Logic Programming: Search Strategies

Size: px
Start display at page:

Download "Logic Programming: Search Strategies"

Transcription

1 O Logic Programming: earch trategies Alan maill ov 5, 2012 Alan maill Logic Programming: earch trategies ov 5, /1

2 oday Problem representation earch epth irst terative eepening readth irst A/O (alternating/game tree) search Alan maill Logic Programming: earch trategies ov 5, /1

3 earch Problems Many classical A/C problems can be formulated as search problems. xamples: raph searching locks world Missionaries and cannibals Planning (e.g. robotics) Alan maill Logic Programming: earch trategies ov 5, /1

4 earch paces iven by: et of states s 1, s 2,... oal predicate goal( ) tep predicate s(, Y ) that says we can go from state to state Y A start state (or states) A solution is a path leading from the to a goal state satisfying goal(). Alan maill Logic Programming: earch trategies ov 5, /1

5 O xample: locks world ake configuration of blocks as a list of three towers, each tower being a list of blocks in a tower from top to bottom. A C [[c,b,a],[],[c]) Alan maill Logic Programming: earch trategies ov 5, /1

6 O xample: locks world Move a block from top of a tower to top of another tower: A C [[b,a],[],[c]) Alan maill Logic Programming: earch trategies ov 5, /1

7 xample: locks world ext move: A C [[a],[b],[c]) Alan maill Logic Programming: earch trategies ov 5, /1

8 xample: locks world hen A C [[],[a,b],[c]) Alan maill Logic Programming: earch trategies ov 5, /1

9 Prolog representation tate is a list of stacks of blocks: [[a,b,c],[],[]] ransitions move a block from the top of one stack to the top of another: s([[a As],s,Cs], [As,[A s],cs]). s([[a As],s,Cs], [As,s,[A Cs]]).... Can specify particular goal position: goal([[],[],[1,b,c]]. Alan maill Logic Programming: earch trategies ov 5, /1

10 An abstract problem space hink of the graph generated by these s(a,b). declarations. s(b,c). s(c,a). n this case: s(c,f(d)). the graph is infinite s(f(),f(g())). there is a loop near the top of the graph s(f(g()),). goal(d). Alan maill Logic Programming: earch trategies ov 5, /1

11 problem 1: cycles We can already see in the blocks world example and in the abstract search space that it is easy to follow actions around in cycles, and not find the goal, even if there is a path to the goal. here are two main approaches to deal with this: remember where you ve been work with depth bound Alan maill Logic Programming: earch trategies ov 5, /1

12 olution 1: remember where you ve been dfs_noloop(path,ode,[ode Path]) :- goal(ode). dfs_noloop(path,ode,path1) :- s(ode,ode1), \+(member(ode1,path)), dfs_noloop([ode Path],ode1,Path1). Alan maill Logic Programming: earch trategies ov 5, /1

13 Problem 2: nfinite tate pace Compare the graph from the abstract search space. epth irst earch has similar problems to Prolog proof search: We may miss solutions because state space is infinite; ven if state space is finite, may wind up finding easy solution only after a long exploration of pointless part of search space Alan maill Logic Programming: earch trategies ov 5, /1

14 olution 2: depth bounding Keep track of depth, stop if bound exceeded ote: does not avoid loops (can do this too) dfs_bound(_,ode,[ode]) :- goal(ode). dfs_bound(,ode,[ode Path]) :- > 0, s(ode,ode1), M is -1, dfs_bound(m,ode1,path) Alan maill Logic Programming: earch trategies ov 5, /1

15 Problem 3: what is a good bound? n general, we just don t know in advance: oo low? Might miss solutions oo high? Might spend a long time searching pointlessly Alan maill Logic Programming: earch trategies ov 5, /1

16 olution 3: iterative deepening se the following with some small start value for dfs_id(,ode,path) :- dfs_bound(,ode,path) ; M is +1, dfs_id(m,ode,path). : if there is no solution, this will not terminate. Alan maill Logic Programming: earch trategies ov 5, /1

