GCC An Architectural Overview

Size: px
Start display at page:

Download "GCC An Architectural Overview"

Transcription

1 GCC An Architectural Overview Diego Novillo Red Hat Canada OSDL Japan - Linux Symposium Tokyo, September 2006

2 Topics 1. Overview 2. Development model 3. Compiler infrastructure 4. Current status and future work 05/09/06 2

3 Overview Key strengths Widely popular Freely available almost everywhere Open development model However Large code base (2.2 MLOC) and aging (~15 years) Difficult to maintain and enhance Technically demanding Recent architectural changes bring hope 05/09/06 3

4 Development Model 05/09/06 4

5 Development Model Project organization Steering Committee Administrative, political Release Manager Release coordination Maintainers Design, implementation Three main stages (~2 months each) Stage 1 Big disruptive changes. Stage 2 Stabilization, minor features. Stage 3 Bug fixes only (driven by bugzilla, mostly). 05/09/06 5

6 Development Model Major development is done in branches Design/implementation discussion on public lists Frequent merges from mainline Final contribution into mainline only at stage 1 and approved by maintainers Anyone with SVN access may create a development branch Vendors create own branches from FSF release branches 05/09/06 6

7 Development Model All contributors must sign FSF copyright release Even if only working on branches Three levels of access Snapshots (weekly) Anonymous SVN Read/write SVN 05/09/06 7

8 Compiler Infrastructure 05/09/06 8

9 Source code <src> gcc libcpp libada libstdc++-v3 libgfortran libobjc boehm-gc libffi libjava zlib libiberty libgomp libssp libmudflap libdecnumber Front/middle/back end Pre-processor Ada runtime C++ runtime Fortran runtime Objective-C runtime Java runtime Utility functions and generic data structures OpenMP runtime Stack Smash Protection runtime Pointer/memory check runtime Decimal arithmetic library 05/09/06 9

10 Compiler pipeline C C++ Java Fortran Front End Middle End Back End GENERIC GIMPLE RTL Assembly Inter Procedural Optimizer RTL Optimizer SSA Optimizer Final Code Generation Call Graph Manager Pass Manager 05/09/06 10

11 GENERIC and GIMPLE GENERIC High GIMPLE Low GIMPLE if (foo (a + b,c)) c = b++ / a endif return c t1 = a + b t2 = foo (t1, c) if (t2!= 0) t3 = b b = b + 1 c = t3 / a endif return c t1 = a + b t2 = foo (t1, c) if (t2!= 0) <L1,L2> L1: t3 = b b = b + 1 c = t3 / a goto L3 L2: L3: return c 05/09/06 11

12 SSA Form Static Single Assignment (SSA) Versioning representation to expose data flow explicitly Assignments generate new versions of symbols Convergence of multiple versions generates new one (Φ functions) a 1 = 3 b 2 = 9 if (i 3 > 20) a 3 = a 1 2 b 4 = b 2 + a 3 a 5 = a a 6 = Φ(a 3, a 5 ) b 7 = Φ(b 4, b 2 ) c 8 = a 6 + b 7 05/09/06 12

13 SSA Optimizers Operate on GIMPLE IL Around 100 passes Vectorization Various loop optimizations Traditional scalar optimizations: CCP, DCE, DSE, FRE, PRE, VRP, SRA, jump threading, forward propagation Field-sensitive, points-to alias analysis Pointer checking instrumentation for C/C++ 05/09/06 13

14 RTL Register Transfer Language Assembler for abstract machine with infinite registers b = a - 1 (set (reg/v:si 59 [ b ]) (plus:si (reg/v:si 60 [ a ] (const_int -1 [0xffffffff])))) 05/09/06 14

15 RTL Abstracts Register classes Memory addressing modes Word sizes and types Compare-and-branch instructions Calling conventions Bitfield operations Type and sign conversions 05/09/06 15

16 RTL Optimizers Operate closer to the hardware Register allocation Scheduling Software pipelining Common subexpression elimination Instruction recombination Mode switching reduction Peephole optimizations Machine specific reorganization 05/09/06 16

