19.1 Understanding Quadratic Functions

Size: px
Start display at page:

Download "19.1 Understanding Quadratic Functions"

Transcription

1 Name Class Date 19.1 Understanding Quadratic Functions Essential Question: What is the effect of the constant a on the graph of f () = a? Resource Locker Eplore Understanding the Parent Quadratic Function A function that can be represented in the form of ƒ () = a + b + c is called a quadratic function. The terms a, b, and c, are constants where a. The greatest eponent of the variable is. The most basic quadratic function is ƒ () =, which is the parent quadratic function. A Here is an incomplete table of values for the parent quadratic function. Complete it. B Plot the ordered pairs as points on the graph, and connect the points to sketch a curve. f () = 3 ƒ () = = ( 3) = Houghton Mifflin Harcourt Publishing Compan Reflect 1. Discussion What is the domain of ƒ () =? The curve is called a parabola. The point through which the parabola turns direction is called its verte. The verte occurs at (, ) for this function. A vertical line that passes through the verte and divides the parabola into two smmetrical halves is called the ais of smmetr. For this function, the ais of smmetr is the -ais.. Discussion What is the range of ƒ () =? Module 19 9 Lesson 1

2 Eplain 1 Graphing g () = a when a > The graph g () = a, is a vertical stretch or compression of its parent function ƒ () =. The graph opens upward when a >. Vertical Stretch g () = a with a > 1. The graph of g () is narrower than the parent function ƒ (). Vertical Compression g () = a with < a < 1. The graph of g () is wider than the parent function ƒ (). g() f() f() g() The domain of a quadratic function is all real numbers. When a >, the graph of g () = a opens upward, and the function has a minimum value that occurs at the verte of the parabola. So, the range of g () = a, where a >, is the set of real numbers greater than or equal to the minimum value. Eample 1 Graph each quadratic function b plotting points and sketching the curve. State the domain and range. A g () = g () = Domain: all real numbers Range: - - Houghton Mifflin Harcourt Publishing Compan Module 19 9 Lesson 1

3 B g () = 1 g () = Domain: Range: Reflect 3. For a graph that has a vertical compression or stretch, does the ais of smmetr change? Your Turn Graph each quadratic function. State the domain and range.. g () = 3 5. g () = 1_ Eplain Graphing g () = a when a < Houghton Mifflin Harcourt Publishing Compan The graph of = opens downward. It is a reflection of the graph of = across the -ais. So, When a <, the graph of g () = a opens downward, and the function has a maimum value that occurs at the verte of the parabola. In this case, the range is the set of real numbers less than or equal to the maimum value. Vertical Stretch g () = a with a > 1. The graph of g () is narrower than the parent function f() f() g() Vertical Compression g () = a with < a < 1. The graph of g () is wider than the parent function f (). - g() f() Module Lesson 1

4 Eample Graph each quadratic function b plotting points and sketching the curve. State the domain and range. A g () = g () = Domain: all real numbers Range: B g () = 1_ -3 g () = Domain: Range: 3 Reflect. Does reflecting the parabola across the -ais (a < ) change the ais of smmetr? Houghton Mifflin Harcourt Publishing Compan Module 19 9 Lesson 1

5 Your Turn Graph each function. State the domain and range. 7. g () = 3. g () = Eplain 3 Writing a Quadratic Function Given a Graph You can determine a function rule for a parabola with its verte at the origin b substituting and values for an other point on the parabola into g () = a and solving for a. Eample 3 Write the rule for the quadratic functions shown on the graph. A Use the point (, ). - - (, ) Start with the functional form. g () = a Replace and g () with point values. = a () Evaluate. Divide both sides b to isolate a. = a 1 = a Write the function rule. g () = 1 Houghton Mifflin Harcourt Publishing Compan B Use the point (-, ) (-, -) - - Start with the functional form. g () = a Replace and g () with point values. = a ( ) Evaluate. = a Divide both sides b to isolate a. = a Write the function rule. g () = Module Lesson 1

