Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees The Sum-of-Subsets Problem Department of Computer Science College of Science for Women

Size: px
Start display at page:

Download "Algorithm Design And Analysis Asst. Prof. Ali Kadhum Idrees The Sum-of-Subsets Problem Department of Computer Science College of Science for Women"

Transcription

1 The Sum-of-Subsets Problem In this problem, there is a set of items the thief can steal, and each item has its own weight and profit. The thief's knapsack will break if the total weight of the items in it exceeds W. Therefore, the goal is to maximize the total value of the stolen items while not making the total weight exceed W. Suppose here that the items all have the same profit per unit weight. Then an optimal solution for the thief would simply be a set of items that maximized the total weight, subject to the constraint that its total weight did not exceed W. The thief might first try to determine whether there was a set whose total weight equaled W, because this would be best. The problem of determining such sets is called the Sum-of-Subsets problem. Specifically, in the Sum-of-Subsets problem, there are n positive integers (weights) wi and a positive integer W. The goal is to find all subsets of the integers that sum to W. As mentioned earlier, we usually state our problems so as to find all solutions. For the purposes of the thief's application, however, only one solution need be found. Example 1: This instance can be solved by inspection. For larger values of n, a systematic approach is necessary. One approach is to create a state space tree. A possible way to structure the tree appears in Figure (1). For the sake of 1

2 simplicity, the tree in this figure is for only three weights. We go to the left from the root to include w1, and we go to the right to exclude w1. Similarly, we go to the left from a node at level 1 to include w2, and we go to the right to exclude w2, etc. Each subset is represented by a path from the root to a leaf. When we include wi, we write wi on the edge where we include it. When we do not include wi, we write 0. Figure (1): A state space tree for instances of the Sum-of-Subsets problem in which n = 3. Example 2: Figure 2 shows the state space tree for n = 3, W = 6, and Figure 2: A state space tree for the Sum-of-Subsets problem for the instance in Example 2. Stored at each node is the total weight included up to that node. 2

3 At each node, we have written the sum of the weights that have been included up to that point. Therefore, each leaf contains the sum of the weights in the subset leading to that leaf. The second leaf from the left is the only one containing a 6. Because the path to this leaf represents the subset {w1, w2}, this subset is the only solution. If we sort the weights in nondecreasing order before doing the search, there is an obvious sign telling us that a node is nonpromising. If the weights are sorted in this manner, then wi+1 is the lightest weight remaining when we are at the ith level. Let weight be the sum of the weights that have been included up to a node at level i. If wi+1 would bring the value of weight above W, then so would any other weight following it. Therefore, unless weight equals W (which means that there is a solution at the node), a node at the ith level is nonpromising if There is another, less obvious sign telling us that a node is nonpromising. If, at a given node, adding all the weights of the remaining items to weight does not make weight at least equal to W, then weight could never become equal to W by expanding beyond the node. This means that if total is the total weight of the remaining weights, a node is nonpromising if The following example illustrates these backtracking strategies. Example 4: Figure 3 shows the pruned state space tree when backtracking is used with n = 4, W = 13, and 3

4 Figure 3: The pruned state space tree produced using backtracking in Example 4. Stored at each node is the total weight included up to that node. The only solution is found at the shaded node. Each nonpromising node is marked with a cross The only solution is found at the node shaded in color. The solution is {w 1, w 2, w 4 }. The nonpromising nodes are marked with crosses. The nodes containing 12, 8, and 9 are nonpromising because adding the next weight (6) would make the value of weight exceed W. The nodes containing 7, 3, 4, and 0 are nonpromising because there is not enough total weight remaining to bring the value of weight up to W. Notice that a leaf in the state space tree that does not contain a solution is automatically nonpromising because there are no weights remaining that could bring weight up to W. The leaf containing 7 illustrates this. There are only 15 nodes in the pruned state space tree, whereas the entire state space tree contains 31 nodes. When the sum of the weights included up to a node equals W, there is a solution at that node. Therefore, we cannot get another solution by including more items. This means that if we should print the solution and backtrack. This backtracking is provided automatically by our general procedure checknode because it never expands beyond a promising node where a solution is found. Recall that when we discussed checknode we mentioned that some backtracking 4

