AstLog. Outline. Microsoft Research.

Size: px
Start display at page:

Download "AstLog. Outline. Microsoft Research."

Transcription

1 AstLog Microsoft Research. Outline Where does it come from? Prolog, with examples. Basic concepts of ASTLog. Simple examples in ASTLog. More complex examples. Why is this (apparently) not very widely used? 1

2 Important Prolog Ideas Terms, Facts, and rules. Unification. Backtracking. late binding. Prolog Examples. family(x,y):- unify(y,atomic(v,w,x)),dad(v,x), mom(w,x). unify(x,x). first([h _],H). rest([],[]). rest([_ T],T). append([],l,l). append([h T],L,[H R]) :- append(t,l,r). 2

3 Prolog for querying ASTs Prolog is an extension of SQL with complex terms and recursion. Easy to extend and modify. Very compact and powerful. BUT. AST s too expensive to store in Prolog. Runtime can be slow (memory). Example: Append 3 lists. append([],l,l). append([h T],L,[H R]) :- append(t,l,r). append(a,b,c,d):-append(a,b,s),append(s,c,d). append([],b,c,d):-append(b,c,d). append([h T],B,C,[H R]):-append(T,B,C,R). What is the difference? Answer: No intermediate lists! (Deforestation). 3

4 AstLog basics: There s always an implicit current node. AST s are not converted to Prolog. Matching rules are more complex. Lots of built-in predicates for matching/traversing AST nodes. Elegant, but sometimes a bit obscure (like T.S. Elliot). AstLog Elements and Constructs. Constants: #function, #lhs, #fname, etc. Variables: X, Y, Z, etc. Predicates: op(#function), kid(#lhs,y)etc. Compound: kid(#lhs, and(op(#variable), varname(y))) 4

5 AstLog simple example somekid(y):-kid(_,y). somenode(p):-or(p,kid(_,somenode(p)). defuse():- and(asym(y), if(parent(and(op(#=),kid(#left,asym(y))), emit( definition ), emit( use ))). AstLog simple example 2 cgr():-and(op(#function),fname(asym(y)), funcall(y)). funcall(y):-somenode(and(op(#funcall), kid(#callname,z), print(y,z ), or())). op(#filenode),kid(_,cgr()),or(). 5

6 Sametree sametree(node) :- op(nodeop), with (Node, op(nodeop)), not(and(with(node, kid(n, Nkid)), kid(n,not(sametree(nkid))) Follows in AstLog follows(p1,p2) Will match a node if P1 and P2 are true of consecutive nodes in an abstract syntax tree. Can this be used to generate control flow graph (all edges?) If not, why not? What exactly is meant by consecutive? cosecutive = necessary control flow. 6

7 MOST LIKELY WE LL JUST STOP HERE. THE REST WON T BE COVERED IN CLASS. Flatten flatten(test,lst): collect a list of AST nodes (children) that satisfy a particular predicate. flatten(test,head,tail): collect the list of AST nodes below current node satisfying a predicate, and hook the end of the list to the 3 rd argument; return result in argument 2. flatten(test,n,head,tail): collect the list of descendent AST nodes starting at kid n and hook 4 th argument at the end return result in arg 3. 7

8 flatten(test,lst):- flatten(test,lst,[]). flatten(test,head,tail):- if(test,and(o,unify(head,[o hrest])), unify(head,hrest)) flattenkids(test,0,hrest,tail). flattenkids(test,n,head,tail):- if(kid(n,flatten(test,kid,mid)), and(with(n,minus(nplus1,1)), flattenkids(test,nplus1,mid,tail)), unify(head,tail)). unify(x,x). Abstracted predicates. Advantage: some variables bound entirely within the scope of the predicate, and never leaked. Syntax: FN{.vars.} (anonymous-clauses). Consider: set of all (x,y) such that p(x,y). Defined using the old flatten expands to: if(p(x,y), unify(head,[(x,y) hrest]), unify(head,hrest)) flattenkids(p(x,y),0,hrest,tail). Won t work! Why? 8

9 Solution Using abstracted predicates: if((pred)(x,y), unify(head,[(x,y) hrest]), unify(head,hrest)) flattenkids(pred,0,hrest,tail). Another advantage: Sametree example: consider a predicate that involves making a complicated matching decision involving both nodes. sametree(testif, node):-. opcode(op), with(node,opcode(op)), testif(node), /* how do we say this? */. not(and(with(node,kid(n,nkid)), kid(n,not(sametree(testif, nkid))))). testif(node) :- etc, etc. Answer: Define an abstract predicate! 9