6 Your Turn (1, ) (1, -1) Eplain Modeling with a Quadratic Function Real-world situations can be modeled b parabolas. Eample A Depth (ards) - For each model, describe what the verte, -intercept, and endpoint(s) represent in the situation it models, and then determine the equation of the function. This graph models the depth in ards below the water s surface of a dolphin before and after it rises to take a breath and descends again. The depth d is relative to time t, in seconds, and t = is when dolphin reaches a depth of ards at the surface (-, -3) (, -3) Time (seconds) The -intercept occurs at the verte of the parabola at (, ), where the dolphin is at the surface to breathe. The endpoint (-, -3) represents a depth of 3 ards below the surface at seconds before the dolphin reaches the surface to breathe. The endpoint (, -3) represents a depth of 3 ards below the surface at seconds after the dolphin reaches the surface to breathe. The graph is smmetric about the -ais with the verte at the origin, so the function will be of the form = a, or d (t) = a t. Use a point to determine the equation. d (t) = a t -3 = a () -3 = a 1 - = a The function is d (t) = - t. Module 19 9 Lesson 1 Houghton Mifflin Harcourt Publishing Compan Image Credits: Malcolm Schul/Alam

7 B Satellite dishes reflect radio waves onto a collector b using a reflector (the dish) shaped like a parabola. (, 1) The graph shows the height h in feet of the reflector 1 relative to the distance in feet from the center of the satellite dish The -intercept occurs at the verte, which represents Distance from Center (feet) the distance = feet from the center of the dish. The left endpoint represents the height h = feet at the center of the dish. The right endpoint represents the height h = feet at the distance = feet from the center of the dish. The function will be of the form. Use (, ) to determine the equation. h () = a = a ( ) Height (feet) 1 = a = 1_ 3 h () = Your Turn 11. The graph shows the height h in feet of a rock dropped down a deep well as a function of time t in seconds. Houghton Mifflin Harcourt Publishing Compan Height (feet) (, -) Time (seconds) Module Lesson 1

8 Elaborate 1. Discussion In eample 1A the points (3, 1) and (-3, 1) did not fit on the grid. Describe some strategies for selecting points used to guide the shape of the curve. 13. Describe how the ais of smmetr of the parabola sitting on the -ais can be used to help plot the graph of ƒ () = a. 1. Essential Question Check-In How can ou use the value of a to predict the shape of ƒ () = a without plotting points? Evaluate: Homework and Practice 1. Plot the function ƒ () = and g () = - on the grid Which of the following features are the same and which are different for the two functions? a. Domain b. Range c. Verte d. Ais of smmetr e. Minimum f. Maimum Online Homework Hints and Help Etra Practice Houghton Mifflin Harcourt Publishing Compan Module 19 9 Lesson 1

9 Graph each quadratic function. State the domain and range.. g () = 3. g () = 1_ g () = 3_ 5. g () = g () = - 1_ 7. g () = - Houghton Mifflin Harcourt Publishing Compan Module Lesson 1

10 . g () = - 3_ 9. g () = Determine the equation of the parabola graphed (-1, 3) (, -) (3, -) (, 5) Houghton Mifflin Harcourt Publishing Compan Module 19 9 Lesson 1

11 A cannonball fired horizontall appears to travel in a straight line, but drops to earth due to gravit, just like an other object in freefall. The height of the cannonball in freefall is parabolic. The graph shows the change in height of the cannonball (in meters) as a function of distance traveled (in kilometers). Refer to this graph for questions 1 and 15. h Height (m) (., -5) d Distance (km) 1. Describe what the verte, -intercept, and endpoint represent. 15. Find the function h (d) that describes these coordinates. Houghton Mifflin Harcourt Publishing Compan Image Credits: (t) Brandon Alms/Alam; (b) Olegusk/Shutterstock A slingshot stores energ in the stretched elastic band when it is pulled back. The amount of stored energ versus the pull length is approimatel parabolic. Questions 1 and 17 refer to this graph of the stored energ in millijoules versus pull length in centimeters. Energ (mj) E (, ) Pull Length (cm) 1. Describe what the verte, -intercept, and endpoint represent. d 17. Determine the function, E (d), that describes this plot. Module Lesson 1

