Interactive Theorem Proving in Higher-Order Logics

Size: px
Start display at page:

Download "Interactive Theorem Proving in Higher-Order Logics"

Transcription

1 Interactive Theorem Proving in Higher-Order Logics Partly based on material by Mike Gordon, Tobias Nipkow, and Andrew Pitts Jasmin Blanchette

2 Automatic Interactive

3 What are proof assistants? Proof assistants (or interactive theorem provers) are programs with a graphical user interface designed for proving logical formulas. The logical formulas may represent mathematical theorems but also the correctness of hardware or software. Proof assistants help catch almost all flaws in pen-andpaper proofs, but they are tedious to use.

4 What are they based on? Different proof assistants are based on different logics. Some logics are more expressive (flexible) than others; others are easier to automate. less expressive easier to automate First-Order Logic Higher-Order Logic more expressive harder to automate Set Theory Type Theory

5 Why should we trust them? Some proof assistants are designed around a small inference kernel, with simple logical primitives. Some generate detailed proof objects, which can be rechecked independently by small programs. And some just have to be trusted.

6 What are the main systems? Small kernel Proof objects First-Order Logic ACL2 x x Higher-Order Logic HOL4 HOL Light Isabelle/HOL PVS x x x ( x ) x ( x ) x ( x ) Set Theory Isabelle/ZF Mizar x ( x ) x x Type Theory Agda Coq Lean Matita x x ( x ) x x x x x

7 Are proof assistants toys? Mathematics Hardware Software Programming languages Four-color theorem Feit-Thompson theorem Kepler conjecture AMD Intel Compiler Operating system Program semantics courses POPL conference Coq Coq HOL Light & Isabelle/HOL ACL2 HOL Light Coq Isabelle/HOL Coq & Isabelle/HOL Coq & Agda

8 Are proof assistants toys? Automated reasoning Completeness of FOL SAT proof checkers SAT solver with 2WL Resolution Superposition Coq, Isabelle/HOL, Mizar,... ACL2, Coq, Isabelle/HOL Isabelle/HOL Isabelle/HOL Isabelle/HOL

9 What do proofs look like? Tactical proofs apply tactics to the proof goal to produce a new proof goal, proceeding in a backward fashion. Declarative proofs state intermediate properties, proceeding in a forward fashion.

10 What do proofs look like? Let us prove A and B implies B and A using tactics. Goal:ss A and B implies B and A Tactic:s rule and-left Goal: ss A, B implies B and A Tactic:s rule and-right Goals:s A, B implies B and A, B implies A Tactics: rule implies-trivial rule implies-trivial No goals left

11 What do proofs look like? Let us prove A and B implies B and A declaratively. proof assume A and B from A and B have A by (rule and-get-left) from A and B have B by (rule and-get-right) from B, A show B and A by (rule and-right) qed

12 Can proofs be automated? Most proof assistants offer a variety of general and specialized automatic tactics. The Simplifier rewrites by applying equations left-to-right; e.g. the equation x + 0 = x can be used to simplify the goal < 3 to 2 < 3. The Arithmetic Procedure can prove formulas involving linear arithmetic, e.g. 2 < 3, k > n or k = 0 or [k n and k 0]. The General Reasoner performs a systematic, bounded proof search, applying rules like and-left and and-right.

13 Can proofs be automated? In addition, automatic theorem provers can be invoked via tools such as Sledgehammer for Isabelle/HOL and HOLyHammer for HOL Light and HOL4. These provers perform a systematic search in first-order logic and are designed to be very efficient. There are also integrations of computer algebra systems.

14 Does there exist a function f from reals to reals such that for all x and y, f(x + y 2 ) f(x) y? let lemma = prove (`!f:real->real. ~(!x y. f(x + y * y) - f(x) >= y)`, REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!n x y. &n * y <= f(x + &n * y * y) - f(x)` MP_TAC THENL [MATCH_MP_TAC num_induction THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[REAL_SUB_REFL; REAL_LE_REFL; GSYM REAL_OF_NUM_SUC] THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x + &n * y * y`; `y:real`]) THEN SIMP_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN REAL_ARITH_TAC; X_CHOOSE_TAC `m:num` (SPEC `f(&1) - f(&0):real` REAL_ARCH_SIMPLE) THEN DISCH_THEN(MP_TAC o SPECL [`SUC m EXP 2`; `&0`; `inv(&(suc m))`]) THEN REWRITE_TAC[REAL_ADD_LID; GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_POW] THEN REWRITE_TAC[REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) = &m + &1`; REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) * inv(&m + &1) = &1`] THEN ASM_REAL_ARITH_TAC]);; John Harrison

15 Does there exist a function f from reals to reals such that for all x and y, f(x + y 2 ) f(x) y? [1] f(x + y 2 ) f(x) y for any x and y (given) [2] f(x + n y 2 ) f(x) n y for any x, y, and natural number n (by an easy induction using [1] for the step case) [3] f(1) f(0) m + 1 for any natural number m (set n = (m + 1) 2, x = 0, y = 1/(m + 1) in [2]) [4] Contradiction of [3] and the Archimedean property of the reals John Harrison

16 intermediate properties manual generated automatically

17

18

19

20

21

22 Proof assistants Automatic provers = Isabelle Isabelle vs. Vampire well suited for large formalizations but require intensive manual labor Sledgehammer fully automatic but no proof management