17 readth first search Keep track of all possible solutions, try shortest ones first; do this by maintaining a queue of solutions bfs([[ode Path] _], [ode Path]) :- goal(ode). bfs([path Paths], ) :- extend(path,ewpaths), append(paths,ewpaths,paths1), bfs(paths1,). bfs_start(,p) :- bfs([[]],p). Alan maill Logic Programming: earch trategies ov 5, /1

18 extending paths extend([ode Path],ewPaths) :- bagof([ewode,ode Path], (s(ode,ewode), \+ (member(ewode,[ode Path]))), ewpaths),!. %% if there are no next steps, %% bagof will fail and we ll fall through. extend(_path,[]). Alan maill Logic Programming: earch trategies ov 5, /1

19 O Problem: speed Concatenating new paths to end of list is slow Avoid this using difference lists? Alan maill Logic Programming: earch trategies ov 5, /1

20 A/O search o far we ve considered graph search problems Just want to find some path from start to end Other problems have more structure e.g. 2-player games A/O search is a useful abstraction Alan maill Logic Programming: earch trategies ov 5, /1

21 xample: oughts and Crosses MA () M (O) MA () O O O... M (O) O O O MAL tility O O O O O O O O O O Alan maill Logic Programming: earch trategies ov 5, /1

22 epresentation or(,odes) is an O node with possible next states odes Our move and(,odes) is an A node with possible next states odes Opponent moves goal() is a win for us Alan maill Logic Programming: earch trategies ov 5, /1

23 xample: A simple game and(a,[b,c]). or(b,[d,a]). or(c,[d,e]). goal(e). What is the graph here? Alan maill Logic Programming: earch trategies ov 5, /1

24 asic dea andor(ode) :- goal(ode). andor(ode) :- or(ode,odes), member(ode1,odes), andor(ode1). andor(ode) :- and(ode,odes), solveall(odes). solveall(odes) :-... Alan maill Logic Programming: earch trategies ov 5, /1

25 olutions or each A state, we need solutions for all possible next states or each O state, we just need one choice A solution is thus a tree, or strategy Can adapt previous program to produce solution tree; Can also incorporate iterative deepening, loop avoidance,. heuristic measures of good positions leads to algorithms like MiniMax. Alan maill Logic Programming: earch trategies ov 5, /1

26 urther eading ratko, Prolog Programming for Artificial ntelligence ch. 8 (difference lists), ch. 11 (/) also Ch. 12 (est), 13 (A/O) Alan maill Logic Programming: earch trategies ov 5, /1

Logic Programming: Search Strategies

Logic Programming: Search Strategies O Logic Programming: earch trategies Alan maill Oct 19, 2015 Alan maill Logic Programming: earch trategies Oct 19, 2015 1/28 oday Problem representation earch epth irst terative eepening readth irst A/O

More information

Outline for today. Logic Programming. Search problems. Search spaces. Problem representation Depth-First Search

Outline for today. Logic Programming. Search problems. Search spaces. Problem representation Depth-First Search Logic Programming Lecture 7: Search Strategies: Problem representations Depth-first, breadth-first, and ND/OR search Outline for today Problem representation Depth-First Search Iterative Deepening readth-first

More information

1/19/2010. Usually for static, deterministic environment

1/19/2010. Usually for static, deterministic environment To download the discussion slides, go to http://april.eecs.umich.edu/courses/eecs492_w10/wiki/index.php/iscussion_lides eterministic, tochastic and trategic nvironment eterministic ompletely predictable

More information

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding Models To e tudied in 50 Uninformed earch hapter 3. 3. tate-based Models Model task as a graph of all possible states l alled a state-space graph state captures all the relevant information about the past

More information

Lecture 14: March 9, 2015

Lecture 14: March 9, 2015 324: tate-space, F, F, Uninformed earch. pring 2015 Lecture 14: March 9, 2015 Lecturer: K.R. howdhary : Professor of (VF) isclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem Lecture overview Knowledge-based systems in ioinformatics, 1M602, 2006 Lecture 6: earch oal based agents earch terminology pecifying a search problem earch considerations Uninformed search euristic methods