12 Newer clean energ sources like solar and wind suffer from unstead availabilit of energ. This makes it impractical to eliminate more traditional nuclear and fossil fuel plants without finding a wa to store etra energ when it is not available. One solution being investigated is storing energ in mechanical flwheels. Mechanical flwheels are heav disks that store energ b spinning rapidl. The graph shows how much energ is in a flwheel, as a function of revolution speed. 1 E (1, 1) Energ (kwh) 1 Rotation Speed (rps) r 1. Describe what the verte, -intercept, and endpoint represent. 19. Determine the function, E (r), that describes this plot. Phineas is building a homemade skate ramp and wants to model the shape as a parabola. He sketches out a cross section shown in the graph. Height (feet) h (1, ) 5 1 Length (feet). Describe what the verte -intercept, and endpoint represent. l 1. Determine the function, h (l), that describes this plot. Houghton Mifflin Harcourt Publishing Compan Image Credits: Tusumaru/Shutterstock Module 19 9 Lesson 1

13 H.O.T. Focus on Higher Order Thinking. Multipart Classification - - g() - - f() Mark the following statements about ƒ () = and g () = a as true or false. a. a > 1 b. a < c. a > d. a < e. a < 1 f. The graphs of ƒ () and g () share a verte. g. The graphs share an ais of smmetr. h. The graphs share a minimum. i. The graphs share a maimum. 3. Check for Reasonableness The graph of g () = a is a parabola that passes through the point (-, ). Kle sas the value of a must be - 1. Eplain wh this value of a is not reasonable. Houghton Mifflin Harcourt Publishing Compan. Communicate Mathematical Ideas Eplain how ou know, without graphing, what the graph of g () = 1 1 looks like. 5. Critical Thinking A quadratic function has a minimum value when the function s graph opens upward, and it has a maimum value when the function s graph opens downward. In each case, the minimum or maimum value is the -coordinate of the verte of the function s graph. What can ou sa about a when the function ƒ () = a has a minimum value? A maimum value? What is the minimum or maimum value in each case? Module Lesson 1

14 Lesson Performance Task Klie made a paper helicopter and is testing its flight time from two different heights. The graph compares the height of the helicopter during the two drops. The graph of the first drop is labeled g () and the graph of the second drop is labeled h (). a. At what heights did Klie drop the helicopter? What is the helicopter s flight time during each drop? b. If each graph is represented b a function of the form ƒ () = a, are the coefficients positive or negative? Eplain. c. Estimate the functions for each graph. Height (ft) g() Helicopter s Height h() Time (s) Houghton Mifflin Harcourt Publishing Compan Module 19 9 Lesson 1

19.1 Understanding Quadratic Functions

19.1 Understanding Quadratic Functions Name Class Date 19.1 Understanding Quadratic Functions Essential Question: What is the effect of the constant a on the graph of f () = a? Resource Locker Eplore Understanding the Parent Quadratic Function

More information

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form QUADRATIC FUNCTIONS Investigating Quadratic Functions in Verte Form The two forms of a quadratic function that have been eplored previousl are: Factored form: f ( ) a( r)( s) Standard form: f ( ) a b c

More information

Essential Question: What are the ways you can transform the graph of the function f(x)? Resource Locker. Investigating Translations

Essential Question: What are the ways you can transform the graph of the function f(x)? Resource Locker. Investigating Translations Name Class Date 1.3 Transformations of Function Graphs Essential Question: What are the was ou can transform the graph of the function f()? Resource Locker Eplore 1 Investigating Translations of Function

More information

3.4 Graphing Functions

3.4 Graphing Functions Name Class Date 3. Graphing Functions Essential Question: How do ou graph functions? Eplore Graphing Functions Using a Given Domain Resource Locker Recall that the domain of a function is the set of input

More information

5.2 Using Intercepts

5.2 Using Intercepts Name Class Date 5.2 Using Intercepts Essential Question: How can ou identif and use intercepts in linear relationships? Resource Locker Eplore Identifing Intercepts Miners are eploring 9 feet underground.