17 Current Status and Future Work 05/09/06 17

18 Current Status New Intermediate Representations decouple Front End and Back End Increased internal modularity Lots of new features Fortran 95, mudflap, vectorizer, OpenMP, inter/intra procedural optimizers, stack protection, profiling, etc. Easier to modify 05/09/06 18

19 Future Work Static analysis support Extensibility mechanism to allow 3 rd party tools Link time optimizations Write intermediate representation Read and combine multiple compilation units Dynamic compilation Emit bytecodes Implement virtual machine with optimizing JIT 05/09/06 19

20 Contacts Home page Wiki Mailing lists IRC irc.oft.net/#gcc 05/09/06 20

An Architectural Overview of GCC

An Architectural Overview of GCC An Architectural Overview of GCC Diego Novillo dnovillo@redhat.com Red Hat Canada Linux Symposium Ottawa, Canada, July 2006 Topics 1. Overview 2. Development model 3. Compiler infrastructure 4. Intermediate

More information

The GNU Compiler Collection

The GNU Compiler Collection The GNU Compiler Collection Diego Novillo dnovillo@redhat.com Gelato Federation Meeting Porto Alegre, Rio Grande do Sul, Brazil October 3, 2005 Introduction GCC is a popular compiler, freely available

More information

Using GCC as a Research Compiler

Using GCC as a Research Compiler Using GCC as a Research Compiler Diego Novillo dnovillo@redhat.com Computer Engineering Seminar Series North Carolina State University October 25, 2004 Introduction GCC is a popular compiler, freely available

More information

Intermediate Code & Local Optimizations

Intermediate Code & Local Optimizations Lecture Outline Intermediate Code & Local Optimizations Intermediate code Local optimizations Compiler Design I (2011) 2 Code Generation Summary We have so far discussed Runtime organization Simple stack

More information

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Work started in April 2013, C/C++ support with host fallback only

More information

A Propagation Engine for GCC

A Propagation Engine for GCC A Propagation Engine for GCC Diego Novillo Red Hat Canada dnovillo@redhat.com May 1, 2005 Abstract Several analyses and transformations work by propagating known values and attributes throughout the program.

More information

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization.

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization. Where We Are Source Code Lexical Analysis Syntax Analysis Semantic Analysis IR Generation IR Optimization Code Generation Optimization Machine Code Where We Are Source Code Lexical Analysis Syntax Analysis

More information

GCC Developers Summit Ottawa, Canada, June 2006

GCC Developers Summit Ottawa, Canada, June 2006 OpenMP Implementation in GCC Diego Novillo dnovillo@redhat.com Red Hat Canada GCC Developers Summit Ottawa, Canada, June 2006 OpenMP Language extensions for shared memory concurrency (C, C++ and Fortran)

More information

Usually, target code is semantically equivalent to source code, but not always!

Usually, target code is semantically equivalent to source code, but not always! What is a Compiler? Compiler A program that translates code in one language (source code) to code in another language (target code). Usually, target code is semantically equivalent to source code, but

More information

Code Merge. Flow Analysis. bookkeeping

Code Merge. Flow Analysis. bookkeeping Historic Compilers Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials

More information

USC 227 Office hours: 3-4 Monday and Wednesday CS553 Lecture 1 Introduction 4

USC 227 Office hours: 3-4 Monday and Wednesday  CS553 Lecture 1 Introduction 4 CS553 Compiler Construction Instructor: URL: Michelle Strout mstrout@cs.colostate.edu USC 227 Office hours: 3-4 Monday and Wednesday http://www.cs.colostate.edu/~cs553 CS553 Lecture 1 Introduction 3 Plan

More information

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM.

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. IR Generation Announcements My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. This is a hard deadline and no late submissions will be

More information

Extension of GCC with a fully manageable reverse engineering front end

Extension of GCC with a fully manageable reverse engineering front end Proceedings of the 7 th International Conference on Applied Informatics Eger, Hungary, January 28 31, 2007. Vol. 1. pp. 147 154. Extension of GCC with a fully manageable reverse engineering front end Csaba

More information

Running class Timing on Java HotSpot VM, 1

Running class Timing on Java HotSpot VM, 1 Compiler construction 2009 Lecture 3. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int s = r + 5; return