23 superposition select lemmas + translate to FOL = Isabelle HOL reconstruct proof SMT

24 superposition SMT refutational resolution rule term ordering equality reasoning redundancy criterion E, SPASS, Vampire, refutational SAT solver + congruence closure + quantifier instantiation + other theories (e.g. LIA, LRA) CVC4, verit, Yices, Z3,

25 How many hammers are there? pre-sledgehammer Otter in ACL2 Bliksem in Coq Gandalf in HOL98 DISCOUNT, SPASS, etc., in ILF Otter, SPASS, etc., in KIV LEO, SPASS, etc., in ΩMEGA E, Vampire, etc., in Naproche... post-sledgehammer HOLyHammer for HOLs MizAR for Mizar SMTCoq/CVC4Coq for Coq SMT integration in TLAPS...

26 Developing proofs without Sledgehammer is like walking as opposed to running. Tobias Nipkow Larry Paulson I have recently been working on a new development. Sledgehammer has found some simply incredible proofs. I would estimate the improvement in productivity as a factor of at least three, maybe five. Sledgehammers have led to visible success. Fully automated procedures can prove 47% of the HOL Light/Flyspeck libraries, with comparable rates in Isabelle. These automation rates represent an enormous saving in human labor. Thomas Hales

27 productivity teaching revolution: Isar + auto + induct + Sledgehammer lemma search higher-order (induction) other logical mismatches too much search, not enough computation/intuition end-game/transparency what about nontheorems?

28 What if the formula is wrong? Counterexample generators automatically test the goal with different values. They are useful to detect errors early, whether they are in the formula to prove or in the concepts on which it builds. lemma i j and n m implies in + jm im + jn nitpick Counterexample: i = n = 0 and j = m = 1

29

30 Under the hood HOL FORL SAT Isabelle Nitpick.Kodkod...SAT solver

31 = Isabelle HOL

32 What is HOL? HOL = higher-order logic = Church s simple theory of types + polymorphism = logic of Gordon s HOL88 and successors = logic of HOL Light, HOL Zero, ProofPower HOL = logic of PVS (+ dependent types) = logic of Isabelle/HOL (+ type classes)

33 Syntax of types ::= ( ) bool nat int... base types 0 a 0 b... type variables ) functions pairs (ASCII: *) list lists set sets... user-defined types Convention: 1 ) 2 ) 3 1 ) ( 2 ) 3 ) 33

34 Syntax of terms t ::= (t) a constant or variable (identifier) tt function application x. t function abstraction... lots of syntactic sugar Convention: ft 1 t 2 t 3 ((f t 1 ) t 2 ) t 3 34

35 Isabelle s metalogic V V The HOL types and terms are part of the metalogic. Alpha-, beta-, eta-equivalence is built-in: V (lx. t[x]) (ly. t[y]) a (lx. t[x]) u t[u] b t s t (lx s. tx) h 35

36 Notations Implication and function arrows associate to the right: a b c means a (b c) The rule format is sometimes used instead of, e.g.: a c b 36

37 Typing rules Terms must be well typed (the argument of every function call must be of the right type). ` x s : s ` c s : s ` t : t ` t : s! t ` u : s ` lx s. t : s! t ` tu: t 37

38 Type inference Isabelle computes types of variables (and polymorphic constants) automatically. In the presence of overloaded functions, this is not always possible. Users can provide type annotations inside the terms: e.g. f (x :: nat) 38

39 Currying "Thou shalt curry thy functions." Curried: f :: 1 ) 2 ) Tupled: f 0 :: 1 2 ) Currying allows partial applications: e.g. (op +) 1 39

40 Metalogical propositions Propositions have type prop (intuitionistic). Built-in operators: =) prop prop prop implication V (a prop) prop universal quantification a a prop equality V 40

41 The HOL object logic Propositions have type bool (classical). The familiar operators are defined on bool (False, True, =,,,,,,, ). is syntactic sugar for =. Trueprop is a special implicit constant that converts a bool to a prop. e.g. a b c is really Trueprop (a b) Trueprop c 41

42 Predefined syntactic sugar Infix: +,,, Mixfix: if then else, case of,... Prefix binds more strongly than infix: Prefix binds more strongly than infix: fx+ y (f x)+y 6 f (x + y) Enclose if and case in parentheses: (if then else ) 42

43 Theory = Isabelle file theory MyTh imports T 1...T n begin (definitions, theorems, proofs,...) end Types and terms must be enclosed in quotes ("), except for single identifiers. 43

44 Extensions Definitional New types are carved out of an old type. New constants are defined in terms of old ones. Axiomatic Locales New types are declared and characterized by axioms. New constants are introduced by axioms. Parameterized by types, terms, and assumptions. Assumptions discharged upon instantiation. 44

45 Definitional Type Constructors typedef a dlists = {xs : a list distinct xs} (co)datatype, quotient_type are built on typedef (Term) Constants definition id :: a => a where id x = x (co)inductive, fun, prim(co)rec, corec, lift_definition are built on definition

46 Axiomatic Type Constructors typedecl a dlist (Term) Constants axiomatization Abs_dlist :: a list => a dlist and Rep_dlist :: a dlist => a list where Abs_Rep: distinct xs ==> Rep (Abs xs) = xs

47 Locales They combine type parameters term parameters assumptions. locale semigroup = fixes f :: a => a => a (infixl "*" 70) assumes assoc: a * b * c = a * (b * c) begin end They are not part of Isabelle s kernel.