More information

Problem solving Basic search. Example: Romania. Example: Romania. Problem types. Intelligent Systems and HCI D7023E. Single-state problem formulation

Problem solving Basic search. Example: Romania. Example: Romania. Problem types. Intelligent Systems and HCI D7023E. Single-state problem formulation Intelligent Systems and HI 7023 Lecture 3: asic Search Paweł Pietrzak Problem solving asic search 1 2 xample: Romania On holiday in Romania; currently in rad. light leaves tomorrow from ucharest ormulate

More information

Summary. Agenda. Search. Search is a common technique in problem solving. Search Formulation Tree Search Uniform cost search A* Search.

Summary. Agenda. Search. Search is a common technique in problem solving. Search Formulation Tree Search Uniform cost search A* Search. ummary rtificial Intelligence and its applications ecture earch earch onstraint atisfaction Problems rom start state to goal state onsider constraints Professor aniel Yeung danyeung@ieee.org r. Patrick

More information

Search. CS 3793/5233 Artificial Intelligence Search 1

Search. CS 3793/5233 Artificial Intelligence Search 1 CS 3793/5233 Artificial Intelligence 1 Basics Basics State-Space Problem Directed Graphs Generic Algorithm Examples Uninformed is finding a sequence of actions that achieve a goal from an initial state.

More information

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search Outline olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms

More information

Solving problems by searching

Solving problems by searching olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms Outline

More information

Logic Programming: Parsing. Difference Lists, DCGs

Logic Programming: Parsing. Difference Lists, DCGs O Y Logic Programming: Parsing. ifference Lists, Cs Alan maill Oct 15 2015 Alan maill Logic Programming: Parsing. ifference Lists, Cs Oct 15 2015 1/26 oday Y Context ree rammars (review) Parsing in Prolog

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010 MSSHUSETTS INSTITUTE OF TEHNOLOY epartment of Electrical Engineering and omputer Science 6.0 rtificial Intelligence Fall, 00 Search Me! Recitation, Thursday September Prof. ob erwick. ifference between

More information

CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013

CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013 CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013 YOUR NAME AND ID NUMBER: YOUR ID: ID TO RIGHT: ROW: NO. FROM RIGHT: The exam will begin on the next page. Please, do not turn the page until told.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr. Malek Mouhoub Department of Computer Science University of Regina Fall 2005 Malek Mouhoub, CS820 Fall 2005 1 3. State-Space Search 3. State-Space Search Graph Theory Uninformed

More information

Overview. Declarative Languages. State-space representation. Block example. Searching the state space. Solution space

Overview. Declarative Languages. State-space representation. Block example. Searching the state space. Solution space Overview Declarative Languages D7012E: Problems solving strategies Fredrik Bengtsson State-space representation Depth-first search Iterative deepening Breadth-first search A few words about complexity

More information

COMP 8620 Advanced Topics in AI

COMP 8620 Advanced Topics in AI OMP 8620 dvanced Topics in Lecturers: Philip Kilby & Jinbo uang 25/07/2008 1 Part 1: Search Lecturer: r Philip Kilby Philip.Kilby@nicta.com.au Weeks 1-71 (Week 7 is assignment seminars) Part 2: Probabilistic

More information

mywbut.com Uninformed Search

mywbut.com Uninformed Search Uninformed Search 1 2.4 Search Searching through a state space involves the following: set of states Operators and their costs Start state test to check for goal state We will now outline the basic search

More information

Intelligent Agents. Introduction to Heuristic Search. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University

Intelligent Agents. Introduction to Heuristic Search. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University Intelligent Agents Introduction to Heuristic earch Ute chmid Cognitive ystems, Applied Computer cience, amberg University last change: June 22, 2010 U. chmid (Cogys) Intelligent Agents last change: June