More information

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING - Attributes of Absolute Value Functions TEKS FOCUS TEKS ()(A) Graph the functions f() =, f() =, f() =, f() =,f() = b, f() =, and f() = log b () where b is,, and e, and, when applicable, analze the ke

More information

Graphing f ( x) = ax 2

Graphing f ( x) = ax 2 . Graphing f ( ) = a Essential Question What are some of the characteristics of the graph of a quadratic function of the form f () = a? Graphing Quadratic Functions Work with a partner. Graph each quadratic

More information

Graphing Cubic Functions

Graphing Cubic Functions Locker 8 - - - - - -8 LESSON. Graphing Cubic Functions Name Class Date. Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) + k and f () = ( related to the graph of f ()

More information

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1.

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1. Locker LESSON 4.4 Graphing Eponential Functions Common Core Math Standards The student is epected to: F-IF.7e Graph eponential and logarithmic functions, showing intercepts and end behavior, and trigonometric

More information

6. 4 Transforming Linear Functions

6. 4 Transforming Linear Functions Name Class Date 6. Transforming Linear Functions Essential Question: What are the was in which ou can transform the graph of a linear function? Resource Locker Eplore 1 Building New Linear Functions b

More information

4.1 Graph Quadratic Functions in

4.1 Graph Quadratic Functions in 4. Graph Quadratic Functions in Standard Form Goal p Graph quadratic functions. Your Notes VOCABULARY Quadratic function Parabola Verte Ais of smmetr Minimum and maimum value PARENT FUNCTION FOR QUADRATIC

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k - Transformations of Absolute Value Functions TEKS FOCUS VOCABULARY Compression A compression is a TEKS (6)(C) Analze the effect on the graphs of f() = when f() is replaced b af(), f(b), f( - c), and f()

More information

Graphing f ( x) = ax 2 + c

Graphing f ( x) = ax 2 + c . Graphing f ( ) = a + c Essential Question How does the value of c affect the graph of f () = a + c? Graphing = a + c Work with a partner. Sketch the graphs of the functions in the same coordinate plane.

More information

Online Homework Hints and Help Extra Practice

Online Homework Hints and Help Extra Practice Evaluate: Homework and Practice Use a graphing calculator to graph the polnomial function. Then use the graph to determine the function s domain, range, and end behavior. (Use interval notation for the

More information

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0 8. Graphs of Quadratic Functions In an earlier section, we have learned that the graph of the linear function = m + b, where the highest power of is 1, is a straight line. What would the shape of the graph

More information

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background Graphing In Standard Form In Factored Form In Vertex Form Transforming Graphs Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Transforming Linear Functions

Transforming Linear Functions COMMON CORE Locker LESSON 6. Transforming Linear Functions Name Class Date 6. Transforming Linear Functions Essential Question: What are the was in which ou can transform the graph of a linear function?

More information

Quadratic Functions and Factoring

Quadratic Functions and Factoring Chapter Quadratic Functions and Factoring Copright Houghton Mifflin Harcourt Publishing Compan. All rights reserved. Prerequisite Skills for the chapter Quadratic Functions and Factoring. The -intercept

More information

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function?

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function? 3.3 Characteristics of Polnomial Functions in Factored Form INVESTIGATE the Math The graphs of the functions f () 5 1 and g() 5 1 are shown.? GOAL Determine the equation of a polnomial function that describes

More information

3-2. Families of Graphs. Look Back. OBJECTIVES Identify transformations of simple graphs. Sketch graphs of related functions.

3-2. Families of Graphs. Look Back. OBJECTIVES Identify transformations of simple graphs. Sketch graphs of related functions. 3-2 BJECTIVES Identif transformations of simple graphs. Sketch graphs of related functions. Families of Graphs ENTERTAINMENT At some circuses, a human cannonball is shot out of a special cannon. In order

More information

3.1 Sequences of Transformations

3.1 Sequences of Transformations Name lass Date 3.1 Sequences of Transformations Essential Question: What happens when ou appl more than one transformation to a figure? Eplore ombining Rotations or Reflections transformation is a function

More information

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class Lesson - Read to Go n? Skills Intervention Eploring Transformations Find these vocabular words in the lesson and the Multilingual Glossar. Vocabular transformation translation reflection stretch Translating

More information

8.5 Quadratic Functions and Their Graphs

8.5 Quadratic Functions and Their Graphs CHAPTER 8 Quadratic Equations and Functions 8. Quadratic Functions and Their Graphs S Graph Quadratic Functions of the Form f = + k. Graph Quadratic Functions of the Form f = - h. Graph Quadratic Functions

More information

1.1. Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions?