5 algorithms sometimes find a solution before reaching a leaf in the state space tree. This is one such algorithm. Next we present the algorithm that employs these strategies. The algorithm uses an array include. It sets include[i] to"yes" if w[i] is to be included and to "no" if it is not. Algorithm: The Backtracking Algorithm for the Sum-of-Subsets Problem Problem: Given n positive integers (weights) and a positive integer W, determine all combinations of the integers that sum to W. Inputs: positive integer n, sorted (nondecreasing order) array of positive integers w indexed from 1 to n, and a positive integer W. Outputs: all combinations of the integers that sum to W. void sum_of_subsets (index i, int weight, int total) { if (promising (i)) if (weight == W) cout << include [1] through include [i]; else{ include [i + 1] = "yes"; // Include w[i + 1]. sum_of_subsets (i + 1, weight + w[i + 1], total - w[i + 1]); include [i + 1] = "no"; // Do not include w[i + 1]. sum_of_subsets (i + 1, weight, total - w [i + 1]); } } bool promising (index i); { return (weight + total >=W) && (weight == W weight + w[i + 1] <= W); } Following our usual convention, n, w, W, and include are not inputs to our routines. If these variables were defined globally, the top-level call to sum_of_subsets would be as follows: Where initially Recall that a leaf in the state space tree that does not contain a solution is nonpromising because there are no weights left that could bring the value of weight up to W. This means that the algorithm 5

6 should not need to check for the terminal condition i = n. Let's verify that the algorithm implements thiscorrectly. When i = n, the value of total is 0 (because there are no weights remaining). Therefore, at this point which means that is true only if weight W. Because we always keep weight W, we must have weight = W. Therefore, when i = n, function promising returns true only if weight = W. But in this case there is no recursive call because we found a solution. Therefore, we do not need to check for the terminal condition i = n. Notice that there is never a reference to the nonexistent array item w[n + 1] in function promising because of our assumption that the second condition in an or expression is not evaluated when the first condition is true. The number of nodes in the state space tree searched by Algorithm above is equal to Given only this result, the possibility exists that the worst case could be much better than this. That is, it could be that for every instance only a small portion of the state space tree is searched. This is not the case. For each n, it is possible to construct an instance for which the algorithm visits an exponentially large number of nodes. This is true even if we want only one solution. To this end, if we take There is only one solution {W n }, and it will not be found until an exponentially large number of nodes are visited. As stressed before, even though the worst case is exponential, the algorithm can be 6

7 efficient for many large instances. In the exercises you are asked to write programs using the Monte Carlo technique to estimate the efficiency of Algorithm above on various instances. 7

BackTracking Introduction

BackTracking Introduction Backtracking BackTracking Introduction Backtracking is used to solve problems in which a sequence of objects is chosen from a specified set so that the sequence satisfies some criterion. The classic example

More information

Chapter 5 Backtracking 1

Chapter 5 Backtracking 1 Chapter 5 Backtracking 1 The idea A sequence of objects is chosen from a specified set so that the sequence satisfies some criterion Example: n-queens problem Sequence: n positions on the chessboard Set:

More information

Backtracking. Chapter 5

Backtracking. Chapter 5 1 Backtracking Chapter 5 2 Objectives Describe the backtrack programming technique Determine when the backtracking technique is an appropriate approach to solving a problem Define a state space tree for

More information

The problem: given N, find all solutions of queen sets and return either the number of solutions and/or the patterned boards.

The problem: given N, find all solutions of queen sets and return either the number of solutions and/or the patterned boards. N-ueens Background Problem surfaced in 1848 by chess player Ma Bezzel as 8 queens (regulation board size) Premise is to place N queens on N N board so that they are non-attacking A queen is one of si different

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

Greedy Algorithms 1. For large values of d, brute force search is not feasible because there are 2 d

Greedy Algorithms 1. For large values of d, brute force search is not feasible because there are 2 d Greedy Algorithms 1 Simple Knapsack Problem Greedy Algorithms form an important class of algorithmic techniques. We illustrate the idea by applying it to a simplified version of the Knapsack Problem. Informally,

More information

Backtracking and Branch-and-Bound

Backtracking and Branch-and-Bound Backtracking and Branch-and-Bound Usually for problems with high complexity Exhaustive Search is too time consuming Cut down on some search using special methods Idea: Construct partial solutions and extend

More information

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}.