48 Proof styles Tactical (apply-style) Tactics directly modify the proof state. Backward: reduction of goal to True. Declarative (Isar-style) Textual, linearized natural deduction. Forward: intermediate steps towards final goal. 48

49 Apply-style proofs apply method apply (method arg1 argn) by method done Main methods: simp auto blast metis arith rule Also: try0 and try tools 49

50 Isar-style proofs proof method [or -] fix x 1 x n assume A 1 A n have P 1 by (method ) have P k by (method ) show Q by (method ) qed Instead of by: nested proof block. Instead of have: obtain y 1 y m where P. 50

51 Extensional equality is axiomatized, the other logical constants are definable. True := ((λx. x) = (λx. x)) All := (λp. P = (λx. True)) x. P x : All (λx. P x)

52 Demo

53 In conclusion Proof assistants are wonderful and dreadful. In some areas (esp. of computer science), they are more wonderful than dreadful. (And they are very addictive.) They can serve as the glue between automatic theorem provers, computer algebra systems, and the human. Exhortation: Try them out, and see for yourself if they make sense for your research.

Isabelle/HOL:Selected Features and Recent Improvements

Isabelle/HOL:Selected Features and Recent Improvements /: Selected Features and Recent Improvements webertj@in.tum.de Security of Systems Group, Radboud University Nijmegen February 20, 2007 /:Selected Features and Recent Improvements 1 2 Logic User Interface

More information

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL Overview A Compact Introduction to Isabelle/HOL Tobias Nipkow TU München 1. Introduction 2. Datatypes 3. Logic 4. Sets p.1 p.2 System Architecture Overview of Isabelle/HOL ProofGeneral Isabelle/HOL Isabelle

More information

Automatic Proof and Disproof in Isabelle/HOL

Automatic Proof and Disproof in Isabelle/HOL Automatic Proof and Disproof in Isabelle/HOL Jasmin Blanchette, Lukas Bulwahn, Tobias Nipkow Fakultät für Informatik TU München 1 Introduction 2 Isabelle s Standard Proof Methods 3 Sledgehammer 4 Quickcheck:

More information

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015 Lost in translation how easy problems become hard due to bad encodings Vampire Workshop 2015 Leonardo de Moura Microsoft Research I wanted to give the following talk http://leanprover.github.io/ Automated

More information

Integration of SMT Solvers with ITPs There and Back Again

Integration of SMT Solvers with ITPs There and Back Again Integration of SMT Solvers with ITPs There and Back Again Sascha Böhme and University of Sheffield 7 May 2010 1 2 Features: SMT-LIB vs. Yices Translation Techniques Caveats 3 4 Motivation Motivation System

More information

Coq, a formal proof development environment combining logic and programming. Hugo Herbelin

Coq, a formal proof development environment combining logic and programming. Hugo Herbelin Coq, a formal proof development environment combining logic and programming Hugo Herbelin 1 Coq in a nutshell (http://coq.inria.fr) A logical formalism that embeds an executable typed programming language:

More information

Isabelle Tutorial: System, HOL and Proofs

Isabelle Tutorial: System, HOL and Proofs Isabelle Tutorial: System, HOL and Proofs Burkhart Wolff Université Paris-Sud What we will talk about What we will talk about Isabelle with: Brief Revision Advanced Automated Proof Techniques Structured

More information

Introduction to dependent types in Coq

Introduction to dependent types in Coq October 24, 2008 basic use of the Coq system In Coq, you can play with simple values and functions. The basic command is called Check, to verify if an expression is well-formed and learn what is its type.

More information

On Agda JAIST/AIST WS CVS/AIST Yoshiki Kinoshita, Yoriyuki Yamagata. Agenda

On Agda JAIST/AIST WS CVS/AIST Yoshiki Kinoshita, Yoriyuki Yamagata. Agenda On Agda 2009.3.12 JAIST/AIST WS CVS/AIST Yoshiki Kinoshita, Yoriyuki Yamagata Agenda On Agda Agda as a programming language Agda as a proof system Further information. 2 1 Agenda On Agda Agda as a programming

More information

type classes & locales

type classes & locales Content Rough timeline Intro & motivation, getting started [1] COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Toby Murray type classes & locales

More information

Programming and Proving in

Programming and Proving in Programming and Proving in = λ β Isabelle HOL α Tobias Nipkow Fakultät für Informatik Technische Universität München 1 Notation Implication associates to the right: A = B = C means A = (B = C) Similarly

More information

Theorem Proving Principles, Techniques, Applications Recursion

Theorem Proving Principles, Techniques, Applications Recursion NICTA Advanced Course Theorem Proving Principles, Techniques, Applications Recursion 1 CONTENT Intro & motivation, getting started with Isabelle Foundations & Principles Lambda Calculus Higher Order Logic,

More information

Functional Programming and Modeling

Functional Programming and Modeling Chapter 2 2. Functional Programming and Modeling 2.0 2. Functional Programming and Modeling 2.0 Overview of Chapter Functional Programming and Modeling 2. Functional Programming and Modeling 2.1 Overview

More information

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1 LAST TIME ON HOL Proof rules for propositional and predicate logic Safe and unsafe rules NICTA Advanced Course Forward Proof Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 The Epsilon