1.1. Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions? 1.1 Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions? Identifing Basic Parent Functions JUSTIFYING CONCLUSIONS To be proficient

More information

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0.

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0. 8.5 Quadratic Functions, Applications, and Models In the previous section we discussed linear functions, those that are defined b firstdegree polnomials. In this section we will look at quadratic functions,

More information

13.4 Problem Solving with Trigonometry

13.4 Problem Solving with Trigonometry Name lass ate 13.4 Problem Solving with Trigonometr Essential Question: How can ou solve a right triangle? Resource Locker Eplore eriving an rea Formula You can use trigonometr to find the area of a triangle

More information

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz Name: Block: Unit 4 Part 1: Graphing Quadratic Functions Da 1: Verte Form Da 2: Intercept Form Da 3: Standard Form Da 4: Review Da 5: Quiz 1 Quadratic Functions Da1: Introducing.. the QUADRATIC function

More information

Graphing f ( x) = ax 2 + bx + c

Graphing f ( x) = ax 2 + bx + c 8.3 Graphing f ( ) = a + b + c Essential Question How can ou find the verte of the graph of f () = a + b + c? Comparing -Intercepts with the Verte Work with a partner. a. Sketch the graphs of = 8 and =

More information

Answers. Chapter 4. Cumulative Review Chapters 1 3, pp Chapter Self-Test, p Getting Started, p a) 49 c) e)

Answers. Chapter 4. Cumulative Review Chapters 1 3, pp Chapter Self-Test, p Getting Started, p a) 49 c) e) . 7" " " 7 "7.. "66 ( ") cm. a, (, ), b... m b.7 m., because t t has b ac 6., so there are two roots. Because parabola opens down and is above t-ais for small positive t, at least one of these roots is

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

Answers. Investigation 4. ACE Assignment Choices. Applications

Answers. Investigation 4. ACE Assignment Choices. Applications Answers Investigation ACE Assignment Choices Problem. Core Other Connections, ; Etensions ; unassigned choices from previous problems Problem. Core, 7 Other Applications, ; Connections ; Etensions ; unassigned

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Answers Investigation 4

Answers Investigation 4 Answers Investigation Applications. a. At seconds, the flare will have traveled to a maimum height of 00 ft. b. The flare will hit the water when the height is 0 ft, which will occur at 0 seconds. c. In

More information

Up and Down or Down and Up

Up and Down or Down and Up Lesson.1 Skills Practice Name Date Up and Down or Down and Up Eploring Quadratic Functions Vocabular Write the given quadratic function in standard form. Then describe the shape of the graph and whether

More information

Standard Form v. Vertex Form

Standard Form v. Vertex Form Standard Form v. Vertex Form The Standard Form of a quadratic equation is:. The Vertex Form of a quadratic equation is where represents the vertex of an equation and is the same a value used in the Standard

More information

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples:

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples: Quadratic Functions ( ) = a + b + c Graphs o quadratics unctions are parabolas opening up i a > 0, and down i a < 0. Eamples: = = + = = 0 MATH 80 Lecture B o 5 Ronald Brent 07 All rights reserved. Notes:

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

Quadratic Inequalities

Quadratic Inequalities TEKS FCUS - Quadratic Inequalities VCABULARY TEKS ()(H) Solve quadratic inequalities. TEKS ()(E) Create and use representations to organize, record, and communicate mathematical ideas. Representation a

More information

Solving Quadratics Algebraically Investigation

Solving Quadratics Algebraically Investigation Unit NOTES Honors Common Core Math 1 Day 1: Factoring Review and Solving For Zeroes Algebraically Warm-Up: 1. Write an equivalent epression for each of the problems below: a. ( + )( + 4) b. ( 5)( + 8)

More information

End of Chapter Test. b. What are the roots of this equation? 8 1 x x 5 0

End of Chapter Test. b. What are the roots of this equation? 8 1 x x 5 0 End of Chapter Test Name Date 1. A woodworker makes different sizes of wooden blocks in the shapes of cones. The narrowest block the worker makes has a radius r 8 centimeters and a height h centimeters.

