2.7 Numerical Linear Algebra Software

Size: px
Start display at page:

Download "2.7 Numerical Linear Algebra Software"

Transcription

1 2.7 Numerical Linear Algebra Software In this section we will discuss three software packages for linear algebra operations: (i) (ii) (iii) Matlab, Basic Linear Algebra Subroutines (BLAS) and LAPACK. There are a number of other software packages (see and many of these are being continually updated by the numerical analysis community. Matlab. Matlab features a nice front end with convenient input/output and state-of-the-art algorithms. Some Matlab functions include the following. Linear algebra: norm norm of a vector/matrix cond condition number of a matrix lu chol inv LU factorization Cholesky factorization matrix inverse Eigenvalues hess Hessenberg form qr orthogonal-triangular decomposition schur Schur decomposition svd eig singular value decomposition eigenvalues and eigenvectors

2 2 Solves : rref reduced row echelon form A\d if A is nxn, returns the solution to Ax = d if A is mxn, m > n, returns least squares solution to Ax = d. Graphics: plot y versus x mesh contour slice 3D plots contours of 3D plots allows you to draw planes through a 3D Programming: looping conditional statements Programming constructs in Matlab are slow because they are interpreted. For example, calculating the product of two matrices using Matlab s matrix multiplication operator is much faster than calculating the same product using code with three loops. Matlab is often used for experimentation because it is easier and faster to write code for Matlab than languages like Fortran or C. Matlab is also commonly used for graphics. The command load filename where filename is the name of an output file from some program in table form (i.e. columns separated by whitespace, rows separated by newlines), creates a matrix named filename with the data from the input file. You can then graph the data using one of the graph functions. Basic Linear Algebra Subroutines (BLAS) 1, 2, or 3. See for more information. BLAS 1 functions where the number of operations = O(n) constant times a vector

3 3 dot product a constant times a vector plus a vector The BLAS command for this is SAXPY(list), where list is a list of parameters. BLAS 2 functions where the number of operations = O(n 2 ) Matrix times a vector Ax...SGEMV(list) Triangular solve Ux = b BLAS 3 functions where the number of operations = O(n 3 ) Matrix times a matrix AB...SGEMM(list) These subroutines are usually optimized for the memory hierarchy of a particular computer. LAPACK. Some commands: SGETRF(list) Gaussian elimination triangular factorization. Factors PA=LU. O(2/3 n 3 ) SGETRS(list) triangular solve. Solves Ux = d. O(n 2 ) SGECON(list) condition number The following calculations were done on the Cray T916 at the North Carolina Supercomputing Center. All calculations were for a matrix-vector product where the matrix was 500x500 for 2(500) 2 = floating point operations. In the ji Fortran code the inner loop was vectorized or not vectorized by using the Cray directives cdir$ vector and cdir$ novector just before the loop 30. There are two ways to compute a matrix-vector product. The traditional way is to compute the dotproduct of the rows in the matrix with the vector. The second method is to view the product

4 4 as a linear combination of the columns of the matrix where the coefficients are the components of the vector. These methods are also referred to as the ij and ji methods, respectively. This is because of the order of the loops as illustrated below. Dotproduct Method for Ax = d (ij version). for i =1,m d(i) = 0 for j = 1,n d(i) = d(i) + a(i,j)*x(j) Linear Combination of Columns Method for Ax = d (ji version). d(1:m) = 0 for j = 1,n for i = 1,m d(i) = d(i) + a(i,j)*x(j) Cray T916 Code (mvji.f) program matvec dimension a(500,500),x(500),prod(500) print*, 'input n' read(5,*) n do 10 i = 1,n prod(i) = 0.0 x(i) = sqrt(1./i) do 10 j = 1,n a(i,j) = 1.0/j 10 continue tbegin = second() do 20 j = 1,n cdir$ vector do 30 i = 1,n prod(i) = prod(i) + a(i,j)*x(j) 30 continue 20 continue tend = second() print*, tend - tbegin stop end