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}. Greedy Algorithms 1 Simple Knapsack Problem Greedy Algorithms form an important class of algorithmic techniques. We illustrate the idea by applying it to a simplified version of the Knapsack Problem. Informally,

More information

Chapter-6 Backtracking

Chapter-6 Backtracking Chapter-6 Backtracking 6.1 Background Suppose, if you have to make a series of decisions, among various choices, where you don t have enough information to know what to choose. Each decision leads to a

More information

Algorithmic patterns

Algorithmic patterns Algorithmic patterns Data structures and algorithms in Java Anastas Misev Parts used by kind permission: Bruno Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in Java David

More information

6. Algorithm Design Techniques

6. Algorithm Design Techniques 6. Algorithm Design Techniques 6. Algorithm Design Techniques 6.1 Greedy algorithms 6.2 Divide and conquer 6.3 Dynamic Programming 6.4 Randomized Algorithms 6.5 Backtracking Algorithms Malek Mouhoub, CS340

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 7 Date of this version: January 28, 2019 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Greedy Algorithms. This is such a simple approach that it is what one usually tries first.

Greedy Algorithms. This is such a simple approach that it is what one usually tries first. Greedy Algorithms A greedy algorithm tries to solve an optimisation problem by making a sequence of choices. At each decision point, the alternative that seems best at that moment is chosen. This is such

More information

Data Structures (CS 1520) Lecture 28 Name:

Data Structures (CS 1520) Lecture 28 Name: Traeling Salesperson Problem (TSP) -- Find an optimal (ie, minimum length) when at least one exists A (or Hamiltonian circuit) is a path from a ertex back to itself that passes through each of the other

More information

CS2 Algorithms and Data Structures Note 1

CS2 Algorithms and Data Structures Note 1 CS2 Algorithms and Data Structures Note 1 Analysing Algorithms This thread of the course is concerned with the design and analysis of good algorithms and data structures. Intuitively speaking, an algorithm

More information

Heaps. Heaps. A heap is a complete binary tree.

Heaps. Heaps. A heap is a complete binary tree. A heap is a complete binary tree. 1 A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. A min-heap is defined

More information

Learning Recursion. Recursion [ Why is it important?] ~7 easy marks in Exam Paper. Step 1. Understand Code. Step 2. Understand Execution

Learning Recursion. Recursion [ Why is it important?] ~7 easy marks in Exam Paper. Step 1. Understand Code. Step 2. Understand Execution Recursion [ Why is it important?] ~7 easy marks in Exam Paper Seemingly Different Coding Approach In Fact: Strengthen Top-down Thinking Get Mature in - Setting parameters - Function calls - return + work

More information

Lecture Notes on Binary Decision Diagrams

Lecture Notes on Binary Decision Diagrams Lecture Notes on Binary Decision Diagrams 15-122: Principles of Imperative Computation William Lovas Notes by Frank Pfenning Lecture 25 April 21, 2011 1 Introduction In this lecture we revisit the important

More information

ESc101 : Fundamental of Computing

ESc101 : Fundamental of Computing ESc101 : Fundamental of Computing I Semester 2008-09 Lecture 37 Analyzing the efficiency of algorithms. Algorithms compared Sequential Search and Binary search GCD fast and GCD slow Merge Sort and Selection

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Subset sum problem and dynamic programming

Subset sum problem and dynamic programming Lecture Notes: Dynamic programming We will discuss the subset sum problem (introduced last time), and introduce the main idea of dynamic programming. We illustrate it further using a variant of the so-called

More information

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017 CMSC 45 CMSC 45: Lecture Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct, Reading: Section. in KT. Dynamic Programming: In this lecture we begin our coverage of an important algorithm design

More information

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014 AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 214 Q.2 a. Design an algorithm for computing gcd (m,n) using Euclid s algorithm. Apply the algorithm to find gcd (31415, 14142). ALGORITHM Euclid(m, n) //Computes