More information

AI: Week 2. Tom Henderson. Fall 2014 CS 5300

AI: Week 2. Tom Henderson. Fall 2014 CS 5300 AI: Week 2 Tom Henderson Fall 2014 What s a Problem? Initial state Actions Transition model Goal Test Path Cost Does this apply to: Problem: Get A in CS5300 Solution: action sequence from initial to goal

More information

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th CIS 192: Artificial Intelligence Search and Constraint Satisfaction Alex Frias Nov. 30 th What is AI? Designing computer programs to complete tasks that are thought to require intelligence 4 categories

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching 1 Terminology State State Space Initial State Goal Test Action Step Cost Path Cost State Change Function State-Space Search 2 Formal State-Space Model Problem = (S, s, A,

More information

Search EECS 395/495 Intro to Artificial Intelligence

Search EECS 395/495 Intro to Artificial Intelligence Search EECS 395/495 Intro to Artificial Intelligence Doug Downey (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for

More information

Search EECS 348 Intro to Artificial Intelligence

Search EECS 348 Intro to Artificial Intelligence Search EECS 348 Intro to Artificial Intelligence (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for systematically

More information

Logic Programming: Recursion, lists, data structures

Logic Programming: Recursion, lists, data structures O Y Logic Programming: ecursion, lists, data structures Alan maill ep 28 2015 Alan maill Logic Programming: ecursion, lists, data structures ep 28 2015 1/28 oday Y ecursion proof search practical concerns

More information

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold S1800: raph lgorithms (2nd Part) Professor Kevin old Summary So ar readth-irst Search (S) and epth-irst Search (S) are two efficient algorithms for finding paths on graphs. S also finds the shortest path.

More information

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013 lgorithms for Data Structures: Uninformed Search Phillip Smith 19/11/2013 Representations for Reasoning We know (at least) two models of a world: model of the static states of the world model of the effects

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture02 2012-10-03 1 Ariel Stolerman Midterm Evan will email about that after the lecture, at least 2 lectures from now. The exam will be given in a regular PDF (not an online form). We will

More information

Artificial Intelligence

Artificial Intelligence COMP224 Artificial Intelligence The Meaning of earch in AI The terms search, search space, search problem, search algorithm are widely used in computer science and especially in AI. In this context the

More information

Potential Midterm Exam Questions

Potential Midterm Exam Questions Potential Midterm Exam Questions 1. What are the four ways in which AI is usually viewed? Which of the four is the preferred view of the authors of our textbook? 2. What does each of the lettered items

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.5, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.5, Page 1 Learning Objectives At the end of the class you should be able to: justify why depth-bounded search is useful demonstrate how iterative-deepening works for a particular problem demonstrate how depth-first

More information

CSC384 Midterm Sample Questions

CSC384 Midterm Sample Questions CSC384 Midterm Sample Questions Fall 2016 1 Search Short Answer 1. It would seem that iterative deepening search should have a higher asymptotic time complexity than breadth-first search because every

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 8 Today Informed Search (R&N Ch 3,4) Adversarial search (R&N Ch 5) Adversarial Search (R&N Ch 5) Homework

More information

Problem Solving and Search in Artificial Intelligence

Problem Solving and Search in Artificial Intelligence Problem Solving and Search in Artificial Intelligence Uninformed Search Strategies Nysret Musliu Database and Artificial Intelligence Group Institut für Informationssysteme, TU-Wien Introduction Many classic

More information

Problem Solving as State Space Search. Assignments

Problem Solving as State Space Search. Assignments Problem olving as tate pace earch rian. Williams 6.0- ept th, 00 lides adapted from: 6.0 Tomas Lozano Perez, Russell and Norvig IM rian Williams, Fall 0 ssignments Remember: Problem et #: Java warm up

More information

Search Methods 9/21/11 MOTIVATION. Artificial Intelligence. Where are we? Outline. Problem Solving as Search

Search Methods 9/21/11 MOTIVATION. Artificial Intelligence. Where are we? Outline. Problem Solving as Search 9// Where are we? rtificial Intelligence earch Methods # Title Introduction Propositional Logic Predicate Logic 4 Reasoning 5 earch Methods 6 CommonK 7 Problem-olving Methods 8 Planning 9 oftware gents

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 2 estricted form of general agent: Problem-solving

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Example: omania On holiday in omania;

More information

Informed Search. CMU Snake Robot. Administrative. Uninformed search strategies. Assignment 1 was due before class how d it go?