10 Examples sametree(node,equ):- op(nodeop),with(node,op(nodeop)), (equ)(node) (not(and(with(node,kid(n,nkid)) kid(n,not(sametree(nkid,equ)))))) Paper has the same done with abstraction? consteq(node):-if(aconst( c ), with(n, aconst( c)), and()) sametree(node, consteq/1) Higher order queries. WHY? Iterating /retrying over queries, and accumulating state. Set comprehension (set of all x such that P(x)). Counting elements. Is Q(x) true of all elements x : P(x), etc. HOW? Make a query into an object, with state. Provide higher-order functions that control the state of a query. But what are the states of a query? 10

11 Higher order queries Get a query under higher order control: the query(fterm, query-pred) primitive, and get it started.. Step through several evaluations: query(pred, thisquery-pred,nextquery-pred). First arg when it fails (exit), second arg otherwise, and then third arg at next evaluation.. Get bindings: qget(object-pred.). Conclusion Powerful language, full use of Prolog + higher order primitives. Sits right on top of most widely used C++ dialect Visual C++!!! Efficient execution, about 5-10 times slower than GENOA (due to Prolog) still faster than many other tools. Language design is based on abstract, difficult concepts, unfamiliar to many practioners. However, very good for study. 11

3 Lists. List Operations (I)

3 Lists. List Operations (I) 3 Lists. List Operations (I) The list is the simplest yet the most useful Prolog structure. A list is a sequence of any number of objects. Example 3.1: L = [1, 2, 3], R = [a, b, c], T = [john, marry, tim,

More information

Prolog-2 nd Lecture. Prolog Predicate - Box Model

Prolog-2 nd Lecture. Prolog Predicate - Box Model Prolog-2 nd Lecture Tracing in Prolog Procedural interpretation of execution Box model of Prolog predicate rule How to follow a Prolog trace? Trees in Prolog use nested terms Unification Informally Formal

More information

Implementação de Linguagens 2016/2017

Implementação de Linguagens 2016/2017 Implementação de Linguagens Ricardo Rocha DCC-FCUP, Universidade do Porto ricroc @ dcc.fc.up.pt Ricardo Rocha DCC-FCUP 1 Logic Programming Logic programming languages, together with functional programming

More information

simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion procedural and declarative semantics and & or

simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion procedural and declarative semantics and & or simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion simple and/or composition of goals hides complex control patterns not easily represented by traditional

More information

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015 SCHEME 7 COMPUTER SCIENCE 61A October 29, 2015 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion procedural and declarative semantics and & or

simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion procedural and declarative semantics and & or simplicity hides complexity flow of control, negation, cut, 2 nd order programming, tail recursion simple and/or composition of goals hides complex control patterns not easily represented by traditional

More information

Combining Lists & Built-in Predicates

Combining Lists & Built-in Predicates Combining Lists & Built-in Predicates Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 6 11/10/04 11/10/04 AIPP Lecture 6: Built-in Predicates 1 Collecting Results Last time we

More information

Prolog lecture 5. Data structures Difference lists Appendless append

Prolog lecture 5. Data structures Difference lists Appendless append Prolog lecture 5 Data structures Difference lists Appendless append Appending two Lists Predicate definition is elegantly simple: append([],l,l). append([x T],L,[X R]) :- append(t,l,r). Run-time performance

More information

Lecture 6: More Lists

Lecture 6: More Lists Lecture 6: More Lists Theory Define append/3, a predicate for concatenating two lists, and illustrate what can be done with it Discuss two ways of reversing a list A naïve way using append/3 A more efficient

More information

7 Related Work. The five systems which are compared in detail to CoffeeStrainer are:

7 Related Work. The five systems which are compared in detail to CoffeeStrainer are: 7 Related Work There are a number of proposals and systems which are similar to CoffeeStrainer. The main part of this chapter, from Section 7.1 to Section 7.5 consists of a detailed comparison of five

More information

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine.