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 02 Lecture - 45 Memoization Let us continue our discussion of inductive definitions. (Refer Slide Time: 00:05)

More information

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58 08 A: Sorting III CS1102S: Data Structures and Algorithms Martin Henz March 10, 2010 Generated on Tuesday 9 th March, 2010, 09:58 CS1102S: Data Structures and Algorithms 08 A: Sorting III 1 1 Recap: Sorting

More information

Lecture 5: Dynamic Programming II

Lecture 5: Dynamic Programming II Lecture 5: Dynamic Programming II Scribe: Weiyao Wang September 12, 2017 1 Lecture Overview Today s lecture continued to discuss dynamic programming techniques, and contained three parts. First, we will

More information

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 8, February 25) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Trees Definitions Yet another data structure -- trees. Just like a linked

More information

CS473-Algorithms I. Lecture 11. Greedy Algorithms. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 11. Greedy Algorithms. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 11 Greedy Algorithms 1 Activity Selection Problem Input: a set S {1, 2,, n} of n activities s i =Start time of activity i, f i = Finish time of activity i Activity i takes place

More information

Greedy algorithms is another useful way for solving optimization problems.

Greedy algorithms is another useful way for solving optimization problems. Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These

More information

The Knapsack Problem an Introduction to Dynamic Programming. Slides based on Kevin Wayne / Pearson-Addison Wesley

The Knapsack Problem an Introduction to Dynamic Programming. Slides based on Kevin Wayne / Pearson-Addison Wesley The Knapsack Problem an Introduction to Dynamic Programming Slides based on Kevin Wayne / Pearson-Addison Wesley Different Problem Solving Approaches Greedy Algorithms Build up solutions in small steps

More information

Chapter S:II. II. Search Space Representation

Chapter S:II. II. Search Space Representation Chapter S:II II. Search Space Representation Systematic Search Encoding of Problems State-Space Representation Problem-Reduction Representation Choosing a Representation S:II-1 Search Space Representation

More information

Department of Computer Science and Engineering Analysis and Design of Algorithm (CS-4004) Subject Notes

Department of Computer Science and Engineering Analysis and Design of Algorithm (CS-4004) Subject Notes Page no: Department of Computer Science and Engineering Analysis and Design of Algorithm (CS-00) Subject Notes Unit- Greedy Technique. Introduction: Greedy is the most straight forward design technique.

More information

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2)

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2) Dynamic Programming Any recursive formula can be directly translated into recursive algorithms. However, sometimes the compiler will not implement the recursive algorithm very efficiently. When this is

More information

Data Structures Lecture 3 Order Notation and Recursion

Data Structures Lecture 3 Order Notation and Recursion Data Structures Lecture 3 Order Notation and Recursion 1 Overview The median grade.cpp program from Lecture 2 and background on constructing and using vectors. Algorithm analysis; order notation Recursion

More information

CMSC 451: Dynamic Programming

CMSC 451: Dynamic Programming CMSC 41: Dynamic Programming Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Sections 6.1&6.2 of Algorithm Design by Kleinberg & Tardos. Dynamic Programming

More information

Chapter Four: Loops II

Chapter Four: Loops II Chapter Four: Loops II Slides by Evan Gallagher & Nikolay Kirov Chapter Goals To understand nested loops To implement programs that read and process data sets To use a computer for simulations Processing

More information

Data Structures (CS 1520) Lecture 28 Name:

Data Structures (CS 1520) Lecture 28 Name: Traeling Salesperson Problem (TSP) -- Find an optimal (ie, minimum length) when at least one exists A (or Hamiltonian circuit) is a path from a ertex back to itself that passes through each of the other

More information

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs Lecture 16 Treaps; Augmented BSTs Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller 8 March 2012 Today: - More on Treaps - Ordered Sets and Tables

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms Instructor: SharmaThankachan Lecture 10: Greedy Algorithm Slides modified from Dr. Hon, with permission 1 About this lecture Introduce Greedy Algorithm Look at some problems

More information

Trees. Chapter 6. strings. 3 Both position and Enumerator are similar in concept to C++ iterators, although the details are quite different.