More information

Intermediate Representations

Intermediate Representations Intermediate Representations Intermediate Representations (EaC Chaper 5) Source Code Front End IR Middle End IR Back End Target Code Front end - produces an intermediate representation (IR) Middle end

More information

Introduction to Code Optimization. Lecture 36: Local Optimization. Basic Blocks. Basic-Block Example

Introduction to Code Optimization. Lecture 36: Local Optimization. Basic Blocks. Basic-Block Example Lecture 36: Local Optimization [Adapted from notes by R. Bodik and G. Necula] Introduction to Code Optimization Code optimization is the usual term, but is grossly misnamed, since code produced by optimizers

More information

Compiler Construction: LLVMlite

Compiler Construction: LLVMlite Compiler Construction: LLVMlite Direct compilation Expressions X86lite Input Output Compile directly from expression language to x86 Syntax-directed compilation scheme Special cases can improve generated

More information

GCC Internals Alias analysis

GCC Internals Alias analysis GCC Internals Alias analysis Diego Novillo dnovillo@google.com November 2007 Overview GIMPLE represents alias information explicitly Alias analysis is just another pass Artificial symbols represent memory

More information

Other Forms of Intermediate Code. Local Optimizations. Lecture 34

Other Forms of Intermediate Code. Local Optimizations. Lecture 34 Other Forms of Intermediate Code. Local Optimizations Lecture 34 (Adapted from notes by R. Bodik and G. Necula) 4/18/08 Prof. Hilfinger CS 164 Lecture 34 1 Administrative HW #5 is now on-line. Due next

More information

Administrative. Other Forms of Intermediate Code. Local Optimizations. Lecture 34. Code Generation Summary. Why Intermediate Languages?

Administrative. Other Forms of Intermediate Code. Local Optimizations. Lecture 34. Code Generation Summary. Why Intermediate Languages? Administrative Other Forms of Intermediate Code. Local Optimizations HW #5 is now on-line. Due next Friday. If your test grade is not glookupable, please tell us. Please submit test regrading pleas to

More information

Compiler construction 2009

Compiler construction 2009 Compiler construction 2009 Lecture 3 JVM and optimization. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int

More information

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Administration Design reports due Friday Current demo schedule on web page send mail with preferred times if you haven

More information

Intermediate Representations

Intermediate Representations COMP 506 Rice University Spring 2018 Intermediate Representations source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students

More information

AMD S X86 OPEN64 COMPILER. Michael Lai AMD

AMD S X86 OPEN64 COMPILER. Michael Lai AMD AMD S X86 OPEN64 COMPILER Michael Lai AMD CONTENTS Brief History AMD and Open64 Compiler Overview Major Components of Compiler Important Optimizations Recent Releases Performance Applications and Libraries

More information

Office Hours: Mon/Wed 3:30-4:30 GDC Office Hours: Tue 3:30-4:30 Thu 3:30-4:30 GDC 5.

Office Hours: Mon/Wed 3:30-4:30 GDC Office Hours: Tue 3:30-4:30 Thu 3:30-4:30 GDC 5. CS380C Compilers Instructor: TA: lin@cs.utexas.edu Office Hours: Mon/Wed 3:30-4:30 GDC 5.512 Jia Chen jchen@cs.utexas.edu Office Hours: Tue 3:30-4:30 Thu 3:30-4:30 GDC 5.440 January 21, 2015 Introduction

More information

6. Intermediate Representation

6. Intermediate Representation 6. Intermediate Representation Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/

More information

GCC Internals Control and data flow support

GCC Internals Control and data flow support GCC Internals Control and data flow support Diego Novillo dnovillo@google.com November 2007 Control/Data Flow support Call Graph (cgraph) Control Flow Graph (CFG) Static Single Assignment in GIMPLE (SSA)

More information

Compiling for HSA accelerators with GCC

Compiling for HSA accelerators with GCC Compiling for HSA accelerators with GCC Martin Jambor SUSE Labs 8th August 2015 Outline HSA branch: svn://gcc.gnu.org/svn/gcc/branches/hsa Table of contents: Very Brief Overview of HSA Generating HSAIL

More information

Kampala August, Agner Fog

Kampala August, Agner Fog Advanced microprocessor optimization Kampala August, 2007 Agner Fog www.agner.org Agenda Intel and AMD microprocessors Out Of Order execution Branch prediction Platform, 32 or 64 bits Choice of compiler