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 2. true / false ML can be compiled. 3. true / false FORTRAN can reasonably be considered

More information

Recap: Functions as first-class values

Recap: Functions as first-class values Recap: Functions as first-class values Arguments, return values, bindings What are the benefits? Parameterized, similar functions (e.g. Testers) Creating, (Returning) Functions Iterator, Accumul, Reuse

More information

COP4020 Fall 2006 Final Exam

COP4020 Fall 2006 Final Exam COP4020 Fall 2006 Final Exam Name: (Please print) Put the answers on these sheets. You can collect 100 points in total for this exam. 1. Consider the following Ada program fragment: search: loop i := i+1;

More information

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341)

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) CSE 413 Languages & Implementation Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) 1 Goals Representing programs as data Racket structs as a better way to represent

More information

CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4. Hojjat Ghaderi, Fall 2006, University of Toronto

CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4. Hojjat Ghaderi, Fall 2006, University of Toronto CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4 1 Debugging Programs in Prolog We talked about the graphical debugger under Windows. Now, the text-based debugger: You can put a breakpoint

More information

CMSC 331 Final Exam Section 0201 December 18, 2000

CMSC 331 Final Exam Section 0201 December 18, 2000 CMSC 331 Final Exam Section 0201 December 18, 2000 Name: Student ID#: You will have two hours to complete this closed book exam. We reserve the right to assign partial credit, and to deduct points for

More information

CSE 431S Type Checking. Washington University Spring 2013

CSE 431S Type Checking. Washington University Spring 2013 CSE 431S Type Checking Washington University Spring 2013 Type Checking When are types checked? Statically at compile time Compiler does type checking during compilation Ideally eliminate runtime checks

More information

CMSC 331 Final Exam Section 0201 December 18, 2000

CMSC 331 Final Exam Section 0201 December 18, 2000 CMSC 331 Final Exam Section 0201 December 18, 2000 Name: nswers Student ID#: You will have two hours to complete this closed book exam. We reserve the right to assign partial credit, and to deduct points

More information

Type checking by theorem proving in IDRIS

Type checking by theorem proving in IDRIS Type checking by theorem proving in IDRIS p. 1 Type checking by theorem proving in IDRIS Scottish Theorem Proving, 10th February 2012 ecb10@st-andrews.ac.uk University of St Andrews Edwin Brady Type checking

More information

Notes on Higher Order Programming in Scheme. by Alexander Stepanov

Notes on Higher Order Programming in Scheme. by Alexander Stepanov by Alexander Stepanov August 1986 INTRODUCTION Why Scheme? Because it allows us to deal with: 1. Data Abstraction - it allows us to implement ADT (abstact data types) in a very special way. The issue of

More information

Principles of Programming Languages Topic: Scope and Memory Professor Louis Steinberg Fall 2004

Principles of Programming Languages Topic: Scope and Memory Professor Louis Steinberg Fall 2004 Principles of Programming Languages Topic: Scope and Memory Professor Louis Steinberg Fall 2004 CS 314, LS,BR,LTM: Scope and Memory 1 Review Functions as first-class objects What can you do with an integer?

More information

Announcements. The current topic: Scheme. Review: BST functions. Review: Representing trees in Scheme. Reminder: Lab 2 is due on Monday at 10:30 am.

Announcements. The current topic: Scheme. Review: BST functions. Review: Representing trees in Scheme. Reminder: Lab 2 is due on Monday at 10:30 am. The current topic: Scheme! Introduction! Object-oriented programming: Python Functional programming: Scheme! Introduction! Numeric operators, REPL, quotes, functions, conditionals! Function examples, helper

More information

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book)

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book) COMP2411 Lecture 20: Logic Programming Examples (This material not in the book) There are several distinct but often equivalent ways to think about logic programs 1. As computing logical consequences of

More information

Idris: Implementing a Dependently Typed Programming Language

Idris: Implementing a Dependently Typed Programming Language Idris: Implementing a Dependently Typed Programming Language Edwin Brady University of St Andrews ecb10@st-andrews.ac.uk @edwinbrady Type Inference and Automated Proving, Dundee, 12th May 2015 1 / 25 Idris

More information

User-defined Functions. Conditional Expressions in Scheme

User-defined Functions. Conditional Expressions in Scheme User-defined Functions The list (lambda (args (body s to a function with (args as its argument list and (body as the function body. No quotes are needed for (args or (body. (lambda (x (+ x 1 s to the increment

