards Table of Contents Reasoning, Lines, and Transformations Basics of Geometry 1 Basics of Geometry 2 Geometry Notation Logic Notation Set Notation

More information

EQUATIONS OF ALTITUDES, MEDIANS, and PERPENDICULAR BISECTORS

EQUATIONS OF ALTITUDES, MEDIANS, and PERPENDICULAR BISECTORS EQUATIONS OF ALTITUDES, MEDIANS, and PERPENDICULAR BISECTORS Steps to Find the Median of a Triangle: -Find the midpoint of a segment using the midpoint formula. -Use the vertex and midpoint to find the

More information

Lesson 27/28 Special Segments in Triangles

Lesson 27/28 Special Segments in Triangles Lesson 27/28 Special Segments in Triangles ***This is different than on your notetaking guide*** PART 1 - VOCABULARY Perpendicular Angle Median Altitude Circumcenter Incenter Centroid Orthocenter A line

More information

Provide a drawing. Mark any line with three points in blue color.

Provide a drawing. Mark any line with three points in blue color. Math 3181 Name: Dr. Franz Rothe August 18, 2014 All3181\3181_fall14h1.tex Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

Analytic Spherical Geometry:

Analytic Spherical Geometry: Analytic Spherical Geometry: Begin with a sphere of radius R, with center at the origin O. Measuring the length of a segment (arc) on a sphere. Let A and B be any two points on the sphere. We know that

More information

Equations of planes in

Equations of planes in Roberto s Notes on Linear Algebra Chapter 6: Lines, planes and other straight objects Section Equations of planes in What you need to know already: What vectors and vector operations are. What linear systems

More information