5 5 The Cray compiler cf77 was used in the five calculations in the next table. The first two calculations indicate a speedup of over 20 for the ji method. The next two calculations illustrate that the ij method is slower than the ji method. This is because Fortran stores numbers of a two dimensional array by columns. Since the ij method gets rows of the array, the input into the vector pipe will be in stride equal to n. The last calculation used the -Zv option. Here the code was rewritten. The loops 20 and 30 were recognized to be a matrix-vector product and an optimized BLAS2 (basic linear algebra subroutine with order n 2 operations, see or ) subroutine was used. This gave an additional speedup over 2 for an overall speedup equal to about 46. The floating point operations per second for this last computations was ( )/ ( ) or about 1,600 megaflops. Table: Matrix-vector Computation Times Method Time x 10-4 sec. ji (vec. on) 6.59 ji (vec. off) 146. ij (vec. on) ij (vec. off) 153. SGEMVX via -Zv 3.12 Why is SGEMVX faster? It takes advantage of the memory hierarchy of the Cray. It divides A and x into smaller blocks that fit in the Cray's register memory. This allows the program to access the data much faster. Also the blocks are ordered so as to avoid repeated moving the same data in and out of the cache memory.

MATH 3511 Basics of MATLAB

MATH 3511 Basics of MATLAB MATH 3511 Basics of MATLAB Dmitriy Leykekhman Spring 2012 Topics Sources. Entering Matrices. Basic Operations with Matrices. Build in Matrices. Build in Scalar and Matrix Functions. if, while, for m-files

More information

MATH 5520 Basics of MATLAB

MATH 5520 Basics of MATLAB MATH 5520 Basics of MATLAB Dmitriy Leykekhman Spring 2011 Topics Sources. Entering Matrices. Basic Operations with Matrices. Build in Matrices. Build in Scalar and Matrix Functions. if, while, for m-files

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Creating Arrays & Matrices) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency 1 2 Parallel Algorithms for Linear Algebra Richard P. Brent Computer Sciences Laboratory Australian National University Outline Basic concepts Parallel architectures Practical design issues Programming

More information

MATLAB and Numerical Analysis

MATLAB and Numerical Analysis School of Mechanical Engineering Pusan National University dongwoonkim@pusan.ac.kr Teaching Assistant 김동운 dongwoonkim@pusan.ac.kr 윤종희 jongheeyun@pusan.ac.kr Lab office: 통합기계관 120호 ( 510-3921) 방사선영상연구실홈페이지

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Matlab course at. P. Ciuciu 1,2. 1: CEA/NeuroSpin/LNAO 2: IFR49

Matlab course at. P. Ciuciu 1,2. 1: CEA/NeuroSpin/LNAO 2: IFR49 Matlab course at NeuroSpin P. Ciuciu 1,2 philippe.ciuciu@cea.fr www.lnao.fr 1: CEA/NeuroSpin/LNAO 2: IFR49 Feb 26, 2009 Outline 2/9 Lesson0: Getting started: environment,.m and.mat files Lesson I: Scalar,

More information

COMPUTATIONAL LINEAR ALGEBRA

COMPUTATIONAL LINEAR ALGEBRA COMPUTATIONAL LINEAR ALGEBRA Matrix Vector Multiplication Matrix matrix Multiplication Slides from UCSD and USB Directed Acyclic Graph Approach Jack Dongarra A new approach using Strassen`s algorithm Jim

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Scientific Computing. Some slides from James Lambers, Stanford

Scientific Computing. Some slides from James Lambers, Stanford Scientific Computing Some slides from James Lambers, Stanford Dense Linear Algebra Scaling and sums Transpose Rank-one updates Rotations Matrix vector products Matrix Matrix products BLAS Designing Numerical

More information

CS Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra

CS Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra CS 294-73 Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra Slides from James Demmel and Kathy Yelick 1 Outline What is Dense Linear Algebra? Where does the time go in an algorithm?