Trees. Chapter 6. strings. 3 Both position and Enumerator are similar in concept to C++ iterators, although the details are quite different. Chapter 6 Trees In a hash table, the items are not stored in any particular order in the table. This is fine for implementing Sets and Maps, since for those abstract data types, the only thing that matters

More information

UNIT 4 Branch and Bound

UNIT 4 Branch and Bound UNIT 4 Branch and Bound General method: Branch and Bound is another method to systematically search a solution space. Just like backtracking, we will use bounding functions to avoid generating subtrees

More information

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017 CS6 Lecture 4 Greedy Algorithms Scribe: Virginia Williams, Sam Kim (26), Mary Wootters (27) Date: May 22, 27 Greedy Algorithms Suppose we want to solve a problem, and we re able to come up with some recursive

More information

CS 6783 (Applied Algorithms) Lecture 5

CS 6783 (Applied Algorithms) Lecture 5 CS 6783 (Applied Algorithms) Lecture 5 Antonina Kolokolova January 19, 2012 1 Minimum Spanning Trees An undirected graph G is a pair (V, E); V is a set (of vertices or nodes); E is a set of (undirected)

More information

Dynamic Programming Homework Problems

Dynamic Programming Homework Problems CS 1510 Dynamic Programming Homework Problems 1. (2 points) Consider the recurrence relation T (0) = T (1) = 2 and for n > 1 n 1 T (n) = T (i)t (i 1) i=1 We consider the problem of computing T (n) from

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Dynamic Programming Homework Problems

Dynamic Programming Homework Problems CS 1510 Dynamic Programming Homework Problems 1. Consider the recurrence relation T(0) = T(1) = 2 and for n > 1 n 1 T(n) = T(i)T(i 1) i=1 We consider the problem of computing T(n) from n. (a) Show that

More information

Towards a Memory-Efficient Knapsack DP Algorithm

Towards a Memory-Efficient Knapsack DP Algorithm Towards a Memory-Efficient Knapsack DP Algorithm Sanjay Rajopadhye The 0/1 knapsack problem (0/1KP) is a classic problem that arises in computer science. The Wikipedia entry http://en.wikipedia.org/wiki/knapsack_problem

More information

Applied Algorithm Design Lecture 3

Applied Algorithm Design Lecture 3 Applied Algorithm Design Lecture 3 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 3 1 / 75 PART I : GREEDY ALGORITHMS Pietro Michiardi (Eurecom) Applied Algorithm

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

Suppose that the following is from a correct C++ program:

Suppose that the following is from a correct C++ program: All multiple choice questions are equally weighted. You can generally assume that code shown in the questions is intended to be syntactically correct, unless something in the question or one of the answers

More information

Chapter 4: Trees. 4.2 For node B :

Chapter 4: Trees. 4.2 For node B : Chapter : Trees. (a) A. (b) G, H, I, L, M, and K.. For node B : (a) A. (b) D and E. (c) C. (d). (e).... There are N nodes. Each node has two pointers, so there are N pointers. Each node but the root has

More information

CPS311 Lecture: Procedures Last revised 9/9/13. Objectives:

CPS311 Lecture: Procedures Last revised 9/9/13. Objectives: CPS311 Lecture: Procedures Last revised 9/9/13 Objectives: 1. To introduce general issues that any architecture must address in terms of calling/returning from procedures, passing parameters (including

More information

Greedy Algorithms. Algorithms

Greedy Algorithms. Algorithms Greedy Algorithms Algorithms Greedy Algorithms Many algorithms run from stage to stage At each stage, they make a decision based on the information available A Greedy algorithm makes decisions At each

More information

Discussion 1H Notes (Week 3, April 14) TA: Brian Choi Section Webpage:

Discussion 1H Notes (Week 3, April 14) TA: Brian Choi Section Webpage: Discussion 1H Notes (Week 3, April 14) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs31 More on Arithmetic Expressions The following two are equivalent:! x = x + 5;