More information

Transformations of y = x 2

Transformations of y = x 2 Transformations of = Parent Parabola Lesson 11-1 Learning Targets: Describe translations of the parent function f() =. Given a translation of the function f() =, write the equation of the function. SUGGESTED

More information

Graphing Quadratic Functions

Graphing Quadratic Functions Graphing Quadratic Functions. Graphing = a. Focus of a Parabola. Graphing = a + c. Graphing = a + b + c. Comparing Linear, Eponential, and Quadratic Functions What tpe of graph is this? Sorr, no it s the

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Graph the equation. 8) y = 6x - 2

Graph the equation. 8) y = 6x - 2 Math 0 Chapter Practice set The actual test differs. Write the equation that results in the desired transformation. 1) The graph of =, verticall compressed b a factor of 0.7 Graph the equation. 8) = -

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Name Class Date 5.2 Graphing Polnomial Functions Essential Question: How do ou sketch the graph of a polnomial function in intercept form? Eplore 1 Investigating the End Behavior of the Graphs of Simple

More information

Investigation Free Fall

Investigation Free Fall Investigation Free Fall Name Period Date You will need: a motion sensor, a small pillow or other soft object What function models the height of an object falling due to the force of gravit? Use a motion

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

5.6 Translations and Combinations of Transformations

5.6 Translations and Combinations of Transformations 5.6 Translations and Combinations of Transformations The highest tides in the world are found in the Ba of Fund. Tides in one area of the ba cause the water level to rise to 6 m above average sea level

More information

Lesson 5.3 Exercises, pages

Lesson 5.3 Exercises, pages Lesson 5.3 Eercises, pages 37 3 A. Determine whether each ordered pair is a solution of the quadratic inequalit: 3 - a) (-3, ) b) (, 5) Substitute each ordered pair in» 3. L.S. ; R.S.: 3( 3) 3 L.S. 5;

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Representations of Transformations

Representations of Transformations ? L E S S N 9.4 Algebraic Representations of Transformations ESSENTIAL QUESTIN Algebraic Representations of Translations The rules shown in the table describe how coordinates change when a figure is translated

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

23.1 Perpendicular Bisectors of Triangles

23.1 Perpendicular Bisectors of Triangles Name lass Date 3.1 Perpendicular isectors of Triangles Essential Question: How can ou use perpendicular bisectors to find the point that is equidistant from all the vertices of a triangle? Resource Locker

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 330 335 4.1 1. a) Use a table of values to graph = + 6-8. -5-4 -3 - -1 0 1 1 0-8 -1-1 -8 0 1 6 8 8 0 b) Determine: i) the intercepts ii) the coordinates of the verte iii) the equation of

More information

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( )

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( ) Name Date 8. Practice A In Eercises 6, graph the function. Compare the graph to the graph of. g( ) =. h =.5 3. j = 3. g( ) = 3 5. k( ) = 6. n = 0.5 In Eercises 7 9, use a graphing calculator to graph the

More information

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below.

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below. Academic Date: Open: DESMOS Graphing Calculator Task : Let s Review Linear Relationships Bill Bob s dog is out for a walk. The equation to model its distance awa from the house, d metres, after t seconds

More information

PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS

PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS Topic 21: Problem solving with eponential functions 323 PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS Lesson 21.1 Finding function rules from graphs 21.1 OPENER 1. Plot the points from the table onto the

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

17.1 Translations. Exploring Translations. Explore

17.1 Translations. Exploring Translations. Explore Name lass Date 17.1 Translations Essential Question: How do ou draw the image of a figure under a translation? Eplore Eploring Translations translation slides all points of a figure the same distance in

More information

Lesson 2.1 Exercises, pages 90 96

Lesson 2.1 Exercises, pages 90 96 Lesson.1 Eercises, pages 9 96 A. a) Complete the table of values. 1 1 1 1 1. 1 b) For each function in part a, sketch its graph then state its domain and range. For : the domain is ; and the range is.