More information

MTH309 Linear Algebra: Maple Guide

MTH309 Linear Algebra: Maple Guide MTH309 Linear Algebra: Maple Guide Section 1. Row Echelon Form (REF) and Reduced Row Echelon Form (RREF) Example. Calculate the REF and RREF of the matrix Solution. Use the following command to insert

More information

Fundamentals of MATLAB Usage

Fundamentals of MATLAB Usage 수치해석기초 Fundamentals of MATLAB Usage 2008. 9 담당교수 : 주한규 joohan@snu.ac.kr, x9241, Rm 32-205 205 원자핵공학과 1 MATLAB Features MATLAB: Matrix Laboratory Process everything based on Matrix (array of numbers) Math

More information

Dense matrix algebra and libraries (and dealing with Fortran)

Dense matrix algebra and libraries (and dealing with Fortran) Dense matrix algebra and libraries (and dealing with Fortran) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealing with Fortran)

More information

A Few Numerical Libraries for HPC

A Few Numerical Libraries for HPC A Few Numerical Libraries for HPC CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) A Few Numerical Libraries for HPC Spring 2016 1 / 37 Outline 1 HPC == numerical linear

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline:

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline: AMath 483/583 Lecture 22 Outline: MPI Master Worker paradigm Linear algebra LAPACK and the BLAS References: $UWHPSC/codes/mpi class notes: MPI section class notes: Linear algebra Another Send/Receive example

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

BLAS. Basic Linear Algebra Subprograms

BLAS. Basic Linear Algebra Subprograms BLAS Basic opera+ons with vectors and matrices dominates scien+fic compu+ng programs To achieve high efficiency and clean computer programs an effort has been made in the last few decades to standardize

More information

Lecture 7: Arnold s Cat Map

Lecture 7: Arnold s Cat Map Lecture 7: Arnold s Cat Map Reference http://www.chaos.umd.edu/misc/catmap.html https://www.jasondavies.com/catmap/ Chaotic Maps: An Introduction A popular question in mathematics is how to analyze and

More information

AMath 483/583 Lecture 11. Notes: Notes: Comments on Homework. Notes: AMath 483/583 Lecture 11

AMath 483/583 Lecture 11. Notes: Notes: Comments on Homework. Notes: AMath 483/583 Lecture 11 AMath 483/583 Lecture 11 Outline: Computer architecture Cache considerations Fortran optimization Reading: S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive Codes, SIAM, 2001.

More information

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P.

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P. 1 2 The LINPACK Benchmark on the Fujitsu AP 1000 Richard P. Brent Computer Sciences Laboratory The LINPACK Benchmark A popular benchmark for floating-point performance. Involves the solution of a nonsingular

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

AMath 483/583 Lecture 11

AMath 483/583 Lecture 11 AMath 483/583 Lecture 11 Outline: Computer architecture Cache considerations Fortran optimization Reading: S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive Codes, SIAM, 2001.

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Matlab and Octave: Quick Introduction and Examples 1 Basics

Matlab and Octave: Quick Introduction and Examples 1 Basics Matlab and Octave: Quick Introduction and Examples 1 Basics 1.1 Syntax and m-files There is a shell where commands can be written in. All commands must either be built-in commands, functions, names of

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA

Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA Shirley Moore svmoore@utep.edu CPS5401 Fall 2012 svmoore.pbworks.com November 8, 2012 1 Learning ObjecNves AOer complenng this lesson, you

More information

MATLAB Lecture 1. Introduction to MATLAB

MATLAB Lecture 1. Introduction to MATLAB MATLAB Lecture 1. Introduction to MATLAB 1.1 The MATLAB environment MATLAB is a software program that allows you to compute interactively with matrices. If you want to know for instance the product of

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Introduction Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft In the preceding article Stepwise

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

High-Performance Libraries and Tools. HPC Fall 2012 Prof. Robert van Engelen

High-Performance Libraries and Tools. HPC Fall 2012 Prof. Robert van Engelen High-Performance Libraries and Tools HPC Fall 2012 Prof. Robert van Engelen Overview Dense matrix BLAS (serial) ATLAS (serial/threaded) LAPACK (serial) Vendor-tuned LAPACK (shared memory parallel) ScaLAPACK/PLAPACK

More information

Optimizing Cache Performance in Matrix Multiplication. UCSB CS240A, 2017 Modified from Demmel/Yelick s slides

Optimizing Cache Performance in Matrix Multiplication. UCSB CS240A, 2017 Modified from Demmel/Yelick s slides Optimizing Cache Performance in Matrix Multiplication UCSB CS240A, 2017 Modified from Demmel/Yelick s slides 1 Case Study with Matrix Multiplication An important kernel in many problems Optimization ideas

More information

PC-MATLAB PRIMER. This is intended as a guided tour through PCMATLAB. Type as you go and watch what happens.