Informed Search. CMU Snake Robot. Administrative. Uninformed search strategies. Assignment 1 was due before class how d it go? Informed Search S151 David Kauchak Fall 2010 MU Snake Robot http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/web/people/biorobotics/projects/ modsnake/index.html Some material borrowed from : Sara Owsley Sood

More information

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2016

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2016 CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 016 YOUR NAME: YOUR ID: ID TO RIGHT: ROW: SEAT: The exam will begin on the next page. Please, do not turn the page until told. When you are told to begin

More information

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today ssignment 0 due 5pm today eminders Problem solving and search ssignment 1 posted, due 2/9 ection 105 will move to 9-10am starting next week hapter 3 hapter 3 1 hapter 3 2 Outline Problem-solving agents

More information

CS 520: Introduction to Artificial Intelligence. Review

CS 520: Introduction to Artificial Intelligence. Review CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture 2: state spaces uninformed search 1 What is AI? A set of goals Review build an artificial intelligence useful subgoals A class

More information

Problem solving by search

Problem solving by search Problem solving by search based on tuart ussel s slides (http://aima.cs.berkeley.edu) February 27, 2017, E533KUI - Problem solving by search 1 Outline Problem-solving agents Problem types Problem formulation

More information

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig.

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig. Artificial Intelligence Chapters Reviews Readings: Chapters 3-8 of Russell & Norvig. Topics covered in the midterm Solving problems by searching (Chap. 3) How to formulate a search problem? How to measure

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents.

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents. Outline Problem-solving agents Problem solving and search hapter 3 Problem types Problem formulation Example problems asic search algorithms hapter 3 1 hapter 3 3 estricted form of general agent: Problem-solving

More information

Introduction to Graphs. common/notes/ppt/

Introduction to Graphs.   common/notes/ppt/ Introduction to Graphs http://people.cs.clemson.edu/~pargas/courses/cs212/ common/notes/ppt/ Introduction Graphs are a generalization of trees Nodes or verticies Edges or arcs Two kinds of graphs irected

More information

Searching: Where it all begins...

Searching: Where it all begins... Searching: Where it all begins... CPSC 433 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Problem Solving by Searching 1. Introductory Concepts

More information

Intelligent Systems. Search Methods. Dieter Fensel and Federico Facca. Copyright 2008 STI INNSBRUCK

Intelligent Systems. Search Methods. Dieter Fensel and Federico Facca. Copyright 2008 STI INNSBRUCK Intelligent ystems earch Methods Dieter ensel and ederico acca Copyright 2008 TI INNBRUCK Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Theorem Proving, Description Logics

More information

(Due to rounding, values below may be only approximate estimates.) We will supply these numbers as they become available.

(Due to rounding, values below may be only approximate estimates.) We will supply these numbers as they become available. Below, for each problem on this Midterm Exam, Perfect is the percentage of students who received full credit, Partial is the percentage who received partial credit, and Zero is the percentage who received

More information

State Transition Graph of 8-Puzzle E W W E W W 3 2 E

State Transition Graph of 8-Puzzle E W W E W W 3 2 E rrays. Lists. inary search trees. ash tables. tacks. Queues. tate Transition raph of 8-Puzzle oal: Understand data structures by solving the puzzle problem lementary tructures 4 7 5 6 8 4 6 5 7 8. Trees

More information

CS 2230 CS II: Data structures. Limits of comparison sorting, beyond comparison sorting Brandon Myers University of Iowa