More information

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1 CSE P 501 Compilers Intermediate Representations Hal Perkins Spring 2018 UW CSE P 501 Spring 2018 G-1 Administrivia Semantics/types/symbol table project due ~2 weeks how goes it? Should be caught up on

More information

Alias Analysis for Intermediate Code

Alias Analysis for Intermediate Code Alias Analysis for Intermediate Code Sanjiv K. Gupta Naveen Sharma System Software Group HCL Technologies, Noida, India 201 301 {sanjivg,naveens@noida.hcltech.com Abstract Most existing alias analysis

More information

CSE 401/M501 Compilers

CSE 401/M501 Compilers CSE 401/M501 Compilers Intermediate Representations Hal Perkins Autumn 2018 UW CSE 401/M501 Autumn 2018 G-1 Agenda Survey of Intermediate Representations Graphical Concrete/Abstract Syntax Trees (ASTs)

More information

Intermediate Representation (IR)

Intermediate Representation (IR) Intermediate Representation (IR) Components and Design Goals for an IR IR encodes all knowledge the compiler has derived about source program. Simple compiler structure source code More typical compiler

More information

The structure of a compiler

The structure of a compiler The structure of a compiler O(n) A compiler is a lot of fast stuff followed by hard problems scanning parsing intermediate code generation Polynomial time Code optimization: local dataflow, global dataflow,

More information

CSE 501: Compiler Construction. Course outline. Goals for language implementation. Why study compilers? Models of compilation

CSE 501: Compiler Construction. Course outline. Goals for language implementation. Why study compilers? Models of compilation CSE 501: Compiler Construction Course outline Main focus: program analysis and transformation how to represent programs? how to analyze programs? what to analyze? how to transform programs? what transformations

More information

Compiler Optimization

Compiler Optimization Compiler Optimization The compiler translates programs written in a high-level language to assembly language code Assembly language code is translated to object code by an assembler Object code modules

More information

8. Static Single Assignment Form. Marcus Denker

8. Static Single Assignment Form. Marcus Denker 8. Static Single Assignment Form Marcus Denker Roadmap > Static Single Assignment Form (SSA) > Converting to SSA Form > Examples > Transforming out of SSA 2 Static Single Assignment Form > Goal: simplify

More information

Adding custom instructions to the Simplescalar infrastructure

Adding custom instructions to the Simplescalar infrastructure Adding custom instructions to the Simplescalar infrastructure Somasundaram Meiyappan HT023601A School of Computing National University of Singapore meisoms@ieee.org ABSTRACT Synthesizable processors like

More information

CS 406/534 Compiler Construction Putting It All Together

CS 406/534 Compiler Construction Putting It All Together CS 406/534 Compiler Construction Putting It All Together Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy

More information

15-411: LLVM. Jan Hoffmann. Substantial portions courtesy of Deby Katz

15-411: LLVM. Jan Hoffmann. Substantial portions courtesy of Deby Katz 15-411: LLVM Jan Hoffmann Substantial portions courtesy of Deby Katz and Gennady Pekhimenko, Olatunji Ruwase,Chris Lattner, Vikram Adve, and David Koes Carnegie What is LLVM? A collection of modular and

More information

SSA Construction. Daniel Grund & Sebastian Hack. CC Winter Term 09/10. Saarland University

SSA Construction. Daniel Grund & Sebastian Hack. CC Winter Term 09/10. Saarland University SSA Construction Daniel Grund & Sebastian Hack Saarland University CC Winter Term 09/10 Outline Overview Intermediate Representations Why? How? IR Concepts Static Single Assignment Form Introduction Theory

More information

Alias Analysis for Intermediate Code

Alias Analysis for Intermediate Code Alias Analysis for Intermediate Code Sanjiv K. Gupta Naveen Sharma System Software Group HCL Technologies, Noida, India 201 301 {sanjivg,naveens}@noida.hcltech.com Abstract Most existing alias analysis

More information

Optimization. ASU Textbook Chapter 9. Tsan-sheng Hsu.

Optimization. ASU Textbook Chapter 9. Tsan-sheng Hsu. Optimization ASU Textbook Chapter 9 Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction For some compiler, the intermediate code is a pseudo code of a virtual machine.