PC-MATLAB PRIMER. This is intended as a guided tour through PCMATLAB. Type as you go and watch what happens. PC-MATLAB PRIMER This is intended as a guided tour through PCMATLAB. Type as you go and watch what happens. >> 2*3 ans = 6 PCMATLAB uses several lines for the answer, but I ve edited this to save space.

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autar Kaw Benjamin Rigsy http://nmmathforcollegecom Transforming Numerical Methods Education for STEM Undergraduates http://nmmathforcollegecom LU Decomposition is another method to solve a set of simultaneous

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

TASKING Performance Libraries For Infineon AURIX MCUs Product Overview

TASKING Performance Libraries For Infineon AURIX MCUs Product Overview TABLE OF CONTENTS LAPACK and BLAS Libraries - High Level Overview...3 LAPACK and BLAS Library - Detailed Introduction...3 Numerical Libraries for Embedded Applications...3 Open Source LAPACK and BLAS Functionality...5

More information

Null space basis: mxz. zxz I

Null space basis: mxz. zxz I Loop Transformations Linear Locality Enhancement for ache performance can be improved by tiling and permutation Permutation of perfectly nested loop can be modeled as a matrix of the loop nest. dependence

More information

Structure from Motion

Structure from Motion 11/18/11 Structure from Motion Computer Vision CS 143, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from

More information

Using recursion to improve performance of dense linear algebra software. Erik Elmroth Dept of Computing Science & HPC2N Umeå University, Sweden

Using recursion to improve performance of dense linear algebra software. Erik Elmroth Dept of Computing Science & HPC2N Umeå University, Sweden Using recursion to improve performance of dense linear algebra software Erik Elmroth Dept of Computing Science & HPCN Umeå University, Sweden Joint work with Fred Gustavson, Isak Jonsson & Bo Kågström

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

MATLAB Premier. Asst. Prof. Dr. Melik DÖLEN. Middle East Technical University Department of Mechanical Engineering 10/30/04 ME 304 1

MATLAB Premier. Asst. Prof. Dr. Melik DÖLEN. Middle East Technical University Department of Mechanical Engineering 10/30/04 ME 304 1 MATLAB Premier Asst. Prof. Dr. Melik DÖLEN Middle East Technical University Department of Mechanical Engineering 0/0/04 ME 04 Outline! Introduction! Basic Features of MATLAB! Prompt Level and Basic Aritmetic

More information

short-reference.mht 1/ /WK/

short-reference.mht 1/ /WK/ short-reference.mht 1/6 6KRUW0$7/$%5HIHUHQFH There are many MATLAB features which cannot be included in these introductory notes. Listed below are some of the MATLAB functions and operators available,

More information

Addition/Subtraction flops. ... k k + 1, n (n k)(n k) (n k)(n + 1 k) n 1 n, n (1)(1) (1)(2)

Addition/Subtraction flops. ... k k + 1, n (n k)(n k) (n k)(n + 1 k) n 1 n, n (1)(1) (1)(2) 1 CHAPTER 10 101 The flop counts for LU decomposition can be determined in a similar fashion as was done for Gauss elimination The major difference is that the elimination is only implemented for the left-hand

More information

Linear Loop Transformations for Locality Enhancement

Linear Loop Transformations for Locality Enhancement Linear Loop Transformations for Locality Enhancement 1 Story so far Cache performance can be improved by tiling and permutation Permutation of perfectly nested loop can be modeled as a linear transformation