CS 2230 CS II: Data structures. Limits of comparison sorting, beyond comparison sorting Brandon Myers University of Iowa CS 2230 CS II: Data structures Limits of comparison sorting, beyond comparison sorting Brandon Myers University of Iowa ACE Today s learning objectives Calculate the number of comparisons needed to find

More information

Two-player Games ZUI 2012/2013

Two-player Games ZUI 2012/2013 Two-player Games ZUI 2012/2013 Game-tree Search / Adversarial Search until now only the searching player acts in the environment there could be others: Nature stochastic environment (MDP, POMDP, ) other

More information

Informed Search CS457 David Kauchak Fall 2011

Informed Search CS457 David Kauchak Fall 2011 Admin Informed Search CS57 David Kauchak Fall 011 Some material used from : Sara Owsley Sood and others Q3 mean: 6. median: 7 Final projects proposals looked pretty good start working plan out exactly

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 1 Learning Objectives At the end of the class you should be able to: demonstrate how depth-first search will work on a graph demonstrate how breadth-first search will work on a graph predict the space and

More information

Problem-solving agents. Problem solving and search. Example: Romania. Reminders. Example: Romania. Outline. Chapter 3

Problem-solving agents. Problem solving and search. Example: Romania. Reminders. Example: Romania. Outline. Chapter 3 Problem-solving agents Problem solving and search hapter 3 function imple-problem-olving-gent( percept) returns an action static: seq, an action sequence, initially empty state, some description of the

More information

6.01: Introduction to EECS 1 Week 13 December 1, 2009

6.01: Introduction to EECS 1 Week 13 December 1, 2009 6.0: Introduction to Week ecember, 009 6.0: Introduction to I Optimal earch lgorithms The story so far earch domain characterized by successors function, legal actions, start state, goal function. earch

More information

Two-player Games ZUI 2016/2017

Two-player Games ZUI 2016/2017 Two-player Games ZUI 2016/2017 Branislav Bošanský bosansky@fel.cvut.cz Two Player Games Important test environment for AI algorithms Benchmark of AI Chinook (1994/96) world champion in checkers Deep Blue

More information

CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi

CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi Midterm Examination Name: October 16, 2015. Duration: 50 minutes, Out of 50 points Instructions If you have a question, please remain

More information

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods What is Search? lind Search Methods Search as an Tool S, DS, DS, US, ids Search is one of the most powerful approaches to problem solving in Search is a universal problem solving mechanism that Systematically

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 eminders ssignment 0 due midnight Thursday 9/8 ssignment 1 posted, due 9/20 (online or in box in 283) hapter 3 2 Outline Problem-solving agents Problem types

More information

Problem Spaces & Search CSE 473

Problem Spaces & Search CSE 473 Problem Spaces & Search Problem Spaces & Search CSE 473 473 Topics 473 Topics Agents & Environments Problem Spaces Search & Constraint Satisfaction Knowledge Repr n & Logical Reasoning Machine Learning

More information

CS 520: Introduction to Artificial Intelligence. Lectures on Search

CS 520: Introduction to Artificial Intelligence. Lectures on Search CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture : uninformed search uninformed search Review Lectures on Search Formulation of search problems. State Spaces Uninformed (blind)

More information

Chapter 2 Classical algorithms in Search and Relaxation

Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 overviews topics on the typical problems, data structures, and algorithms for inference in hierarchical and flat representations. Part

More information

CS W4701 Artificial Intelligence

CS W4701 Artificial Intelligence CS W4701 Artificial Intelligence Fall 2013 Chapter 6: Constraint Satisfaction Problems Jonathan Voris (based on slides by Sal Stolfo) Assignment 3 Go Encircling Game Ancient Chinese game Dates back At

More information

Uninformed Search. Chapter 3

Uninformed Search. Chapter 3 Uninformed Search Chapter 3 (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, Richard Korf, and other UW-AI faculty) Agent s Knowledge Representation Type State

More information

Problem-solving agents. Solving Problems by Searching. Outline. Example: Romania. Chapter 3