More information

Exercises on the Fundamentals of Prolog

Exercises on the Fundamentals of Prolog 1 Introduction Exercises on the Fundamentals of Prolog These exercises are intended to help reinforce material taught in the lectures of CIS335 course in Prolog. They do not contribute any marks to the

More information

Chapter 5. Pure PROLOG. Foundations of Logic Programming

Chapter 5. Pure PROLOG. Foundations of Logic Programming Chapter 5 1 Outline vs. logic programming Lists in Adding Arithmetics to Adding the Cut to 2 Syntax of Pure Prolog p(x,a) :- q(x), r(x,yi). p(x, a) q(x), r(x,y i ) % Comment Ambivalent syntax: p(p(a,b),

More information

Semester Review CSC 301

Semester Review CSC 301 Semester Review CSC 301 Programming Language Classes There are many different programming language classes, but four classes or paradigms stand out: l l l l Imperative Languages l assignment and iteration

More information

Part I Logic programming paradigm

Part I Logic programming paradigm Part I Logic programming paradigm 1 Logic programming and pure Prolog 1.1 Introduction 3 1.2 Syntax 4 1.3 The meaning of a program 7 1.4 Computing with equations 9 1.5 Prolog: the first steps 15 1.6 Two

More information

Neo4J: Graph Database

Neo4J: Graph Database February 24, 2013 Basics is a data storage and query system designed for storing graphs. Data as a series of relationships, modelled as a directed graph. Recall, a graph is a pair of sets: G(V, E) vertices

More information

And Parallelism. Parallelism in Prolog. OR Parallelism

And Parallelism. Parallelism in Prolog. OR Parallelism Parallelism in Prolog And Parallelism One reason that Prolog is of interest to computer scientists is that its search mechanism lends itself to parallel evaluation. In fact, it supports two different kinds

More information

Logic Languages. Hwansoo Han

Logic Languages. Hwansoo Han Logic Languages Hwansoo Han Logic Programming Based on first-order predicate calculus Operators Conjunction, disjunction, negation, implication Universal and existential quantifiers E A x for all x...

More information

A second life for Prolog

A second life for Prolog A second life for Prolog Algorithm = Logic + Control Jan Wielemaker J.Wielemaker@cwi.nl 1 Overview Algorithm = Logic + Control Limitations of SLD Beyond SLD 2 Algorithm = Logic + Control In Logic programming

More information

COMP 9416, session 1, 2006 p. 1. Datalog. COMP 9416, session 1, 2006

COMP 9416, session 1, 2006 p. 1. Datalog. COMP 9416, session 1, 2006 OMP 9416, session 1, 2006 p. 1 Datalog OMP 9416, session 1, 2006 OMP 9416, session 1, 2006 p. 2 Atoms, integers and variables The fact "person(socrates).", the fact "sum(2,3,y)." and the rule "mortal(x)

More information

Documentation for LISP in BASIC

Documentation for LISP in BASIC Documentation for LISP in BASIC The software and the documentation are both Copyright 2008 Arthur Nunes-Harwitt LISP in BASIC is a LISP interpreter for a Scheme-like dialect of LISP, which happens to have

More information

Fundamentals of Prolog

Fundamentals of Prolog Fundamentals of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Summary of Lecture 1 What makes a good Prolog program? What

More information

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson Streams, Delayed Evaluation and a Normal Order Interpreter CS 550 Programming Languages Jeremy Johnson 1 Theme This lecture discusses the stream model of computation and an efficient method of implementation

More information

Map coloring example

Map coloring example Map coloring example A B C D E F Database for map coloring coloring(a,b,c,d,e,f) :- different(a,b), different(a,c), different(a,d), different(a,f), different(b,c), different(b,e), different(c,d), different(c,e),

More information

UNIVERSITY OF TORONTO AT MISSISSAUGA April 2006 Examination CSC 324H5 S Instructor: Richard Krueger Duration 3 hours No Aids Allowed

UNIVERSITY OF TORONTO AT MISSISSAUGA April 2006 Examination CSC 324H5 S Instructor: Richard Krueger Duration 3 hours No Aids Allowed UNIVERSITY OF TORONTO AT MISSISSAUGA April 2006 Examination CSC 324H5 S Instructor: Richard Krueger Duration 3 hours No Aids Allowed Student Number: Last (Family) Name(s): First (Given) Name(s): SOLUTIONS

More information

Computer Science 21b: Structure and Interpretation of Computer Programs (Spring Term, 2004)

Computer Science 21b: Structure and Interpretation of Computer Programs (Spring Term, 2004) Computer Science 21b: Structure and Interpretation of Computer Programs (Spring Term, 2004) There are only 5 ideas in Computer Science, and by the end of this course, you ll know 3 of them --Harry Mairson

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. Midterm Sample Solutions CSC324H1 Duration: 50 minutes Instructor(s): David Liu.

