Propositional Logic Formal Syntax and Semantics. Computability and Logic


 Sherilyn Dennis
 1 years ago
 Views:
Transcription
1 Propositional Logic Formal Syntax and Semantics Computability and Logic
2 Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship between expressions and what they represent (think: meaning)
3 Propositional Logic Syntax and Grammar Propositional logic (sometimes called sentential logic or truthfunctional logic) is the logic concerning propositions (statements, claims, sentences) Syntax: Atomic (individual) sentences (P, Q, R, etc) and combinations thereof (~P, P and Q, etc) Semantics: Assigning truthvalues to atomic and complex sentences
4 Formal Syntax and Formal Semantics So far we have kept syntax and semantics rather informal But, in metalogic we want to prove things about logic This requires us to get really precise about syntax and semantics We are going to give syntax and semantics of propositional logic a mathematical treatment This is called formal syntax and formal semantics
5 Formal Syntax Sentences in propositional logic are linear expressions of symbols: Every atomic sentence (A, B, C,.. P, Q, R, ) is a sentence and are sentences With ϕ and ψ sentences: ϕ is a sentence (ϕ ψ) is a sentence (ϕ ψ) is a sentence (ϕ ψ) is a sentence (ϕ ψ) is a sentence Nothing else is a sentence
6 Proving Syntactical Properties of Our Language: A Simple Example Theorem (Parentheses Law): Every sentence has an equal amount of left and right parenthesis Proof: (by Mathematical (Structural) Induction) Base: Every atomic sentence, has 0 left and right parentheses. Same for and. Step: Suppose (inductive hypothesis) that ϕ and ψ both have equal amounts of left and right parentheses (say m and n respectively). Then: ϕ has equal amount (m) of left and right parentheses (ϕ ψ) has equal amount (m + n + 1) of left and right parentheses (ϕ ψ) has equal amount of left and right parentheses Etc. HW question: Prove by mathematical induction that every sentence is of finite length.
7 Formal Semantics Where L is the set of all syntactical sentences, a truthassignment h is a function h:l {True, False} that satisfies the following conditions: h( ) = True h( ) = False h( ϕ) = True iff h(ϕ) = False h(ϕ ψ) = True iff h(ϕ) = True and h(ψ) = True h(ϕ ψ) = False iff h(ϕ) = False and h(ψ) = False h(ϕ ψ) = False iff h(ϕ) = True and h(ψ) = False h(ϕ ψ) = True iff h(ϕ) = True and h(ψ) = True or h(ϕ) = False and h(ψ) = False
8 Connection Between TruthTables and Formal Semantics The rows in a truthtable correspond to possible (classes of) truthassignments The basic truthtables for not, and, or, etc express their formal semantics Complex truthtables reveal how truthconditions of complex statements are a function of truthconditions of component statements in accordance to the formal semantics of operators involved Truthtables are more informal, and easier to read and use, certainly for specific sentences or arguments However, to prove general (metalogical) theorems about propositional logic, formal semantics often works better, since it can be hard to make general statements about truthtables.
9 Defining Semantical Properties Using Formal Semantics: Some examples A sentence ϕ is a tautology iff there is no truthassignment h such that h(ϕ) = False Two sentences ϕ and ψ are equivalent iff for all truthassignments h: h(ϕ) = True iff h(ψ) = True. We write this as ϕ ψ A sentence ϕ implies sentence ψ iff there exists no truthassignment h such that h(ϕ) = True and h(ψ) = False. We write this as ϕ ψ A set of sentences Γ = {ϕ 1,, ϕ n } implies a sentence ψ iff there exists no h such that h(ϕ i ) = True for all sentences ϕ i in Γ and h(ψ) = False. We write: Γ ψ
10 Some Metalogical Theorems Regarding Semantical Properties Theorem: ϕ is a tautology iff ϕ is a contradiction Proof: ϕ is a tautology iff (definition tautology) there is no h such that h(ϕ) = False iff (semantics ) there is no h such that h( ϕ) = True iff (definition contradiction) ϕ is a contradiction
11 Another Example Theorem: For any statement ϕ: ϕ (i.e. a contradiction implies anything) Proof: Take any statement ϕ and any truthassignment h. By semantics of : h( ) = False. So, by definition of implication, implies ϕ, i.e. ϕ.