More information

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR Leslie Foster Department of Mathematics, San Jose State University October 28, 2009, SIAM LA 09 DEPARTMENT OF MATHEMATICS,

More information

FFPACK: Finite Field Linear Algebra Package

FFPACK: Finite Field Linear Algebra Package FFPACK: Finite Field Linear Algebra Package Jean-Guillaume Dumas, Pascal Giorgi and Clément Pernet pascal.giorgi@ens-lyon.fr, {Jean.Guillaume.Dumas, Clément.Pernet}@imag.fr P. Giorgi, J-G. Dumas & C. Pernet

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

MATLAB BEGINNER S GUIDE

MATLAB BEGINNER S GUIDE MATLAB BEGINNER S GUIDE About MATLAB MATLAB is an interactive software which has been used recently in various areas of engineering and scientific applications. It is not a computer language in the normal

More information

Project Report. 1 Abstract. 2 Algorithms. 2.1 Gaussian elimination without partial pivoting. 2.2 Gaussian elimination with partial pivoting

Project Report. 1 Abstract. 2 Algorithms. 2.1 Gaussian elimination without partial pivoting. 2.2 Gaussian elimination with partial pivoting Project Report Bernardo A. Gonzalez Torres beaugonz@ucsc.edu Abstract The final term project consist of two parts: a Fortran implementation of a linear algebra solver and a Python implementation of a run

More information

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Triangular Factors and Row Exchanges LARP / 28 ACK :. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Then there were three

More information

Automatic Development of Linear Algebra Libraries for the Tesla Series

Automatic Development of Linear Algebra Libraries for the Tesla Series Automatic Development of Linear Algebra Libraries for the Tesla Series Enrique S. Quintana-Ortí quintana@icc.uji.es Universidad Jaime I de Castellón (Spain) Dense Linear Algebra Major problems: Source

More information

Part VI. Scientific Computing in Python. Alfredo Parra : Scripting with Python Compact Max-PlanckMarch 6-10,

Part VI. Scientific Computing in Python. Alfredo Parra : Scripting with Python Compact Max-PlanckMarch 6-10, Part VI Scientific Computing in Python Compact Course @ Max-PlanckMarch 6-10, 2017 63 Doing maths in Python Standard sequence types (list, tuple,... ) Can be used as arrays Can contain different types

More information

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name:

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name: 1 Matlab Tutorial 1- What is Matlab? Matlab is a powerful tool for almost any kind of mathematical application. It enables one to develop programs with a high degree of functionality. The user can write

More information

MATLAB Premier. Middle East Technical University Department of Mechanical Engineering ME 304 1/50

MATLAB Premier. Middle East Technical University Department of Mechanical Engineering ME 304 1/50 MATLAB Premier Middle East Technical University Department of Mechanical Engineering ME 304 1/50 Outline Introduction Basic Features of MATLAB Prompt Level and Basic Arithmetic Operations Scalars, Vectors,

More information

Parallel Implementation of QRD Algorithms on the Fujitsu AP1000

Parallel Implementation of QRD Algorithms on the Fujitsu AP1000 Parallel Implementation of QRD Algorithms on the Fujitsu AP1000 Zhou, B. B. and Brent, R. P. Computer Sciences Laboratory Australian National University Canberra, ACT 0200 Abstract This paper addresses

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

Designing Applications that See Lecture 4: Matlab Tutorial

Designing Applications that See Lecture 4: Matlab Tutorial stanford hci group / cs377s Designing Applications that See Lecture 4: Matlab Tutorial Dan Maynes-Aminzade 23 January 2007 Designing Applications that See http://cs377s.stanford.edu Reminders Assignment

More information

Answers to Homework 12: Systems of Linear Equations

Answers to Homework 12: Systems of Linear Equations Math 128A Spring 2002 Handout # 29 Sergey Fomel May 22, 2002 Answers to Homework 12: Systems of Linear Equations 1. (a) A vector norm x has the following properties i. x 0 for all x R n ; x = 0 only if

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

How to Write Fast Numerical Code Spring 2011 Lecture 7. Instructor: Markus Püschel TA: Georg Ofenbeck