UNIVERSITY OF TORONTO Faculty of Arts and Science. Midterm Sample Solutions CSC324H1 Duration: 50 minutes Instructor(s): David Liu. UNIVERSITY OF TORONTO Faculty of Arts and Science Midterm Sample s CSC324H1 Duration: 50 minutes Instructor(s): David Liu. No Aids Allowed Name: Student Number: Please read the following guidelines carefully.

More information

INTRODUCTION TO PROLOG

INTRODUCTION TO PROLOG INTRODUCTION TO PROLOG PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/44 STRUCTURE OF A PROLOG PROGRAM Where, declaratively, Haskell expresses a computation as a system

More information

Homework 6: Higher-Order Procedures Due: 11:59 PM, Oct 16, 2018

Homework 6: Higher-Order Procedures Due: 11:59 PM, Oct 16, 2018 Integrated Introduction to Computer Science Klein Homework 6: Higher-Order Procedures Due: 11:59 PM, Oct 16, 2018 Contents 1 Fun with map (Practice) 2 2 Unfold (Practice) 3 3 Map2 3 4 Fold 4 5 All You

More information

PL Revision overview

PL Revision overview PL Revision overview Course topics Parsing G = (S, P, NT, T); (E)BNF; recursive descent predictive parser (RDPP) Lexical analysis; Syntax and semantic errors; type checking Programming language structure

More information

Objects CHAPTER 6. FIGURE 1. Concrete syntax for the P 3 subset of Python. (In addition to that of P 2.)

Objects CHAPTER 6. FIGURE 1. Concrete syntax for the P 3 subset of Python. (In addition to that of P 2.) CHAPTER 6 Objects The main ideas for this chapter are: objects and classes: objects are values that bundle together some data (attributes) and some functions (methods). Classes are values that describe

More information

Logic Programming. Efficiency Issues. Temur Kutsia

Logic Programming. Efficiency Issues. Temur Kutsia Logic Programming Efficiency Issues Temur Kutsia Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at Efficiency Issues in Prolog Narrow the

More information

More Non-logical Features of Prolog

More Non-logical Features of Prolog More Non-logical Features of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Commit operators Implementing Negation as Failure

More information

An Explicit Continuation Evaluator for Scheme

An Explicit Continuation Evaluator for Scheme Massachusetts Institute of Technology Course Notes 2 6.844, Spring 05: Computability Theory of and with Scheme February 17 Prof. Albert R. Meyer revised March 3, 2005, 1265 minutes An Explicit Continuation

More information

COP4020 Programming Languages. Logical programming with Prolog Prof. Xin Yuan

COP4020 Programming Languages. Logical programming with Prolog Prof. Xin Yuan COP4020 Programming Languages Logical programming with Prolog Prof. Xin Yuan Topics Logic programming with Prolog COP4020 Spring 2013 2 Definitions: Prolog Terms Terms are symbolic expressions that are

More information

Concepts of Programming Languages

Concepts of Programming Languages Concepts of Programming Languages Lecture 1 - Introduction Patrick Donnelly Montana State University Spring 2014 Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014

More information

Compilers and computer architecture: A realistic compiler to MIPS

Compilers and computer architecture: A realistic compiler to MIPS 1 / 1 Compilers and computer architecture: A realistic compiler to MIPS Martin Berger November 2017 Recall the function of compilers 2 / 1 3 / 1 Recall the structure of compilers Source program Lexical

More information

Chapter 9: Constraint Logic Programming

Chapter 9: Constraint Logic Programming 9. Constraint Logic Programming 9-1 Deductive Databases and Logic Programming (Winter 2007/2008) Chapter 9: Constraint Logic Programming Introduction, Examples Basic Query Evaluation Finite Domain Constraint

More information

Lecture 7: Binding Time and Storage

Lecture 7: Binding Time and Storage Lecture 7: Binding Time and Storage COMP 524 Programming Language Concepts Stephen Olivier February 5, 2009 Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts Goal of Lecture The