More information

Group B Assignment 8. Title of Assignment: Problem Definition: Code optimization using DAG Perquisite: Lex, Yacc, Compiler Construction

Group B Assignment 8. Title of Assignment: Problem Definition: Code optimization using DAG Perquisite: Lex, Yacc, Compiler Construction Group B Assignment 8 Att (2) Perm(3) Oral(5) Total(10) Sign Title of Assignment: Code optimization using DAG. 8.1.1 Problem Definition: Code optimization using DAG. 8.1.2 Perquisite: Lex, Yacc, Compiler

More information

Static Single Assignment Form in the COINS Compiler Infrastructure Current Status and Background

Static Single Assignment Form in the COINS Compiler Infrastructure Current Status and Background Static Single Assignment Form in the COINS Compiler Infrastructure Current Status and Background Masataka Sassa, Toshiharu Nakaya, Masaki Kohama, Takeaki Fukuoka, Masahito Takahashi and Ikuo Nakata Department

More information

Compilers and Code Optimization EDOARDO FUSELLA

Compilers and Code Optimization EDOARDO FUSELLA Compilers and Code Optimization EDOARDO FUSELLA Contents LLVM The nu+ architecture and toolchain LLVM 3 What is LLVM? LLVM is a compiler infrastructure designed as a set of reusable libraries with well

More information

State of OpenMP & Outlook on OpenMP 4.1

State of OpenMP & Outlook on OpenMP 4.1 State of OpenMP & Outlook on OpenMP 4.1 Thursday, October 11, 2015 Bronis R. de Supinski Chair, OpenMP Language Committee This work has been authored by Lawrence Livermore National Security, LLC under

More information

CS415 Compilers. Intermediate Represeation & Code Generation

CS415 Compilers. Intermediate Represeation & Code Generation CS415 Compilers Intermediate Represeation & Code Generation These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Review - Types of Intermediate Representations

More information

Introduction to LLVM. UG3 Compiling Techniques Autumn 2018

Introduction to LLVM. UG3 Compiling Techniques Autumn 2018 Introduction to LLVM UG3 Compiling Techniques Autumn 2018 Contact Information Instructor: Aaron Smith Email: aaron.l.smith@ed.ac.uk Office: IF 1.29 TA for LLVM: Andrej Ivanis Email: andrej.ivanis@ed.ac.uk

More information

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Language Processing Systems Prof. Mohamed Hamada Software ngineering Lab. The University of Aizu Japan Intermediate/Code Generation Source language Scanner (lexical analysis) tokens Parser (syntax analysis)

More information

Under the Compiler's Hood: Supercharge Your PLAYSTATION 3 (PS3 ) Code. Understanding your compiler is the key to success in the gaming world.

Under the Compiler's Hood: Supercharge Your PLAYSTATION 3 (PS3 ) Code. Understanding your compiler is the key to success in the gaming world. Under the Compiler's Hood: Supercharge Your PLAYSTATION 3 (PS3 ) Code. Understanding your compiler is the key to success in the gaming world. Supercharge your PS3 game code Part 1: Compiler internals.

More information

Building a Runnable Program and Code Improvement. Dario Marasco, Greg Klepic, Tess DiStefano

Building a Runnable Program and Code Improvement. Dario Marasco, Greg Klepic, Tess DiStefano Building a Runnable Program and Code Improvement Dario Marasco, Greg Klepic, Tess DiStefano Building a Runnable Program Review Front end code Source code analysis Syntax tree Back end code Target code

More information

6. Intermediate Representation!

6. Intermediate Representation! 6. Intermediate Representation! Prof. O. Nierstrasz! Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes.! http://www.cs.ucla.edu/~palsberg/!