More information

Does the table or equation represent a linear or nonlinear function? Explain.

Does the table or equation represent a linear or nonlinear function? Explain. Chapter Review Dnamic Solutions available at BigIdeasMath.com. Functions (pp. 0 0) Determine whether the relation is a function. Eplain. Ever input has eactl one output. Input, 5 7 9 Output, 5 9 So, the

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM FOM 11 T7 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM 1 1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM I) THE STANDARD FORM OF A QUADRATIC FUNCTION (PARABOLA) IS = a +b +c. To graph a quadratic function

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

6-3. Transformations of Square Root Functions. Key Concept Square Root Function Family VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

6-3. Transformations of Square Root Functions. Key Concept Square Root Function Family VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING -3 Transformations of Square Root Functions TEKS FOCUS TEKS ()(C) Determine the effect on the graph of f() = when f() is replaced b af(), f() + d, f(b), and f( - c) for specific positive and negative values

More information

2.4. Families of Polynomial Functions

2.4. Families of Polynomial Functions 2. Families of Polnomial Functions Crstal pieces for a large chandelier are to be cut according to the design shown. The graph shows how the design is created using polnomial functions. What do all the

More information

of translations of ESSENTIAL QUESTION How do you describe the properties of orientation and congruence of translations?

of translations of ESSENTIAL QUESTION How do you describe the properties of orientation and congruence of translations? ? LESSN 12.1 Properties of Translations ESSENTIL QUESTIN How do ou describe the properties of orientation and congruence of translations? Two-dimensional shapes 8.10. Generalize the properties of orientation

More information

8-4 Transforming Quadratic Functions

8-4 Transforming Quadratic Functions 8-4 Transforming Quadratic Functions Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward

More information

It s Not Complex Just Its Solutions Are Complex!

It s Not Complex Just Its Solutions Are Complex! It s Not Comple Just Its Solutions Are Comple! Solving Quadratics with Comple Solutions 15.5 Learning Goals In this lesson, ou will: Calculate comple roots of quadratic equations and comple zeros of quadratic

More information

4.3 Graph the function f by starting with the graph of y =

4.3 Graph the function f by starting with the graph of y = Math 0 Eam 2 Review.3 Graph the function f b starting with the graph of = 2 and using transformations (shifting, compressing, stretching, and/or reflection). 1) f() = -2-6 Graph the function using its

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions.

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions. Warm Up Lesson Presentation Lesson Quiz Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward or downward. 1. y = x 2 + 3 2. y = 2x 2 x

More information

Evaluate and Graph Polynomial Functions

Evaluate and Graph Polynomial Functions 5.2 Evaluate and Graph Polnomial Functions Before You evaluated and graphed linear and quadratic functions. Now You will evaluate and graph other polnomial functions. Wh? So ou can model skateboarding

More information

Essential Question How many turning points can the graph of a polynomial function have?

Essential Question How many turning points can the graph of a polynomial function have? .8 Analzing Graphs of Polnomial Functions Essential Question How man turning points can the graph of a polnomial function have? A turning point of the graph of a polnomial function is a point on the graph

More information

2. 4 m. 6 in. 4 m 4 m. 5. the amount of topsoil needed to put a 2 in. thick layer on the top of a square garden

2. 4 m. 6 in. 4 m 4 m. 5. the amount of topsoil needed to put a 2 in. thick layer on the top of a square garden 6 Find the surface area and volume.. in.. 4 m. 5 in. 6 in. 4 m 4 m 0 yd 6 yd 6 yd SA = SA = SA = Choose the most appropriate measure. Write perimeter, surface area, or volume. 4. the distance around the

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 69 697 8.. Sketch a graph of each absolute function. Identif the intercepts, domain, and range. a) = ƒ - + ƒ b) = ƒ ( + )( - ) ƒ 8 ( )( ) Draw the graph of. It has -intercept.. Reflect, in