More information

Prolog. Intro to Logic Programming

Prolog. Intro to Logic Programming Prolog Logic programming (declarative) Goals and subgoals Prolog Syntax Database example rule order, subgoal order, argument invertibility, backtracking model of execution, negation by failure, variables

More information

Prolog - 3 Prolog search trees + traces

Prolog - 3 Prolog search trees + traces Prolog - 3 Prolog search trees + traces 1 Review member(a, [A B]). member(a, [B C]) :- member (A,C). goal-oriented semantics: can get value assignment for goal member(a,[b C]) by showing truth of subgoal

More information

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy Topics Chapter 16 Logic Programming Summary (resolution, unification, Prolog search strategy ) Disjoint goals The cut operator Negative goals Predicate fail Debugger / tracer Lists 2 Resolution Resolution

More information

Implementation of Lambda-Free Higher-Order Superposition. Petar Vukmirović

Implementation of Lambda-Free Higher-Order Superposition. Petar Vukmirović Implementation of Lambda-Free Higher-Order Superposition Petar Vukmirović Automatic theorem proving state of the art FOL HOL 2 Automatic theorem proving challenge HOL High-performance higher-order theorem

More information

CS61A Notes Week 6: Scheme1, Data Directed Programming You Are Scheme and don t let anyone tell you otherwise

CS61A Notes Week 6: Scheme1, Data Directed Programming You Are Scheme and don t let anyone tell you otherwise CS61A Notes Week 6: Scheme1, Data Directed Programming You Are Scheme and don t let anyone tell you otherwise If you re not already crazy about Scheme (and I m sure you are), then here s something to get

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 16: Functional Programming Zheng (Eddy Zhang Rutgers University April 2, 2018 Review: Computation Paradigms Functional: Composition of operations on data.

More information

Programming Paradigms

Programming Paradigms PP 2017/18 Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut 1/38 Programming Paradigms Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut J. Gamper Free University of Bozen-Bolzano

More information

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009 Seminar Softw. tech. for teaching and learning September 30, 2009 Outline 1 Introduction to Prolog Basics Simple example 2 Basics Simple example Outline 1 Introduction to Prolog Basics Simple example 2

More information

Principles of Programming Languages. Lecture Outline

Principles of Programming Languages. Lecture Outline Principles of Programming Languages CS 492 Lecture 1 Based on Notes by William Albritton 1 Lecture Outline Reasons for studying concepts of programming languages Programming domains Language evaluation

More information

The Logic Paradigm. Joseph Spring. 7COM1023 Programming Paradigms

The Logic Paradigm. Joseph Spring. 7COM1023 Programming Paradigms The Logic Paradigm Joseph Spring 7COM1023 Programming Paradigms 1 Discussion The Logic Paradigm Propositional and Predicate Logic See also notes and slides on PP website Horn Clauses Definition, Examples

More information

Encoding functions in FOL. Where we re at. Ideally, would like an IF stmt. Another example. Solution 1: write your own IF. No built-in IF in Simplify

Encoding functions in FOL. Where we re at. Ideally, would like an IF stmt. Another example. Solution 1: write your own IF. No built-in IF in Simplify Where we re at We explored the three standard logics, and compared them along three dimensions expressiveness automation human-friendliness Next we ll look in more detail at FOL we will explore how to

More information

Lecture 11: Feb. 10, 2016

Lecture 11: Feb. 10, 2016 CS323: AI (Hands on with Prolog) Spring 2016 Lecturer: K.R. Chowdhary Lecture 11: Feb. 10, 2016 : Professor of CS (VF) Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

Environments

Environments Environments PLAI Chapter 6 Evaluating using substitutions is very inefficient To work around this, we want to use a cache of substitutions. We begin evaluating with no cached substitutions, then collect

More information

Declarative Programming. 7: inductive reasoning

Declarative Programming. 7: inductive reasoning Declarative Programming 7: inductive reasoning 1 Inductive reasoning: overview infer general rules from specific observations Given B: background theory (clauses of logic program) P: positive examples

More information

Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define

Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define CS 6A Scheme Summer 207 Discussion 0: July 25, 207 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Exam in INF3110, December 12, 2013 Page 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: INF3110 Programming Languages Day of exam: December 12, 2013 Exam hours: 14:30 18:30

More information

SCHEME AND CALCULATOR 5b

SCHEME AND CALCULATOR 5b SCHEME AND CALCULATOR 5b COMPUTER SCIENCE 6A July 25, 203 In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

Recursive Functions. Recursive functions are built up from basic functions by some operations.