More information

COMP 4161 Data61 Advanced Course. Advanced Topics in Software Verification. Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka

COMP 4161 Data61 Advanced Course. Advanced Topics in Software Verification. Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka COMP 4161 Data61 Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka 1 COMP4161 c Data61, CSIRO: provided under Creative Commons Attribution

More information

Programs and Proofs in Isabelle/HOL

Programs and Proofs in Isabelle/HOL Programs and Proofs in Isabelle/HOL Makarius Wenzel http://sketis.net March 2016 = Isabelle λ β α Introduction What is Isabelle? Hanabusa Itcho : Blind monks examining an elephant Introduction 2 History:

More information

Specification, Verification, and Interactive Proof

Specification, Verification, and Interactive Proof Specification, Verification, and Interactive Proof SRI International May 23, 2016 PVS PVS - Prototype Verification System PVS is a verification system combining language expressiveness with automated tools.

More information

Basic Foundations of Isabelle/HOL

Basic Foundations of Isabelle/HOL Basic Foundations of Isabelle/HOL Peter Wullinger May 16th 2007 1 / 29 1 Introduction into Isabelle s HOL Why Type Theory Basic Type Syntax 2 More HOL Typed λ Calculus HOL Rules 3 Example proof 2 / 29

More information

Organisatorials. About us. Binary Search (java.util.arrays) When Tue 9:00 10:30 Thu 9:00 10:30. COMP 4161 NICTA Advanced Course

Organisatorials. About us. Binary Search (java.util.arrays) When Tue 9:00 10:30 Thu 9:00 10:30. COMP 4161 NICTA Advanced Course Organisatorials COMP 4161 NICTA Advanced Course When Tue 9:00 10:30 Thu 9:00 10:30 Where Tue: Law 163 (F8-163) Thu: Australian School Business 205 (E12-205) Advanced Topics in Software Verification Rafal

More information

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214 Theorem proving PVS theorem prover Abhik Roychoudhury National University of Singapore Both specification and implementation can be formalized in a suitable logic. Proof rules for proving statements in

More information

Static and User-Extensible Proof Checking. Antonis Stampoulis Zhong Shao Yale University POPL 2012

Static and User-Extensible Proof Checking. Antonis Stampoulis Zhong Shao Yale University POPL 2012 Static and User-Extensible Proof Checking Antonis Stampoulis Zhong Shao Yale University POPL 2012 Proof assistants are becoming popular in our community CompCert [Leroy et al.] sel4 [Klein et al.] Four-color

More information

First Order Logic in Practice 1 First Order Logic in Practice John Harrison University of Cambridge Background: int

First Order Logic in Practice 1 First Order Logic in Practice John Harrison University of Cambridge   Background: int First Order Logic in Practice 1 First Order Logic in Practice John Harrison University of Cambridge http://www.cl.cam.ac.uk/users/jrh/ Background: interaction and automation Why do we need rst order automation?

More information

Embedding logics in Dedukti

Embedding logics in Dedukti 1 INRIA, 2 Ecole Polytechnique, 3 ENSIIE/Cedric Embedding logics in Dedukti Ali Assaf 12, Guillaume Burel 3 April 12, 2013 Ali Assaf, Guillaume Burel: Embedding logics in Dedukti, 1 Outline Introduction

More information

Formally Certified Satisfiability Solving

Formally Certified Satisfiability Solving SAT/SMT Proof Checking Verifying SAT Solver Code Future Work Computer Science, The University of Iowa, USA April 23, 2012 Seoul National University SAT/SMT Proof Checking Verifying SAT Solver Code Future

More information

From Types to Sets in Isabelle/HOL

From Types to Sets in Isabelle/HOL From Types to Sets in Isabelle/HOL Extented Abstract Ondřej Kunčar 1 and Andrei Popescu 1,2 1 Fakultät für Informatik, Technische Universität München, Germany 2 Institute of Mathematics Simion Stoilow

More information

Functional Programming with Isabelle/HOL

Functional Programming with Isabelle/HOL Functional Programming with Isabelle/HOL = Isabelle λ β HOL α Florian Haftmann Technische Universität München January 2009 Overview Viewing Isabelle/HOL as a functional programming language: 1. Isabelle/HOL

More information

First-Class Type Classes

First-Class Type Classes First-Class Type Classes Matthieu Sozeau Joint work with Nicolas Oury LRI, Univ. Paris-Sud - Démons Team & INRIA Saclay - ProVal Project Gallium Seminar November 3rd 2008 INRIA Rocquencourt Solutions for

More information

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms Coq quick reference Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope identifier for a notation scope

More information

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ :=

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ := Coq quick reference Category Example Description Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope

More information

Built-in Module BOOL. Lecture Note 01a

Built-in Module BOOL. Lecture Note 01a Built-in Module BOOL Lecture Note 01a Topics! Built-in Boolean Algebra module BOOL and the equivalence of two boolean expressions (or SAT problems)! Study important concepts about CafeOBJ system through

More information

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic 3.4 Deduction and Evaluation: Tools 3.4.1 Conditional-Equational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax

More information

Automated Theorem Proving in a First-Order Logic with First Class Boolean Sort

Automated Theorem Proving in a First-Order Logic with First Class Boolean Sort Thesis for the Degree of Licentiate of Engineering Automated Theorem Proving in a First-Order Logic with First Class Boolean Sort Evgenii Kotelnikov Department of Computer Science and Engineering Chalmers

More information

Provably Correct Software

Provably Correct Software Provably Correct Software Max Schäfer Institute of Information Science/Academia Sinica September 17, 2007 1 / 48 The Need for Provably Correct Software BUT bugs are annoying, embarrassing, and cost gazillions

More information

Computing Fundamentals 2 Introduction to CafeOBJ

Computing Fundamentals 2 Introduction to CafeOBJ Computing Fundamentals 2 Introduction to CafeOBJ Lecturer: Patrick Browne Lecture Room: K408 Lab Room: A308 Based on work by: Nakamura Masaki, João Pascoal Faria, Prof. Heinrich Hußmann. See notes on slides

More information

Verification of an LCF-Style First-Order Prover with Equality

Verification of an LCF-Style First-Order Prover with Equality Verification of an LCF-Style First-Order Prover with Equality Alexander Birch Jensen, Anders Schlichtkrull, and Jørgen Villadsen DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Programming and Proving in Isabelle/HOL Tobias Nipkow Fakultät für Informatik Technische Universität München 2013 MOD Summer School 1 Notation Implication associates to the right: A = B = C means A = (B

More information

Mathematics for Computer Scientists 2 (G52MC2)

Mathematics for Computer Scientists 2 (G52MC2) Mathematics for Computer Scientists 2 (G52MC2) L07 : Operations on sets School of Computer Science University of Nottingham October 29, 2009 Enumerations We construct finite sets by enumerating a list

More information

Isabelle s meta-logic. p.1

Isabelle s meta-logic. p.1 Isabelle s meta-logic p.1 Basic constructs Implication = (==>) For separating premises and conclusion of theorems p.2 Basic constructs Implication = (==>) For separating premises and conclusion of theorems

More information

Concrete Semantics. A Proof Assistant Approach. Tobias Nipkow Fakultät für Informatik Technische Universität München

Concrete Semantics. A Proof Assistant Approach. Tobias Nipkow Fakultät für Informatik Technische Universität München Concrete Semantics A Proof Assistant Approach Tobias Nipkow Fakultät für Informatik Technische Universität München 2014-1-26 1 Part I Isabelle 2 Chapter 2 Programming and Proving 3 1 Overview of Isabelle/HOL

More information

Why3 where programs meet provers

Why3 where programs meet provers Why3 where programs meet provers Jean-Christophe Filliâtre CNRS KeY Symposium 2017 Rastatt, Germany October 5, 2017 history started in 2001, as an intermediate language in the process of verifying C and

More information

Adam Chlipala University of California, Berkeley ICFP 2006

Adam Chlipala University of California, Berkeley ICFP 2006 Modular Development of Certified Program Verifiers with a Proof Assistant Adam Chlipala University of California, Berkeley ICFP 2006 1 Who Watches the Watcher? Program Verifier Might want to ensure: Memory

More information

Automated Discovery of Conditional Lemmas in Hipster!

Automated Discovery of Conditional Lemmas in Hipster! ! Automated Discovery of Conditional Lemmas in Hipster!! Master of Science Thesis in Computer Science (Algorithms, Languages and Logic)!! IRENE LOBO VALBUENA! Chalmers University of Technology University

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Tobias Nipkow Programming and Proving in Isabelle/HOL = Isabelle λ β α February 12, 2013 Contents 1 Introduction 1 2 Programming and Proving 3 21 Basics 3 22 Types bool, nat and list 5 23 Type and function

More information

Formal Verification in Industry

Formal Verification in Industry Formal Verification in Industry 1 Formal Verification in Industry John Harrison Intel Corporation The cost of bugs Formal verification Machine-checked proof Automatic and interactive approaches HOL Light

More information

Rockwell Collins Evolving FM Methodology

Rockwell Collins Evolving FM Methodology Rockwell Collins Evolving FM Methodology Konrad Slind Trusted Systems Group Rockwell Collins January 25, 2014 Collaborators Rockwell Collins: Andrew Gacek, David Hardin, Darren Cofer, John Backes, Luas

More information

Logical Verification Course Notes. Femke van Raamsdonk Vrije Universiteit Amsterdam

Logical Verification Course Notes. Femke van Raamsdonk Vrije Universiteit Amsterdam Logical Verification Course Notes Femke van Raamsdonk femke@csvunl Vrije Universiteit Amsterdam autumn 2008 Contents 1 1st-order propositional logic 3 11 Formulas 3 12 Natural deduction for intuitionistic

More information

Deductive Program Verification with Why3, Past and Future

Deductive Program Verification with Why3, Past and Future Deductive Program Verification with Why3, Past and Future Claude Marché ProofInUse Kick-Off Day February 2nd, 2015 A bit of history 1999: Jean-Christophe Filliâtre s PhD Thesis Proof of imperative programs,

More information

Higher-Order Logic. Specification and Verification with Higher-Order Logic

Higher-Order Logic. Specification and Verification with Higher-Order Logic Higher-Order Logic Specification and Verification with Higher-Order Logic Arnd Poetzsch-Heffter (Slides by Jens Brandt) Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern

More information

The Isabelle/Isar Reference Manual

The Isabelle/Isar Reference Manual = Isabelle λ β Isar α The Isabelle/Isar Reference Manual Makarius Wenzel With Contributions by Clemens Ballarin, Stefan Berghofer, Jasmin Blanchette, Timothy Bourke, Lukas Bulwahn, Amine Chaieb, Lucas

More information

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics Recall Architecture of Compilers, Interpreters CMSC 330: Organization of Programming Languages Source Scanner Parser Static Analyzer Operational Semantics Intermediate Representation Front End Back End

More information

PROGRAMMING IN HASKELL. Chapter 2 - First Steps

PROGRAMMING IN HASKELL. Chapter 2 - First Steps PROGRAMMING IN HASKELL Chapter 2 - First Steps 0 The Hugs System Hugs is an implementation of Haskell 98, and is the most widely used Haskell system; The interactive nature of Hugs makes it well suited

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Preuves Interactives et Applications

Preuves Interactives et Applications Preuves Interactives et Applications Christine Paulin & Burkhart Wolff http://www.lri.fr/ paulin/preuvesinteractives Université Paris-Saclay HOL and its Specification Constructs 10/12/16 B. Wolff - M2

More information

Deductive Program Verification with Why3

Deductive Program Verification with Why3 Deductive Program Verification with Why3 Jean-Christophe Filliâtre CNRS Mathematical Structures of Computation Formal Proof, Symbolic Computation and Computer Arithmetic Lyon, February 2014 definition

More information

Coq with Classes. Matthieu Sozeau. Journées PPS 2011 September 5th 2011 Trouville, France. Project Team πr 2 INRIA Paris

Coq with Classes. Matthieu Sozeau. Journées PPS 2011 September 5th 2011 Trouville, France. Project Team πr 2 INRIA Paris Coq with Classes Matthieu Sozeau Project Team πr 2 INRIA Paris Journées PPS 2011 September 5th 2011 Trouville, France This talk A quick overview of Coq Elaboration Type Classes Matthieu Sozeau - Coq with

More information

arxiv: v1 [cs.lo] 11 Nov 2010

arxiv: v1 [cs.lo] 11 Nov 2010 Verifying Safety Properties With the TLA + Proof System Kaustuv Chaudhuri 1, Damien Doligez 2, Leslie Lamport 3, and Stephan Merz 4 arxiv:1011.2560v1 [cs.lo] 11 Nov 2010 1 Overview 1 INRIA Saclay, France,kaustuv.chaudhuri@inria.fr

More information

A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality

A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality J. Autom. Reasoning manuscript No. (will be inserted by the editor) A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality Jasmin Christian Blanchette Mathias Fleury Peter Lammich

More information

The design of a programming language for provably correct programs: success and failure

The design of a programming language for provably correct programs: success and failure The design of a programming language for provably correct programs: success and failure Don Sannella Laboratory for Foundations of Computer Science School of Informatics, University of Edinburgh http://homepages.inf.ed.ac.uk/dts

More information

Probabilistic Parsing of Mathematics

Probabilistic Parsing of Mathematics Probabilistic Parsing of Mathematics Jiří Vyskočil Josef Urban Czech Technical University in Prague, Czech Republic Cezary Kaliszyk University of Innsbruck, Austria Outline Why and why not current formal

More information

Introduction to OCaml

Introduction to OCaml Fall 2018 Introduction to OCaml Yu Zhang Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl References Learn X in Y Minutes Ocaml Real World OCaml Cornell CS 3110 Spring 2018 Data Structures and Functional

More information

An LCF-Style Interface between HOL and First-Order Logic

An LCF-Style Interface between HOL and First-Order Logic An LCF-Style Interface between HOL and First-Order Logic Joe Hurd Computer Laboratory University of Cambridge, joe.hurd@cl.cam.ac.uk 1 Introduction Performing interactive proof in the HOL theorem prover

More information

Isabelle Primer for Mathematicians

Isabelle Primer for Mathematicians Isabelle Primer for Mathematicians B. Grechuk Abstract This is a quick introduction to the Isabelle/HOL proof assistant, aimed at mathematicians who would like to use it for the formalization of mathematical

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Tobias Nipkow Programming and Proving in Isabelle/HOL = Isabelle λ β HOL α October 8, 2017 Contents 1 Introduction............................................... 1 2 Programming and Proving.................................

More information

Formal Systems and their Applications

Formal Systems and their Applications Formal Systems and their Applications Dave Clarke (Dave.Clarke@cs.kuleuven.be) Acknowledgment: these slides are based in part on slides from Benjamin Pierce and Frank Piessens 1 Course Overview Introduction

More information

Propositional Logic Formal Syntax and Semantics. Computability and Logic

Propositional Logic Formal Syntax and Semantics. Computability and Logic Propositional Logic Formal Syntax and Semantics Computability and Logic Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship

More information

CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Dan Grossman Spring 2011

CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Dan Grossman Spring 2011 CS152: Programming Languages Lecture 11 STLC Extensions and Related Topics Dan Grossman Spring 2011 Review e ::= λx. e x e e c v ::= λx. e c τ ::= int τ τ Γ ::= Γ, x : τ (λx. e) v e[v/x] e 1 e 1 e 1 e

More information

Inductive Definitions, continued

Inductive Definitions, continued 1 / 27 Inductive Definitions, continued Assia Mahboubi Jan 7th, 2016 2 / 27 Last lecture Introduction to Coq s inductive types: Introduction, elimination and computation rules; Twofold implementation :