More information

Beyond Counting. Owen Kaser. September 17, 2014

Beyond Counting. Owen Kaser. September 17, 2014 Beyond Counting Owen Kaser September 17, 2014 1 Introduction Combinatorial objects such as permutations and combinations are frequently studied from a counting perspective. For instance, How many distinct

More information

Chapter 16: Greedy Algorithm

Chapter 16: Greedy Algorithm Chapter 16: Greedy Algorithm 1 About this lecture Introduce Greedy Algorithm Look at some problems solvable by Greedy Algorithm 2 Coin Changing Suppose that in a certain country, the coin dominations consist

More information

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples Elements of Dynamic Programming COSC 3A - Design and Analysis of Algorithms 8 Elements of DP Memoization Longest Common Subsequence Greedy Algorithms Many of these slides are taken from Monica Nicolescu,

More information

Literature Review On Implementing Binary Knapsack problem

Literature Review On Implementing Binary Knapsack problem Literature Review On Implementing Binary Knapsack problem Ms. Niyati Raj, Prof. Jahnavi Vitthalpura PG student Department of Information Technology, L.D. College of Engineering, Ahmedabad, India Assistant

More information

Lecture Notes on Priority Queues

Lecture Notes on Priority Queues Lecture Notes on Priority Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 16 October 18, 2012 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

COMP Data Structures

COMP Data Structures COMP 2140 - Data Structures Shahin Kamali Topic 5 - Sorting University of Manitoba Based on notes by S. Durocher. COMP 2140 - Data Structures 1 / 55 Overview Review: Insertion Sort Merge Sort Quicksort

More information

Big-O-ology. Jim Royer January 16, 2019 CIS 675. CIS 675 Big-O-ology 1/ 19

Big-O-ology. Jim Royer January 16, 2019 CIS 675. CIS 675 Big-O-ology 1/ 19 Big-O-ology Jim Royer January 16, 2019 CIS 675 CIS 675 Big-O-ology 1/ 19 How do you tell how fast a program is? Answer? Run some test cases. Problem You can only run a few test cases. There will be many

More information

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion 2. Recursion Algorithm Two Approaches to Algorithms (1) Iteration It exploits while-loop, for-loop, repeat-until etc. Classical, conventional, and general approach (2) Recursion Self-function call It exploits

More information

ECE G205 Fundamentals of Computer Engineering Fall Exercises in Preparation to the Midterm

ECE G205 Fundamentals of Computer Engineering Fall Exercises in Preparation to the Midterm ECE G205 Fundamentals of Computer Engineering Fall 2003 Exercises in Preparation to the Midterm The following problems can be solved by either providing the pseudo-codes of the required algorithms or the

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University September 30, 2016 1 Introduction (These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan.

More information

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion (Solutions)

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion (Solutions) CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion (Solutions) Consider the following recursive function: int what ( int x, int y) if (x > y) return what (x-y, y); else if (y > x) return

More information

Algorithm Computation of a Single Source Shortest Path in a Directed Graph. (SSSP algorithm)

Algorithm Computation of a Single Source Shortest Path in a Directed Graph. (SSSP algorithm) .. PATH PROBLEMS IN DIRECTED GRAPHS 141 This algorithm is based on the Dynamic Programming idea. It is due to E. W. Dijkstra and it takes O(n ) time for graphs of n nodes, in the case in which labels form

More information

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion Review from Lectures 5 & 6 Arrays and pointers, Pointer arithmetic and dereferencing, Types of memory ( automatic, static,

More information

Chapter 2 Divid d e-an -Conquer 1

Chapter 2 Divid d e-an -Conquer 1 Chapter 2 Divide-and-Conquerid d 1 A top-down approach Patterned after the strategy employed by Napoleon Divide an instance of a problem recursively into two or more smaller instances until the solutions

More information

COT 3100 Spring 2010 Midterm 2

COT 3100 Spring 2010 Midterm 2 COT 3100 Spring 2010 Midterm 2 For the first two questions #1 and #2, do ONLY ONE of them. If you do both, only question #1 will be graded. 1. (20 pts) Give iterative and recursive algorithms for finding