More information

How can you use a coordinate grid to display data collected in an experiment? Math Talk. Mathematical Processes

How can you use a coordinate grid to display data collected in an experiment? Math Talk. Mathematical Processes ? Name Geometr and 1. Measurement 5..C MATHEMATICAL PROCESSES Graph Data 5.1.F, 5.1.G Essential Question How can ou use a coordinate grid to displa data collected in an eperiment? Investigate Materials

More information

Functions Project Core Precalculus Extra Credit Project

Functions Project Core Precalculus Extra Credit Project Name: Period: Date Due: 10/10/1 (for A das) and 10/11/1(for B das) Date Turned In: Functions Project Core Precalculus Etra Credit Project Instructions and Definitions: This project ma be used during the

More information

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions?

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions? 1.2 Characteristics of Polnomial Functions In Section 1.1, ou eplored the features of power functions, which are single-term polnomial functions. Man polnomial functions that arise from real-world applications

More information

Graph and Write Equations of Hyperbolas

Graph and Write Equations of Hyperbolas TEKS 9.5 a.5, 2A.5.B, 2A.5.C Graph and Write Equations of Hperbolas Before You graphed and wrote equations of parabolas, circles, and ellipses. Now You will graph and write equations of hperbolas. Wh?

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

1.1 Horizontal & Vertical Translations

1.1 Horizontal & Vertical Translations Unit II Transformations of Functions. Horizontal & Vertical Translations Goal: Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of functions and their related

More information

Transforming Polynomial Functions

Transforming Polynomial Functions 5-9 Transforming Polnomial Functions Content Standards F.BF.3 Identif the effect on the graph of replacing f() b f() k, k f(), f(k), and f( k) for specific values of k (both positive and negative) find

More information

Quadratic Functions. 2.1 Shape and Structure. 2.2 Function Sense. 2.3 Up and Down. 2.4 Side to Side. 2.5 What s the Point?

Quadratic Functions. 2.1 Shape and Structure. 2.2 Function Sense. 2.3 Up and Down. 2.4 Side to Side. 2.5 What s the Point? Quadratic Functions The Millennium Bridge in London is a bridge solel for pedestrians. It was opened in June of hence its name but was closed for ears for repairs after it got the nickname Wobbl Bridge..1

More information

Skills Practice Skills Practice for Lesson 7.1

Skills Practice Skills Practice for Lesson 7.1 Skills Practice Skills Practice for Lesson.1 Name Date What s the Inverse of an Eponent? Logarithmic Functions as Inverses Vocabulary Write the term that best completes each statement. 1. The of a number

More information

Chapter 5: Polynomial Functions

Chapter 5: Polynomial Functions Chapter : Polnomial Functions Section.1 Chapter : Polnomial Functions Section.1: Eploring the Graphs of Polnomial Functions Terminolog: Polnomial Function: A function that contains onl the operations of

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Unit 4: Part 1 Graphing Quadratic Functions

Unit 4: Part 1 Graphing Quadratic Functions Name: Block: Unit : Part 1 Graphing Quadratic Functions Da 1 Graphing in Verte Form & Intro to Quadratic Regression Da Graphing in Intercept Form Da 3 Da Da 5 Da Graphing in Standard Form Review Graphing

More information

1) y = 2x 7 2) (-2, 3) ( 3, -1) 3) table. 4) y 5 = ½ ( x 4) 5) 2x + 4y = 7 6) y = 5 7) 8) 9) (-1, 5) (0, 4) 10) y = -3x 7. 11) 2y = -3x 5 12) x = 5

1) y = 2x 7 2) (-2, 3) ( 3, -1) 3) table. 4) y 5 = ½ ( x 4) 5) 2x + 4y = 7 6) y = 5 7) 8) 9) (-1, 5) (0, 4) 10) y = -3x 7. 11) 2y = -3x 5 12) x = 5 I SPY Slope! Geometr tetbook 3-6, pg 165 (), pg 172 (calculator) Name: Date: _ Period: Strategies: On a graph or a table rise ( Δ) Slope = run Δ ( ) Given 2 points Slope = 2 2 In an equation 1 1 1) = 2

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information