Problem-solving agents. Solving Problems by Searching. Outline. Example: Romania. Chapter 3 Problem-solving agents olving Problems by earching hapter 3 function imple-problem-olving-gent( percept) returns an action static: seq, an action sequence, initially empty state, some description of the

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

APHID: Asynchronous Parallel Game-Tree Search

APHID: Asynchronous Parallel Game-Tree Search APHID: Asynchronous Parallel Game-Tree Search Mark G. Brockington and Jonathan Schaeffer Department of Computing Science University of Alberta Edmonton, Alberta T6G 2H1 Canada February 12, 1999 1 Running

More information

Name: UW CSE 473 Midterm, Fall 2014

Name: UW CSE 473 Midterm, Fall 2014 Instructions Please answer clearly and succinctly. If an explanation is requested, think carefully before writing. Points may be removed for rambling answers. If a question is unclear or ambiguous, feel

More information

Unified Engineering Spring 2005

Unified Engineering Spring 2005 Massachusetts Institute of Technology epartment of eronautics and stronautics ambridge, M 09 Unified ngineering Spring 005 Problem Set #8 Solutions Problem 5. raphs, Shortest Path What is the Shortest

More information

CS 540: Introduction to Artificial Intelligence

CS 540: Introduction to Artificial Intelligence CS 540: Introduction to Artificial Intelligence Midterm Exam: 7:15-9:15 pm, October, 014 Room 140 CS Building CLOSED BOOK (one sheet of notes and a calculator allowed) Write your answers on these pages

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 1 Learning Objectives At the end of the class you should be able to: devise an useful heuristic function for a problem demonstrate how best-first and A search will work on a graph predict the space and time

More information

Problem: Large Graphs

Problem: Large Graphs S : ata Structures raph lgorithms raph Search Lecture Problem: Large raphs It is expensive to find optimal paths in large graphs, using S or ijkstra s algorithm (for weighted graphs) How can we search

More information

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY Monotonicity Admissible Search: That finds the shortest path to the Goal Monotonicity: local admissibility is called MONOTONICITY This property ensures consistently minimal path to each state they encounter

More information

Graphs: Topological Sort / Graph Traversals (Chapter 9)

Graphs: Topological Sort / Graph Traversals (Chapter 9) Today s Outline raphs: Topological Sort / raph Traversals (hapter 9) S 373 ata Structures and lgorithms dmin: omework #4 - due Thurs, Nov 8 th at pm Midterm 2, ri Nov 6 raphs Representations Topological

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics,

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, performance data Pattern DBs? General Tree Search function

More information

Uninformed Search Strategies

Uninformed Search Strategies Uninformed Search Strategies Alan Mackworth UBC CS 322 Search 2 January 11, 2013 Textbook 3.5 1 Today s Lecture Lecture 4 (2-Search1) Recap Uninformed search + criteria to compare search algorithms - Depth

More information

Problem Solving and Search. Chapter 3

Problem Solving and Search. Chapter 3 Problem olving and earch hapter 3 Outline Problem-solving agents Problem formulation Example problems asic search algorithms In the simplest case, an agent will: formulate a goal and a problem; Problem-olving

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

Finding optimal configurations Adversarial search

Finding optimal configurations Adversarial search CS 171 Introduction to AI Lecture 10 Finding optimal configurations Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Due on Thursday next

More information

CS 416, Artificial Intelligence Midterm Examination Fall 2004

CS 416, Artificial Intelligence Midterm Examination Fall 2004 CS 416, Artificial Intelligence Midterm Examination Fall 2004 Name: This is a closed book, closed note exam. All questions and subquestions are equally weighted. Introductory Material 1) True or False:

More information

done with DCL (except for the fact that we ll use it!)

done with DCL (except for the fact that we ll use it!) CSC384: Lecture 4 Last time done with DCL (except for the fact that we ll use it!) Today quick summary of uses of DCL (from last time) Intro to search; generic search procedure; BrFS, DFS, path extraction,