More information

Algorithm Design Methods. Some Methods Not Covered

Algorithm Design Methods. Some Methods Not Covered Algorithm Design Methods Greedy method. Divide and conquer. Dynamic Programming. Backtracking. Branch and bound. Some Methods Not Covered Linear Programming. Integer Programming. Simulated Annealing. Neural

More information

CS 3410 Ch 7 Recursion

CS 3410 Ch 7 Recursion CS 3410 Ch 7 Recursion Sections Pages 7.1-7.4, 7.7 93-319, 333-336 7.1 Introduction 1. A recursive method is a method that either directly or indirectly makes a call to itself. [Weiss]. It does this by

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

Backtracking. Examples: Maze problem. The bicycle lock problem: Consider a lock with N switches, each of which can be either 0 or 1.

Backtracking. Examples: Maze problem. The bicycle lock problem: Consider a lock with N switches, each of which can be either 0 or 1. Backtracking Examples: Maze problem Finish Start The bicycle lock problem: Consider a lock with N switches, each of which can be either 0 or 1. We know that the combination that opens the lock should have

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Spring 2019 Alexis Maciel Department of Computer Science Clarkson University Copyright c 2019 Alexis Maciel ii Contents 1 Analysis of Algorithms 1 1.1 Introduction.................................

More information

Lecture 17: Array Algorithms

Lecture 17: Array Algorithms Lecture 17: Array Algorithms CS178: Programming Parallel and Distributed Systems April 4, 2001 Steven P. Reiss I. Overview A. We talking about constructing parallel programs 1. Last time we discussed sorting

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 30, 018 1 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined

More information

How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A;

How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A; How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A; } if (n

More information

Problem solving paradigms

Problem solving paradigms Problem solving paradigms Bjarki Ágúst Guðmundsson Tómas Ken Magnússon Árangursrík forritun og lausn verkefna School of Computer Science Reykjavík University Today we re going to cover Problem solving

More information

Greedy algorithms part 2, and Huffman code

Greedy algorithms part 2, and Huffman code Greedy algorithms part 2, and Huffman code Two main properties: 1. Greedy choice property: At each decision point, make the choice that is best at the moment. We typically show that if we make a greedy

More information

Lab 1. largest = num1; // assume first number is largest

Lab 1. largest = num1; // assume first number is largest Lab 1 Experiment 1 Complete and execute the following program #include using std::cout; using std::cin; using std::endl; int main() { int number1; int number2; int number3; int smallest; int

More information

UMCS. The N queens problem - new variants of the Wirth algorithm. Marcin Łajtar 1. ul. Nadbystrzycka 36b, Lublin, Poland

UMCS. The N queens problem - new variants of the Wirth algorithm. Marcin Łajtar 1. ul. Nadbystrzycka 36b, Lublin, Poland Annales Informatica AI XIII, 1 (2013) 53 61 DOI: 10.2478/v10065-012-0013-3 The N queens problem - new variants of the Wirth algorithm Marcin Łajtar 1 1 Institute of Computer Science, Lublin University

More information

Greedy Algorithms CHAPTER 16

Greedy Algorithms CHAPTER 16 CHAPTER 16 Greedy Algorithms In dynamic programming, the optimal solution is described in a recursive manner, and then is computed ``bottom up''. Dynamic programming is a powerful technique, but it often

More information

CS 161 Fall 2015 Final Exam

CS 161 Fall 2015 Final Exam CS 161 Fall 2015 Final Exam Name: Student ID: 1: 2: 3: 4: 5: 6: 7: 8: Total: 1. (15 points) Let H = [24, 21, 18, 15, 12, 9, 6, 3] be an array of eight numbers, interpreted as a binary heap with the maximum

More information

HEURISTIC SEARCH. 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and References 4.6 Exercises

HEURISTIC SEARCH. 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and References 4.6 Exercises 4 HEURISTIC SEARCH Slide 4.1 4.0 Introduction 4.1 An Algorithm for Heuristic Search 4.2 Admissibility, Monotonicity, and Informedness 4.3 Using Heuristics in Games 4.4 Complexity Issues 4.5 Epilogue and

More information

CMSC Introduction to Algorithms Spring 2012 Lecture 16

CMSC Introduction to Algorithms Spring 2012 Lecture 16 CMSC 351 - Introduction to Algorithms Spring 2012 Lecture 16 Instructor: MohammadTaghi Hajiaghayi Scribe: Rajesh Chitnis 1 Introduction In this lecture we will look at Greedy Algorithms and Dynamic Programming.