More information

Review. Pat Morin COMP 3002

Review. Pat Morin COMP 3002 Review Pat Morin COMP 3002 What is a Compiler A compiler translates from a source language S to a target language T while preserving the meaning of the input 2 Structure of a Compiler program text syntactic

More information

Control Abstraction. Hwansoo Han

Control Abstraction. Hwansoo Han Control Abstraction Hwansoo Han Review of Static Allocation Static allocation strategies Code Global variables Own variables (live within an encapsulation - static in C) Explicit constants (including strings,

More information

CS553 Lecture Dynamic Optimizations 2

CS553 Lecture Dynamic Optimizations 2 Dynamic Optimizations Last time Predication and speculation Today Dynamic compilation CS553 Lecture Dynamic Optimizations 2 Motivation Limitations of static analysis Programs can have values and invariants

More information

Lecture Outline. Intermediate code Intermediate Code & Local Optimizations. Local optimizations. Lecture 14. Next time: global optimizations

Lecture Outline. Intermediate code Intermediate Code & Local Optimizations. Local optimizations. Lecture 14. Next time: global optimizations Lecture Outline Intermediate code Intermediate Code & Local Optimizations Lecture 14 Local optimizations Next time: global optimizations Prof. Aiken CS 143 Lecture 14 1 Prof. Aiken CS 143 Lecture 14 2

More information

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017!

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Advanced Topics on Heterogeneous System Architectures HSA Foundation! Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2

More information

CS2210: Compiler Construction. Code Generation

CS2210: Compiler Construction. Code Generation Modern Compiler Project Fortran program Fortran s Lexer, Parser, and Static Checker Intermediate Code Generator IR MIPS Code Generator MIPS code C program C s Lexer, Parser, and Static Checker Intermediate

More information

Intermediate Code Generation (ICG)

Intermediate Code Generation (ICG) Intermediate Code Generation (ICG) Transform AST to lower-level intermediate representation Basic Goals: Separation of Concerns Generate efficient code sequences for individual operations Keep it fast

More information

Static Single Assignment Form in the COINS Compiler Infrastructure

Static Single Assignment Form in the COINS Compiler Infrastructure Static Single Assignment Form in the COINS Compiler Infrastructure Masataka Sassa (Tokyo Institute of Technology) Background Static single assignment (SSA) form facilitates compiler optimizations. Compiler

More information

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Department of Computer Science Why C? Low-level Direct access to memory WYSIWYG (more or less) Effectively

More information

Intermediate Representations

Intermediate Representations Compiler Design 1 Intermediate Representations Compiler Design 2 Front End & Back End The portion of the compiler that does scanning, parsing and static semantic analysis is called the front-end. The translation

More information

INTRODUCTION TO LLVM Bo Wang SA 2016 Fall

INTRODUCTION TO LLVM Bo Wang SA 2016 Fall INTRODUCTION TO LLVM Bo Wang SA 2016 Fall LLVM Basic LLVM IR LLVM Pass OUTLINE What is LLVM? LLVM is a compiler infrastructure designed as a set of reusable libraries with well-defined interfaces. Implemented

More information

Lecture Outline. Code Generation. Lecture 30. Example of a Stack Machine Program. Stack Machines

Lecture Outline. Code Generation. Lecture 30. Example of a Stack Machine Program. Stack Machines Lecture Outline Code Generation Lecture 30 (based on slides by R. Bodik) Stack machines The MIPS assembly language The x86 assembly language A simple source language Stack-machine implementation of the

More information

The View from 35,000 Feet

The View from 35,000 Feet The View from 35,000 Feet This lecture is taken directly from the Engineering a Compiler web site with only minor adaptations for EECS 6083 at University of Cincinnati Copyright 2003, Keith D. Cooper,

More information

Incremental Machine Descriptions for GCC

Incremental Machine Descriptions for GCC Incremental Machine Descriptions for GCC Sameera Deshpande Uday Khedker. (www.cse.iitb.ac.in/ {sameera,uday}) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay September

More information

8/16/12. Computer Organization. Architecture. Computer Organization. Computer Basics

8/16/12. Computer Organization. Architecture. Computer Organization. Computer Basics Computer Organization Computer Basics TOPICS Computer Organization Data Representation Program Execution Computer Languages 1 2 Architecture Computer Organization n central-processing unit n performs the

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

Multi-dimensional Arrays

Multi-dimensional Arrays Multi-dimensional Arrays IL for Arrays & Local Optimizations Lecture 26 (Adapted from notes by R. Bodik and G. Necula) A 2D array is a 1D array of 1D arrays Java uses arrays of pointers to arrays for >1D

More information

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline.