More information

Luke. Leia 2. Han Leia

Luke. Leia 2. Han Leia Reading SE : ata Structures raph lgorithms raph Search hapter.,.,. Lecture raph T raphs are a formalism for representing relationships between objects a graph is represented as = (V, E) Han V is a set

More information

CS 387/680: GAME AI PATHFINDING

CS 387/680: GAME AI PATHFINDING CS 8/680: GAME AI PATHFINDING 4/12/2016 Instructor: Santiago Ontañón santi@cs.drexel.edu Class website: https://www.cs.drexel.edu/~santi/teaching/2016/cs8/intro.html Reminders Check Vista site for the

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

SOLVING PROBLEMS BY SEARCHING

SOLVING PROBLEMS BY SEARCHING ontents Foundations of rtificial Intelligence 3. olving Problems by earching Problem-olving gents, Formulating Problems, earch trategies Wolfram urgard, ernhard Nebel, and Martin iedmiller lbert-udwigs-universität

More information

Search: Advanced Topics and Conclusion

Search: Advanced Topics and Conclusion Search: Advanced Topics and Conclusion CPSC 322 Lecture 8 January 20, 2006 Textbook 2.6 Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 1 Lecture Overview Recap Branch & Bound A Tricks

More information

Search Algorithms. Uninformed Blind search. Informed Heuristic search. Important concepts:

Search Algorithms. Uninformed Blind search. Informed Heuristic search. Important concepts: Uninformed Search Search Algorithms Uninformed Blind search Breadth-first uniform first depth-first Iterative deepening depth-first Bidirectional Branch and Bound Informed Heuristic search Greedy search,

More information

Informed Search (Ch )

Informed Search (Ch ) Informed Search (Ch. 3.5-3.6) Informed search In uninformed search, we only had the node information (parent, children, cost of actions) Now we will assume there is some additional information, we will

More information

CSC 2114: Artificial Intelligence Search

CSC 2114: Artificial Intelligence Search CSC 2114: Artificial Intelligence Search Ernest Mwebaze emwebaze@cit.ac.ug Office: Block A : 3 rd Floor [Slide Credit Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. Reference materials

More information

Efficient memory-bounded search methods

Efficient memory-bounded search methods Efficient memory-bounded search methods Mikhail Simin Arjang Fahim CSCE 580: Artificial Intelligence Fall 2011 Dr. Marco Voltorta Outline of The Presentation Motivations and Objectives Background - BFS

More information

Uninformed Search B. Navigating through a search tree. Navigating through a search tree. Navigating through a search tree

Uninformed Search B. Navigating through a search tree. Navigating through a search tree. Navigating through a search tree Uninformed Search Russell and Norvig chap. 3 Following this, the pong paddle went on a mission to destroy tari headquarters and, due to a mixup, found himself inside the game The Matrix Reloaded. oy, was

More information

Lecture 3 - States and Searching

Lecture 3 - States and Searching Lecture 3 - States and Searching Jesse Hoey School of Computer Science University of Waterloo January 15, 2018 Readings: Poole & Mackworth Chapt. 3 (all) Searching Often we are not given an algorithm to

More information

2. State Space Search

2. State Space Search Artificial Intelligence 2. State Space Search Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing (FER) Academic Year 2017/2018 Creative

More information

Why Search. Things to consider. Example, a holiday in Jamaica. CSE 3401: Intro to Artificial Intelligence Uninformed Search

Why Search. Things to consider. Example, a holiday in Jamaica. CSE 3401: Intro to Artificial Intelligence Uninformed Search CSE 3401: Intro to Artificial Intelligence Uninformed Search Why Search Required Readings: R & N Chapter 3, Sec. 1-4. Lecture slides adapted from those of Fahiem Bacchus. Successful Success in game playing

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Solving problems by searching

More information

Uninformed Search. Chapter 3. (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty)

Uninformed Search. Chapter 3. (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty) Uninformed Search Chapter 3 (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty) Agent s Knowledge Representation Type State representation

More information