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

MergeSort. Algorithm : Design & Analysis [5]

MergeSort. Algorithm : Design & Analysis [5] MergeSort Algorithm : Design & Analysis [5] In the last class Insertion sort Analysis of insertion sorting algorithm Lower bound of local comparison based sorting algorithm General pattern of divide-and-conquer

More information

The University Of Michigan. EECS402 Lecture 07. Andrew M. Morgan. Sorting Arrays. Element Order Of Arrays

The University Of Michigan. EECS402 Lecture 07. Andrew M. Morgan. Sorting Arrays. Element Order Of Arrays The University Of Michigan Lecture 07 Andrew M. Morgan Sorting Arrays Element Order Of Arrays Arrays are called "random-access" data structures This is because any element can be accessed at any time Other

More information

CSC 284/484 Advanced Algorithms - applied homework 0 due: January 29th, 11:59pm EST

CSC 284/484 Advanced Algorithms - applied homework 0 due: January 29th, 11:59pm EST CSC 84/484 Advanced Algorithms - applied homework 0 due: January 9th, 11:59pm EST Grading: 84: 1 problem solved = A 484: problems solved = A, 1 problem solved = B This homework has different rules than

More information

COMP 250 Fall priority queues, heaps 1 Nov. 9, 2018

COMP 250 Fall priority queues, heaps 1 Nov. 9, 2018 COMP 250 Fall 2018 26 - priority queues, heaps 1 Nov. 9, 2018 Priority Queue Recall the definition of a queue. It is a collection where we remove the element that has been in the collection for the longest

More information

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions PROGRAMMING IN HASKELL Chapter 5 - List Comprehensions 0 Set Comprehensions In mathematics, the comprehension notation can be used to construct new sets from old sets. {x 2 x {1...5}} The set {1,4,9,16,25}

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK UNIT-III. SUB NAME: DESIGN AND ANALYSIS OF ALGORITHMS SEM/YEAR: III/ II PART A (2 Marks)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK UNIT-III. SUB NAME: DESIGN AND ANALYSIS OF ALGORITHMS SEM/YEAR: III/ II PART A (2 Marks) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK UNIT-III SUB CODE: CS2251 DEPT: CSE SUB NAME: DESIGN AND ANALYSIS OF ALGORITHMS SEM/YEAR: III/ II PART A (2 Marks) 1. Write any four examples

More information

Exam 2. CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson. Question Points Score Total: 80

Exam 2. CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson. Question Points Score Total: 80 Exam 2 CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson Question Points Score 1 18 2 29 3 18 4 15 Total: 80 I understand that this exam is closed book and closed note and

More information

Lecture 15 Notes Binary Search Trees

Lecture 15 Notes Binary Search Trees Lecture 15 Notes Binary Search Trees 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture, we will continue considering ways

More information

LECTURE NOTES ON PROGRAMMING FUNDAMENTAL USING C++ LANGUAGE

LECTURE NOTES ON PROGRAMMING FUNDAMENTAL USING C++ LANGUAGE Department of Software The University of Babylon LECTURE NOTES ON PROGRAMMING FUNDAMENTAL USING C++ LANGUAGE By Dr. Samaher Hussein Ali Collage of Information Technology, University of Babylon, Iraq Samaher_hussein@yahoo.com

More information

Lecture 15 Binary Search Trees

Lecture 15 Binary Search Trees Lecture 15 Binary Search Trees 15-122: Principles of Imperative Computation (Fall 2017) Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato In this lecture, we will continue considering ways to

More information

Software Design Fundamentals. CSCE Lecture 11-09/27/2016

Software Design Fundamentals. CSCE Lecture 11-09/27/2016 Software Design Fundamentals CSCE 740 - Lecture 11-09/27/2016 Today s Goals Define design Introduce the design process Overview of design criteria What results in a good design? Gregory Gay CSCE 740 -

More information