How to Write Fast Numerical Code Spring 2011 Lecture 7. Instructor: Markus Püschel TA: Georg Ofenbeck How to Write Fast Numerical Code Spring 2011 Lecture 7 Instructor: Markus Püschel TA: Georg Ofenbeck Last Time: Locality Temporal and Spatial memory memory Last Time: Reuse FFT: O(log(n)) reuse MMM: O(n)

More information

Biostatistics 615/815 Lecture 13: Programming with Matrix

Biostatistics 615/815 Lecture 13: Programming with Matrix Computation Biostatistics 615/815 Lecture 13: Programming with Hyun Min Kang February 17th, 2011 Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 1 / 28 Annoucements Computation Homework

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

NumPy. Daniël de Kok. May 4, 2017

NumPy. Daniël de Kok. May 4, 2017 NumPy Daniël de Kok May 4, 2017 Introduction Today Today s lecture is about the NumPy linear algebra library for Python. Today you will learn: How to create NumPy arrays, which store vectors, matrices,

More information

GRAPH CENTERS USED FOR STABILIZATION OF MATRIX FACTORIZATIONS

GRAPH CENTERS USED FOR STABILIZATION OF MATRIX FACTORIZATIONS Discussiones Mathematicae Graph Theory 30 (2010 ) 349 359 GRAPH CENTERS USED FOR STABILIZATION OF MATRIX FACTORIZATIONS Pavla Kabelíková Department of Applied Mathematics FEI, VSB Technical University

More information

MAT 343 Laboratory 2 Solving systems in MATLAB and simple programming

MAT 343 Laboratory 2 Solving systems in MATLAB and simple programming MAT 343 Laboratory 2 Solving systems in MATLAB and simple programming In this laboratory session we will learn how to 1. Solve linear systems with MATLAB 2. Create M-files with simple MATLAB codes Backslash

More information

AMS209 Final Project: Linear Equations System Solver

AMS209 Final Project: Linear Equations System Solver AMS209 Final Project: Linear Equations System Solver Rene Gutierrez Marquez 1 UCSC 1 December 7, 2016 Abstract In this project an implementation of a solver of a system of linear equations is implemented.

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

1.1 ABOUT MATLAB and MATLAB GUI (Graphical User Interface)

1.1 ABOUT MATLAB and MATLAB GUI (Graphical User Interface) Chapter 1 Introduction The Taylor Series is one of the most important tools in numerical analysis. It constitutes the foundation of numerical methods and will be used in most of the chapters of this text.

More information

Lecture 7X: Prac-ces with Principles of Parallel Algorithm Design Concurrent and Mul-core Programming CSE 436/536

Lecture 7X: Prac-ces with Principles of Parallel Algorithm Design Concurrent and Mul-core Programming CSE 436/536 Lecture 7X: Prac-ces with Principles of Parallel Algorithm Design Concurrent and Mul-core Programming CSE 436/536 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu www.secs.oakland.edu/~yan

More information

Fast Algorithms for Regularized Minimum Norm Solutions to Inverse Problems

Fast Algorithms for Regularized Minimum Norm Solutions to Inverse Problems Fast Algorithms for Regularized Minimum Norm Solutions to Inverse Problems Irina F. Gorodnitsky Cognitive Sciences Dept. University of California, San Diego La Jolla, CA 9293-55 igorodni@ece.ucsd.edu Dmitry

More information

What is MATLAB? What is MATLAB? Programming Environment MATLAB PROGRAMMING. Stands for MATrix LABoratory. A programming environment

What is MATLAB? What is MATLAB? Programming Environment MATLAB PROGRAMMING. Stands for MATrix LABoratory. A programming environment What is MATLAB? MATLAB PROGRAMMING Stands for MATrix LABoratory A software built around vectors and matrices A great tool for numerical computation of mathematical problems, such as Calculus Has powerful

More information

HW 1: Project Report (Camera Calibration)