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline. The Main Idea of Today s Lecture Code Generation We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

We can emit stack-machine-style code for expressions via recursion

We can emit stack-machine-style code for expressions via recursion Code Generation The Main Idea of Today s Lecture We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

Code Generation. Lecture 30

Code Generation. Lecture 30 Code Generation Lecture 30 (based on slides by R. Bodik) 11/14/06 Prof. Hilfinger CS164 Lecture 30 1 Lecture Outline Stack machines The MIPS assembly language The x86 assembly language A simple source

More information

Overview of a Compiler

Overview of a Compiler High-level View of a Compiler Overview of a Compiler Compiler Copyright 2010, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University of Southern California have

More information

Chapter 9. Introduction to High-Level Language Programming. INVITATION TO Computer Science

Chapter 9. Introduction to High-Level Language Programming. INVITATION TO Computer Science Chapter 9 Introduction to High-Level Language Programming INVITATION TO Computer Science 1 Objectives After studying this chapter, students will be able to: Explain the advantages of high-level programming

More information

The New Framework for Loop Nest Optimization in GCC: from Prototyping to Evaluation

The New Framework for Loop Nest Optimization in GCC: from Prototyping to Evaluation The New Framework for Loop Nest Optimization in GCC: from Prototyping to Evaluation Sebastian Pop Albert Cohen Pierre Jouvelot Georges-André Silber CRI, Ecole des mines de Paris, Fontainebleau, France

More information

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar BEAMJIT: An LLVM based just-in-time compiler for Erlang Frej Drejhammar 140407 Who am I? Senior researcher at the Swedish Institute of Computer Science (SICS) working on programming languages,

More information

Accelerating Ruby with LLVM

Accelerating Ruby with LLVM Accelerating Ruby with LLVM Evan Phoenix Oct 2, 2009 RUBY RUBY Strongly, dynamically typed RUBY Unified Model RUBY Everything is an object RUBY 3.class # => Fixnum RUBY Every code context is equal RUBY

More information

Compiler Theory. (GCC the GNU Compiler Collection) Sandro Spina 2009

Compiler Theory. (GCC the GNU Compiler Collection) Sandro Spina 2009 Compiler Theory (GCC the GNU Compiler Collection) Sandro Spina 2009 GCC Probably the most used compiler. Not only a native compiler but it can also cross-compile any program, producing executables for

More information

Register Allocation. CS 502 Lecture 14 11/25/08

Register Allocation. CS 502 Lecture 14 11/25/08 Register Allocation CS 502 Lecture 14 11/25/08 Where we are... Reasonably low-level intermediate representation: sequence of simple instructions followed by a transfer of control. a representation of static

More information

Lecture 09. Ada to Software Engineering. Mr. Mubashir Ali Lecturer (Dept. of Computer Science)

Lecture 09. Ada to Software Engineering. Mr. Mubashir Ali Lecturer (Dept. of Computer Science) Lecture 09 Ada to Software Engineering Mr. Mubashir Ali Lecturer (Dept. of dr.mubashirali1@gmail.com 1 Summary of Previous Lecture 1. ALGOL 68 2. COBOL 60 3. PL/1 4. BASIC 5. Early Dynamic Languages 6.

More information

Computers in Engineering COMP 208. Computer Structure. Computer Architecture. Computer Structure Michael A. Hawker

Computers in Engineering COMP 208. Computer Structure. Computer Architecture. Computer Structure Michael A. Hawker Computers in Engineering COMP 208 Computer Structure Michael A. Hawker Computer Structure We will briefly look at the structure of a modern computer That will help us understand some of the concepts that

More information

Parallel Programming and Optimization with GCC. Diego Novillo

Parallel Programming and Optimization with GCC. Diego Novillo Parallel Programming and Optimization with GCC Diego Novillo dnovillo@google.com Outline Parallelism models Architectural overview Parallelism features in GCC Optimizing large programs Whole program mode

More information

Agenda. CSE P 501 Compilers. Big Picture. Compiler Organization. Intermediate Representations. IR for Code Generation. CSE P 501 Au05 N-1