More information

A Case Study of Co-induction in Isabelle 1

A Case Study of Co-induction in Isabelle 1 A Case Study of Co-induction in Isabelle 1 Jacob Frost Computer Laboratory University of Cambridge e-mail:jacob.frost@cl.cam.ac.uk February 1995 1 Supported by ESPRIT Basic Research Project 6453, Types

More information

λ calculus is inconsistent

λ calculus is inconsistent Content Rough timeline COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Toby Murray λ Intro & motivation, getting started [1] Foundations & Principles

More information

Partiality and Recursion in Interactive Theorem Provers - An Overview

Partiality and Recursion in Interactive Theorem Provers - An Overview Partiality and Recursion in Interactive Theorem Provers - An Overview Ana Bove, Alexander Krauss, Matthieu Sozeau To cite this version: Ana Bove, Alexander Krauss, Matthieu Sozeau. Partiality and Recursion

More information

Why. an intermediate language for deductive program verification

Why. an intermediate language for deductive program verification Why an intermediate language for deductive program verification Jean-Christophe Filliâtre CNRS Orsay, France AFM workshop Grenoble, June 27, 2009 Jean-Christophe Filliâtre Why tutorial AFM 09 1 / 56 Motivations

More information

Datatype declarations

Datatype declarations Datatype declarations datatype suit = HEARTS DIAMONDS CLUBS SPADES datatype a list = nil (* copy me NOT! *) op :: of a * a list datatype a heap = EHEAP HEAP of a * a heap * a heap type suit val HEARTS

More information

Numerical Computations and Formal Methods

Numerical Computations and Formal Methods Program verification Formal arithmetic Decision procedures Proval, Laboratoire de Recherche en Informatique INRIA Saclay IdF, Université Paris Sud, CNRS October 28, 2009 Program verification Formal arithmetic

More information

The Lean Theorem Prover (system description)

The Lean Theorem Prover (system description) The Lean Theorem Prover (system description) Leonardo de Moura 1, Soonho Kong 2, Jeremy Avigad 2, Floris van Doorn 2 and Jakob von Raumer 2* 1 Microsoft Research leonardo@microsoft.com 2 Carnegie Mellon

More information

Types Summer School Gothenburg Sweden August Dogma oftype Theory. Everything has a type

Types Summer School Gothenburg Sweden August Dogma oftype Theory. Everything has a type Types Summer School Gothenburg Sweden August 2005 Formalising Mathematics in Type Theory Herman Geuvers Radboud University Nijmegen, NL Dogma oftype Theory Everything has a type M:A Types are a bit like

More information

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Toby Murray, June Andronick, Gerwin Klein λ 1 Last time... λ calculus syntax free variables, substitution β reduction α and η conversion

More information

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering Inductive datatypes in HOL lessons learned in Formal-Logic Engineering Stefan Berghofer and Markus Wenzel Institut für Informatik TU München = Isabelle λ β HOL α 1 Introduction Applications of inductive

More information

PRocH: Proof Reconstruction for HOL Light

PRocH: Proof Reconstruction for HOL Light PRocH: Proof Reconstruction for HOL Light Cezary Kaliszyk and Josef Urban 1 University of Innsbruck, Austria 2 Radboud University Nijmegen Abstract. PRocH 3 is a proof reconstruction tool that imports

More information

A Verified Compiler from Isabelle/HOL to CakeML

A Verified Compiler from Isabelle/HOL to CakeML A Verified Compiler from Isabelle/HOL to CakeML Lars Hupel and Tobias Nipkow Technische Universität München lars.hupel@tum.de, nipkow@in.tum.de Abstract. Many theorem provers can generate functional programs

More information

An Introduction to Programming and Proving in Agda (incomplete draft)

An Introduction to Programming and Proving in Agda (incomplete draft) An Introduction to Programming and Proving in Agda (incomplete draft) Peter Dybjer January 29, 2018 1 A first Agda module Your first Agda-file is called BoolModule.agda. Its contents are module BoolModule

More information

Introduction to Co-Induction in Coq

Introduction to Co-Induction in Coq August 2005 Motivation Reason about infinite data-structures, Reason about lazy computation strategies, Reason about infinite processes, abstracting away from dates. Finite state automata, Temporal logic,

More information

Formal proofs and certified computation in Coq

Formal proofs and certified computation in Coq Formal proofs and certified computation in Coq Érik Martin-Dorel http://erik.martin-dorel.org Équipe ACADIE, Laboratoire IRIT Université Toulouse III - Paul Sabatier French Symposium on Games 26 30 May

More information

SMT-LIB for HOL. Daniel Kroening Philipp Rümmer Georg Weissenbacher Oxford University Computing Laboratory. ITP Workshop MSR Cambridge 25 August 2009

SMT-LIB for HOL. Daniel Kroening Philipp Rümmer Georg Weissenbacher Oxford University Computing Laboratory. ITP Workshop MSR Cambridge 25 August 2009 1 / 13 SMT-LIB for HOL Daniel Kroening Philipp Rümmer Georg Weissenbacher Oxford University Computing Laboratory ITP Workshop MSR Cambridge 25 August 2009 2 / 13 The SMT-LIB Standard SMT Satisfiability