Recursive Functions. Recursive functions are built up from basic functions by some operations. Recursive Functions Recursive functions are built up from basic functions by some operations. The Successor Function Let s get very primitive. Suppose we have 0 defined, and want to build the nonnegative

More information

Introduction to Computer Science and Business

Introduction to Computer Science and Business Introduction to Computer Science and Business The Database Programming with PL/SQL course introduces students to the procedural language used to extend SQL in a programatic manner. This course outline

More information

Tests, Backtracking, and Recursion

Tests, Backtracking, and Recursion Tests, Backtracking, and Recursion Artificial Intelligence Programming in Prolog Lecture 3 30/09/04 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 1 Re-cap A Prolog program consists of predicate

More information

CS221: Algorithms and Data Structures. Asymptotic Analysis. Alan J. Hu (Borrowing slides from Steve Wolfman)

CS221: Algorithms and Data Structures. Asymptotic Analysis. Alan J. Hu (Borrowing slides from Steve Wolfman) CS221: Algorithms and Data Structures Asymptotic Analysis Alan J. Hu (Borrowing slides from Steve Wolfman) 1 Learning Goals By the end of this unit, you will be able to Define which program operations

More information

Logical reasoning systems

Logical reasoning systems Logical reasoning systems Theorem provers and logic programming languages Production systems Frame systems and semantic networks Description logic systems CS 561, Session 19 1 Logical reasoning systems

More information

CSCC24 Functional Programming Scheme Part 2

CSCC24 Functional Programming Scheme Part 2 CSCC24 Functional Programming Scheme Part 2 Carolyn MacLeod 1 winter 2012 1 Based on slides from Anya Tafliovich, and with many thanks to Gerald Penn and Prabhakar Ragde. 1 The Spirit of Lisp-like Languages

More information

CS 360 Programming Languages Interpreters

CS 360 Programming Languages Interpreters CS 360 Programming Languages Interpreters Implementing PLs Most of the course is learning fundamental concepts for using and understanding PLs. Syntax vs. semantics vs. idioms. Powerful constructs like

More information

Functional Programming

Functional Programming Functional Programming CS331 Chapter 14 Functional Programming Original functional language is LISP LISt Processing The list is the fundamental data structure Developed by John McCarthy in the 60 s Used

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Values and Types We divide the universe of values according to types A type is a set of values and

More information

What s the problem? fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2).

What s the problem? fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2). 39 What s the problem? A Fibonacci Implementation fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2). List Concatenation conc([],l,l). conc([x L1], L2, [X L3]) :- conc(l1,l2,l3).

More information

Why do we need an interpreter? SICP Interpretation part 1. Role of each part of the interpreter. 1. Arithmetic calculator.

Why do we need an interpreter? SICP Interpretation part 1. Role of each part of the interpreter. 1. Arithmetic calculator. .00 SICP Interpretation part Parts of an interpreter Arithmetic calculator Names Conditionals and if Store procedures in the environment Environment as explicit parameter Defining new procedures Why do

More information

The Idea Underlying Logic Programming. CSci 8980, Fall 2012 Specifying and Reasoning About Computational Systems An Introduction to Logic Programming

The Idea Underlying Logic Programming. CSci 8980, Fall 2012 Specifying and Reasoning About Computational Systems An Introduction to Logic Programming The Idea Underlying CSci 8980, Fall 2012 Specifying and Reasoning About Computational Systems An Introduction to Department of Computer Science and Engineering University of Minnesota Lectures in Fall

More information

(Refer Slide Time: 1:27)

(Refer Slide Time: 1:27) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 1 Introduction to Data Structures and Algorithms Welcome to data

More information

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA.