Agenda. CSE P 501 Compilers. Big Picture. Compiler Organization. Intermediate Representations. IR for Code Generation. CSE P 501 Au05 N-1 Agenda CSE P 501 Compilers Instruction Selection Hal Perkins Autumn 2005 Compiler back-end organization Low-level intermediate representations Trees Linear Instruction selection algorithms Tree pattern

More information

Introduction A Tiny Example Language Type Analysis Static Analysis 2009

Introduction A Tiny Example Language Type Analysis Static Analysis 2009 Introduction A Tiny Example Language Type Analysis 2009 Michael I. Schwartzbach Computer Science, University of Aarhus 1 Questions About Programs Does the program terminate? How large can the heap become

More information

LLVM: A Compilation Framework. Transformation

LLVM: A Compilation Framework. Transformation Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA LLVM: A Compilation Framework

More information

The Design and Implementation of Gnu Compiler Collection

The Design and Implementation of Gnu Compiler Collection The Design and Implementation of Gnu Compiler Collection Uday Khedker (www.cse.iitb.ac.in/ uday) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay July 2008 Part 1

More information

Design and Implementation of Tree SSA

Design and Implementation of Tree SSA Design and Implementation of Tree SSA Diego Novillo Red Hat Canada dnovillo@redhat.com Abstract Tree SSA is a new optimization framework for GCC that allows the implementation of machine and language independent

More information

Topic I (d): Static Single Assignment Form (SSA)

Topic I (d): Static Single Assignment Form (SSA) Topic I (d): Static Single Assignment Form (SSA) 621-10F/Topic-1d-SSA 1 Reading List Slides: Topic Ix Other readings as assigned in class 621-10F/Topic-1d-SSA 2 ABET Outcome Ability to apply knowledge

More information

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers Outline of Introduction Administrivia What is computer architecture? What do computers do? Representing high level things in binary Data objects: integers, decimals, characters, etc. Memory locations (We

More information

Intermediate Code & Local Optimizations. Lecture 20

Intermediate Code & Local Optimizations. Lecture 20 Intermediate Code & Local Optimizations Lecture 20 Lecture Outline Intermediate code Local optimizations Next time: global optimizations 2 Code Generation Summary We have discussed Runtime organization

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace Project there are a couple of 3 person teams regroup or see me or forever hold your peace a new drop with new type checking is coming using it is optional 1 Compiler Architecture source code Now we jump

More information

Principles of Compiler Design

Principles of Compiler Design Principles of Compiler Design Intermediate Representation Compiler Lexical Analysis Syntax Analysis Semantic Analysis Source Program Token stream Abstract Syntax tree Unambiguous Program representation

More information

Building a Compiler with. JoeQ. Outline of this lecture. Building a compiler: what pieces we need? AKA, how to solve Homework 2

Building a Compiler with. JoeQ. Outline of this lecture. Building a compiler: what pieces we need? AKA, how to solve Homework 2 Building a Compiler with JoeQ AKA, how to solve Homework 2 Outline of this lecture Building a compiler: what pieces we need? An effective IR for Java joeq Homework hints How to Build a Compiler 1. Choose

More information

Compiler Optimization Intermediate Representation

Compiler Optimization Intermediate Representation Compiler Optimization Intermediate Representation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology

More information

Optimization Prof. James L. Frankel Harvard University

Optimization Prof. James L. Frankel Harvard University Optimization Prof. James L. Frankel Harvard University Version of 4:24 PM 1-May-2018 Copyright 2018, 2016, 2015 James L. Frankel. All rights reserved. Reasons to Optimize Reduce execution time Reduce memory

More information

Control Flow Integrity for COTS Binaries Report

Control Flow Integrity for COTS Binaries Report Control Flow Integrity for COTS Binaries Report Zhang and Sekar (2013) January 2, 2015 Partners: Instructor: Evangelos Ladakis Michalis Diamantaris Giorgos Tsirantonakis Dimitris Kiosterakis Elias Athanasopoulos

More information

Code Generation. Frédéric Haziza Spring Department of Computer Systems Uppsala University

Code Generation. Frédéric Haziza Spring Department of Computer Systems Uppsala University Code Generation Frédéric Haziza Department of Computer Systems Uppsala University Spring 2008 Operating Systems Process Management Memory Management Storage Management Compilers Compiling

More information