More information

The Isar Proof Language in 2016

The Isar Proof Language in 2016 The Isar Proof Language in 2016 Makarius Wenzel sketis.net August 2016 = Isabelle λ β Isar α Introduction History of Isar 1999: first usable version primary notion of proof document (not proof script )

More information

Meta programming on the proof level

Meta programming on the proof level Acta Univ. Sapientiae, Informatica, 1, 1 (2009) 15 34 Meta programming on the proof level Gergely Dévai Eötvös Loránd University, Faculty of Informatics, Department of Programming Languages and Compilers

More information

Appendix G: Some questions concerning the representation of theorems

Appendix G: Some questions concerning the representation of theorems Appendix G: Some questions concerning the representation of theorems Specific discussion points 1. What should the meta-structure to represent mathematics, in which theorems naturally fall, be? There obviously

More information

Lambda Calculus and Type Inference

Lambda Calculus and Type Inference Lambda Calculus and Type Inference Björn Lisper Dept. of Computer Science and Engineering Mälardalen University bjorn.lisper@mdh.se http://www.idt.mdh.se/ blr/ October 13, 2004 Lambda Calculus and Type

More information

Context aware Calculation and Deduction

Context aware Calculation and Deduction Context aware Calculation and Deduction Ring Equalities via Gröbner Bases in Isabelle Amine Chaieb and Makarius Wenzel Technische Universität München Institut für Informatik, Boltzmannstraße 3, 85748 Garching,

More information

SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis

SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis Who am I? 1. I'm a researcher at Inria 2. I work on proof assistants, the kind of tools that we will be using for

More information

10 Years of Partiality and General Recursion in Type Theory

10 Years of Partiality and General Recursion in Type Theory 10 Years of Partiality and General Recursion in Type Theory Ana Bove Chalmers University of Technology DTP 10 July 9th 2010 Claims and Disclaims I know that I know nothing Socrates Ana Bove DTP 10 July

More information

FAKULTÄT FÜR INFORMATIK. Synthesis of Robust, Semi-Intelligble Isar Proofs from ATP Proofs

FAKULTÄT FÜR INFORMATIK. Synthesis of Robust, Semi-Intelligble Isar Proofs from ATP Proofs FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Bachelor Thesis in Computer Science Synthesis of Robust, Semi-Intelligble Isar Proofs from ATP Proofs Steffen Juilf Smolka FAKULTÄT FÜR INFORMATIK

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Values and Types We divide the universe of values according to types A type is a set of values and

More information

Refinements for free! 1

Refinements for free! 1 Refinements for free! Refinements for free! 1 Cyril Cohen joint work with Maxime Dénès and Anders Mörtberg University of Gothenburg and Inria Sophia-Antipolis May 8, 2014 1 This work has been funded by

More information

An Industrially Useful Prover

An Industrially Useful Prover An Industrially Useful Prover J Strother Moore Department of Computer Science University of Texas at Austin July, 2017 1 Recap Yesterday s Talk: ACL2 is used routinely in the microprocessor industry to

More information

ACL2 Challenge Problem: Formalizing BitCryptol April 20th, John Matthews Galois Connections

ACL2 Challenge Problem: Formalizing BitCryptol April 20th, John Matthews Galois Connections ACL2 Challenge Problem: Formalizing BitCryptol April 20th, 2005 John Matthews Galois Connections matthews@galois.com Roadmap SHADE verifying compiler Deeply embedding Cryptol semantics in ACL2 Challenge

More information

Deductive Verification in Frama-C and SPARK2014: Past, Present and Future

Deductive Verification in Frama-C and SPARK2014: Past, Present and Future Deductive Verification in Frama-C and SPARK2014: Past, Present and Future Claude Marché (Inria & Université Paris-Saclay) OSIS, Frama-C & SPARK day, May 30th, 2017 1 / 31 Outline Why this joint Frama-C

More information

Assistant for Language Theory. SASyLF: An Educational Proof. Corporation. Microsoft. Key Shin. Workshop on Mechanizing Metatheory

Assistant for Language Theory. SASyLF: An Educational Proof. Corporation. Microsoft. Key Shin. Workshop on Mechanizing Metatheory SASyLF: An Educational Proof Assistant for Language Theory Jonathan Aldrich Robert J. Simmons Key Shin School of Computer Science Carnegie Mellon University Microsoft Corporation Workshop on Mechanizing

More information

SMTCoq: A plug-in for integrating SMT solvers into Coq

SMTCoq: A plug-in for integrating SMT solvers into Coq SMTCoq: A plug-in for integrating SMT solvers into Coq Burak Ekici 1, Alain Mebsout 1, Cesare Tinelli 1, Chantal Keller 2, Guy Katz 3, Andrew Reynolds 1, and Clark Barrett 3 1 The University of Iowa, USA

More information

Lecture 2: SML Basics

Lecture 2: SML Basics 15-150 Lecture 2: SML Basics Lecture by Dan Licata January 19, 2012 I d like to start off by talking about someone named Alfred North Whitehead. With someone named Bertrand Russell, Whitehead wrote Principia

More information

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS 1 THE FORMALIZATION OF MATHEMATICS by Harvey M. Friedman Ohio State University Department of Mathematics friedman@math.ohio-state.edu www.math.ohio-state.edu/~friedman/ May 21, 1997 Can mathematics be

More information