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA. R13 SET - 1 III B. Tech I Semester Regular Examinations, November - 2015 1 a) What constitutes a programming environment? [3M] b) What mixed-mode assignments are allowed in C and Java? [4M] c) What is

More information

Advanced Functional Programming, 1DL Lecture 2, Cons T Åhs

Advanced Functional Programming, 1DL Lecture 2, Cons T Åhs Advanced Functional Programming, 1DL450 2012 Lecture 2, 2012-11-01 Cons T Åhs Higher order functions hof() -> F = fun(x) -> X * X + 1 end, L = lists:map(f, [1, 2, 3], G = fun([]) -> nil; ([_ _]) -> cons

More information

On the BEAM Implementation

On the BEAM Implementation On the BEAM Implementation Ricardo Lopes 1,Vítor Santos Costa 2, and Fernando Silva 1 1 DCC-FC and LIACC, Universidade do Porto, Portugal {rslopes,fds}@ncc.up.pt 2 COPPE-Sistemas, Universidade Federal

More information

SQL STORED ROUTINES. CS121: Relational Databases Fall 2017 Lecture 9

SQL STORED ROUTINES. CS121: Relational Databases Fall 2017 Lecture 9 SQL STORED ROUTINES CS121: Relational Databases Fall 2017 Lecture 9 SQL Functions 2 SQL queries can use sophisticated math operations and functions Can compute simple functions, aggregates Can compute

More information

;;; Determines if e is a primitive by looking it up in the primitive environment. ;;; Define indentation and output routines for the output for

;;; Determines if e is a primitive by looking it up in the primitive environment. ;;; Define indentation and output routines for the output for Page 1/11 (require (lib "trace")) Allow tracing to be turned on and off (define tracing #f) Define a string to hold the error messages created during syntax checking (define error msg ""); Used for fancy

More information

Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3.

Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3. 1 Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3. Satisfying goals 2 Prolog A standard free Prolog can be downloaded from http://www.swi-prolog.org

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2010 P. N. Hilfinger CS 164: Final Examination (revised) Name: Login: You have

More information

UNIVERSITY of CALIFORNIA at Berkeley Department of Electrical Engineering and Computer Sciences Computer Sciences Division

UNIVERSITY of CALIFORNIA at Berkeley Department of Electrical Engineering and Computer Sciences Computer Sciences Division UNIVERSITY of CALIFORNIA at Berkeley Department of Electrical Engineering and Computer Sciences Computer Sciences Division CS61A Kurt Meinz Structure and Interpretation of Computer Programs Summer 2002

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Common Lisp Fundamentals

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Common Lisp Fundamentals INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Common Lisp Fundamentals Stephan Oepen & Murhaf Fares Language Technology Group (LTG) August 30, 2017 Last Week: What is

More information

Basic Scheme February 8, Compound expressions Rules of evaluation Creating procedures by capturing common patterns

Basic Scheme February 8, Compound expressions Rules of evaluation Creating procedures by capturing common patterns Basic Scheme February 8, 2007 Compound expressions Rules of evaluation Creating procedures by capturing common patterns Previous lecture Basics of Scheme Expressions and associated values (or syntax and

More information

FP Foundations, Scheme

FP Foundations, Scheme FP Foundations, Scheme In Text: Chapter 15 1 Functional Programming -- Prelude We have been discussing imperative languages C/C++, Java, Fortran, Pascal etc. are imperative languages Imperative languages

More information

Project Compiler. CS031 TA Help Session November 28, 2011

Project Compiler. CS031 TA Help Session November 28, 2011 Project Compiler CS031 TA Help Session November 28, 2011 Motivation Generally, it s easier to program in higher-level languages than in assembly. Our goal is to automate the conversion from a higher-level

More information

Implementing languages on the Erlang VM

Implementing languages on the Erlang VM Robert Virding Principle Language Expert at Erlang Solutions Ltd. Erlang Solutions Ltd. Implementing languages on the Erlang VM 19992012 Erlang Solutions Ltd. What languages? Basic Tools 3 case studies

More information

CS 321 Programming Languages and Compilers. Prolog

CS 321 Programming Languages and Compilers. Prolog CS 321 Programming Languages and Compilers Prolog Prolog PROgramming LOGic Algorithm = Logic + Control Logic programming deals with computing relations rather than functions. To understand Prolog one must

More information

Advanced Prolog Programming

Advanced Prolog Programming 1 Introduction CIS335, Assignment 4 Advanced Prolog Programming Geraint Wiggins November 12, 2004 This practical is the second self-assessed exercise for MSc students on the Prolog module. It is intended

More information

Recursion, Structures, and Lists

Recursion, Structures, and Lists Recursion, Structures, and Lists Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 4 04/10/04 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 1 The central ideas of Prolog

More information