HW 1: Project Report (Camera Calibration) HW 1: Project Report (Camera Calibration) ABHISHEK KUMAR (abhik@sci.utah.edu) 1 Problem The problem is to calibrate a camera for a fixed focal length using two orthogonal checkerboard planes, and to find

More information

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato How to Write Fast Numerical Code Spring 2012 Lecture 9 Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato Today Linear algebra software: history, LAPACK and BLAS Blocking (BLAS 3): key

More information

Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices

Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices Nerma Baščelija Sarajevo School of Science and Technology Department of Computer Science Hrasnicka Cesta 3a, 71000 Sarajevo

More information

MATLAB. Devon Cormack and James Staley

MATLAB. Devon Cormack and James Staley MATLAB Devon Cormack and James Staley MATrix LABoratory Originally developed in 1970s as a FORTRAN wrapper, later rewritten in C Designed for the purpose of high-level numerical computation, visualization,

More information

COMPUTER OPTIMIZATION

COMPUTER OPTIMIZATION COMPUTER OPTIMIZATION Storage Optimization: Since Normal Matrix is a symmetric matrix, store only half of it in a vector matrix and develop a indexing scheme to map the upper or lower half to the vector.

More information

Numerical libraries. - Exercises -

Numerical libraries. - Exercises - Numerical libraries - Exercises - Library installation As a beginning effort try download and install LAPACK from NETLIB: Download from http://www.netlib.org/lapack/lapack- 3.4.1.tgz Configure make.inc

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 7 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 10 5633-Numerical Methods Organisational To appear

More information

Gaussian Elimination 2 5 = 4

Gaussian Elimination 2 5 = 4 Linear Systems Lab Objective: The fundamental problem of linear algebra is solving the linear system Ax = b, given that a solution exists There are many approaches to solving this problem, each with different

More information

Parallel Reduction from Block Hessenberg to Hessenberg using MPI

Parallel Reduction from Block Hessenberg to Hessenberg using MPI Parallel Reduction from Block Hessenberg to Hessenberg using MPI Viktor Jonsson May 24, 2013 Master s Thesis in Computing Science, 30 credits Supervisor at CS-UmU: Lars Karlsson Examiner: Fredrik Georgsson

More information

Exploration Assignment #1. (Linear Systems)

Exploration Assignment #1. (Linear Systems) Math 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #1 (Linear Systems) Acknowledgment The MATLAB assignments for Math 0280 were developed by Jonathan Rubin with the help of Matthew

More information

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Matrix norms Can be defined using corresponding vector norms Two norm One norm Infinity

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that:

In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that: Parallel Computing and Data Locality Gary Howell In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that: Real estate and efficient computation

More information

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core Tuning on a single core 1 From models to practice In lecture 2, we discussed features such as instruction-level parallelism and cache hierarchies that we need to understand in order to have a reasonable

More information

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker BLAS and LAPACK + Data Formats for Sparse Matrices Part of the lecture Wissenschaftliches Rechnen Hilmar Wobker Institute of Applied Mathematics and Numerics, TU Dortmund email: hilmar.wobker@math.tu-dortmund.de

More information

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang Solving and CS6015 / LARP 2018 ACK : Linear Algebra and Its Applications - Gilbert Strang Introduction Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was

More information

Linear Algebra. Chapter Introduction

Linear Algebra. Chapter Introduction Chapter 6 Linear Algebra Abstract This chapter introduces several matrix related topics, from thesolutionoflinear equations, computing determinants, conjugate-gradient methods, spline interpolation to

More information

Solutions to Programming Assignment Four Simultaneous Linear Equations

Solutions to Programming Assignment Four Simultaneous Linear Equations College of Engineering and Computer Science Mechanical Engineering Department Mechanical Engineering 309 Numerical Analysis of Engineering Systems Spring 2014 Number: 15237 Instructor: Larry Caretto Solutions

More information

Modelling and Visualization of High Dimensional Data. Sample Examination Paper

Modelling and Visualization of High Dimensional Data. Sample Examination Paper Duration not specified UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Modelling and Visualization of High Dimensional Data Sample Examination Paper Examination date not specified Time: Examination

More information