Introductory logic and sets for Computer scientists
Introductory logic and sets for Computer scientists Nimal Nissanke University of Reading ADDISON WESLEY LONGMAN Harlow, England II Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario
More informationPropositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson
Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions
More informationRamsey s Theorem on Graphs
Ramsey s Theorem on Graphs 1 Introduction Exposition by William Gasarch Imagine that you have 6 people at a party. We assume that, for every pair of them, either THEY KNOW EACH OTHER or NEITHER OF THEM
More informationGoals: Define the syntax of a simple imperative language Define a semantics using natural deduction 1
Natural Semantics Goals: Define the syntax of a simple imperative language Define a semantics using natural deduction 1 1 Natural deduction is an instance of firstorder logic; that is, it is the formal
More informationIntro to semantics; Smallstep semantics Lecture 1 Tuesday, January 29, 2013
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 1 Tuesday, January 29, 2013 1 Intro to semantics What is the meaning of a program? When we write a program, we use
More informationSemantics. A. Demers Jan This material is primarily from Ch. 2 of the text. We present an imperative
CS411 Notes 1: IMP and Large Step Operational Semantics A. Demers 2325 Jan 2001 This material is primarily from Ch. 2 of the text. We present an imperative language called IMP; wegive a formal definition
More informationIntroduction to Logic Programming
Introduction to Logic Programming York University CSE 3401 Vida Movahedi York University CSE 3401 V. Movahedi 1 Overview Programming Language Paradigms Logic Programming Functional Programming Brief review
More informationIntroduction & Review
Introduction & Review York University Department of Computer Science and Engineering 1 Why this course? Overview Programming Language Paradigms Brief review of Logic Propositional logic Predicate logic
More information2. CONNECTIVITY Connectivity
2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =
More informationMathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture  37 Resolution Rules
Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture  37 Resolution Rules If some literals can be unified, the same algorithm should be able
More informationELEMENTARY NUMBER THEORY AND METHODS OF PROOF
CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All
More informationLecture 3: Constructing the Natural Numbers
Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 3: Constructing the Natural Numbers Weeks 34 UCSB 2014 When we defined what a proof was in our first set of lectures, we mentioned that
More informationCardinality of Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Cardinality of Sets Fall / 15
Cardinality of Sets MAT Transition to Higher Mathematics Fall 0 MAT (Transition to Higher Math) Cardinality of Sets Fall 0 / Outline Sets with Equal Cardinality Countable and Uncountable Sets MAT (Transition
More informationTopic 3: Propositions as types
Topic 3: Propositions as types May 18, 2014 Propositions as types We have seen that the main mathematical objects in a type theory are types. But remember that in conventional foundations, as based on
More informationChapter 3: Propositional Languages
Chapter 3: Propositional Languages We define here a general notion of a propositional language. We show how to obtain, as specific cases, various languages for propositional classical logic and some nonclassical
More informationCS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010
CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:
More informationPredicate Logic CHAPTER What This Chapter Is About
CHAPTER 14 Predicate Logic We now turn our attention to a generalization of propositional logic, called predicate, or firstorder, logic. Predicates are functions of zero or more variables that return
More informationCHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ  artale/
CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ  http://www.inf.unibz.it/ artale/ SECTION 10.5 Trees Copyright Cengage Learning. All rights reserved. Trees In mathematics, a tree is a connected graph
More information3.4 Deduction and Evaluation: Tools ConditionalEquational Logic
3.4 Deduction and Evaluation: Tools 3.4.1 ConditionalEquational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax
More informationHomework & Announcements
Homework & nnouncements New schedule on line. Reading: Chapter 18 Homework: Exercises at end Due: 11/1 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 25 COS 140: Foundations of
More informationAutomated Reasoning. Natural Deduction in FirstOrder Logic
Automated Reasoning Natural Deduction in FirstOrder Logic Jacques Fleuriot Automated Reasoning Lecture 4, page 1 Problem Consider the following problem: Every person has a heart. George Bush is a person.
More informationFoundations, Reasoning About Algorithms, and Design By Contract CMPSC 122
Foundations, Reasoning About Algorithms, and Design By Contract CMPSC 122 I. Logic 101 In logic, a statement or proposition is a sentence that can either be true or false. A predicate is a sentence in
More informationGreedy algorithms is another useful way for solving optimization problems.
Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These
More informationOutline. Data Definitions and Templates Syntax and Semantics Defensive Programming
Outline Data Definitions and Templates Syntax and Semantics Defensive Programming 1 Data Definitions Question 1: Are both of the following data definitions ok? ; A wgrade is either ;  num ;  posn ;
More informationLECTURE 2 An Introduction to Boolean Algebra
IST 210: Boot Camp Ritendra Datta LECTURE 2 An Introduction to Boolean Algebra 2.1. Outline of Lecture Fundamentals Negation, Conjunction, and Disjunction Laws of Boolean Algebra Constructing Truth Tables
More informationFundamental Concepts. Chapter 1
Chapter 1 Fundamental Concepts This book is about the mathematical foundations of programming, with a special attention on computing with infinite objects. How can mathematics help in programming? There
More informationContextfree Grammars
1 contents of Contextfree Grammars Phrase Structure Everyday Grammars for Programming Language Formal Definition of Contextfree Grammars Definition of Language Lefttoright Application cfg ects Transforming
More information2 Introduction to operational semantics
2 Introduction to operational semantics This chapter presents the syntax of a programming language, IMP, a small language of while programs. IMP is called an "imperative" language because program execution
More informationCOUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074
COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1DIMENSIONAL SAME GAME CHRIS BURNS AND BENJAMIN PURCELL Department of Mathematics Oberlin College Oberlin OH 44074 Abstract. Ralf Stephan recently
More informationQED Q: Why is it called the triangle inequality? A: Analogue with euclidean distance in the plane: picture Defn: Minimum Distance of a code C:
Lecture 3: Lecture notes posted online each week. Recall Defn Hamming distance: for words x = x 1... x n, y = y 1... y n of the same length over the same alphabet, d(x, y) = {1 i n : x i y i } i.e., d(x,
More informationFormal Predicate Calculus. Michael Meyling
Formal Predicate Calculus Michael Meyling May 24, 2013 2 The source for this document can be found here: http://www.qedeq.org/0_04_07/doc/math/qedeq_formal_logic_v1.xml Copyright by the authors. All rights
More informationKnowledge Sharing Among Heterogeneous Agents
Knowledge Sharing Among Heterogeneous Agents John F. Sowa VivoMind Research, LLC 29 July 2013 Facts of Life: Diversity and Heterogeneity Openended variety of systems connected to the Internet: The great
More informationFondamenti della Programmazione: Metodi Evoluti. Lezione 5: Invariants and Logic
Fondamenti della Programmazione: Metodi Evoluti Prof. Enrico Nardelli Lezione 5: Invariants and Logic versione originale: http://touch.ethz.ch Reminder: contracts Associated with an individual feature:
More informationSC/MATH Boolean Formulae. Ref: G. Tourlakis, Mathematical Logic, John Wiley & Sons, York University
SC/MATH 1090 1 Boolean Formulae Ref: G. Tourlakis, Mathematical Logic, John Wiley & Sons, 2008. York University Department of Computer Science and Engineering York University MATH 1090 01Boolean 1 Overview
More informationDefinition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, vpath. 1
Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,
More informationLogic Programming and Resolution Lecture notes for INF3170/4171
Logic Programming and Resolution Lecture notes for INF3170/4171 Leif Harald Karlsen Autumn 2015 1 Introduction This note will explain the connection between logic and computer programming using Horn Clauses
More informationSchema Mappings and Data Exchange
Schema Mappings and Data Exchange Lecture #2 EASSLC 2012 Southwest University August 2012 1 The Relational Data Model (E.F. Codd 1970) The Relational Data Model uses the mathematical concept of a relation
More informationSection 1.1 Logic LOGIC
Section 1.1 Logic 1.1.1 1.1 LOGIC Mathematics is used to predict empirical reality, and is therefore the foundation of engineering. Logic gives precise meaning to mathematical statements. PROPOSITIONS
More information2.4. You are constantly bombarded with information through magazines, newspapers, What's Your Proof? Angle Postulates and Theorems.
What's Your Proof? Angle Postulates and Theorems.4 Learning Goals Key Terms In this lesson, you will: Use the Corresponding Angle Postulate. Prove the Alternate Interior Angle Theorem. Prove the Alternate
More informationFigure 4.1: The evolution of a rooted tree.
106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite
More informationModule 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur
Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students
More informationBoolean Algebra & Digital Logic
Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to
More informationContextFree Grammars
ContextFree Grammars Carl Pollard yntax 2 (Linguistics 602.02) January 3, 2012 ContextFree Grammars (CFGs) A CFG is an ordered quadruple T, N, D, P where a. T is a finite set called the terminals; b.
More informationFirst Order Predicate Logic CIS 32
First Order Predicate Logic CIS 32 Functionalia Demos? HW 3 is out on the webpage. Today: Predicate Logic Constructing the Logical Agent Predicate Logic Firstorder predicate logic More expressive than
More informationControl Structures. Lecture 4 COP 3014 Fall September 18, 2017
Control Structures Lecture 4 COP 3014 Fall 2017 September 18, 2017 Control Flow Control flow refers to the specification of the order in which the individual statements, instructions or function calls
More informationWeek 5 Tutorial Structural Induction
Department of Computer Science, Australian National University COMP2600 / COMP6260 Formal Methods in Software Engineering Semester 2, 2016 Week 5 Tutorial Structural Induction You should hand in attempts
More informationDISTRIBUTIVE LATTICES
DISTRIBUTIVE LATTICES FACT 1: For any lattice : 1 and 2 and 3 and 4 hold in : The distributive inequalities: 1. for every a,b,c A: (a b) (a c) a (b c) 2. for every a,b,c A: a (b c) (a b) (a c)
More informationRecursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences
Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific
More informationLambda Calculus. Type Systems, Lectures 3. Jevgeni Kabanov Tartu,
Lambda Calculus Type Systems, Lectures 3 Jevgeni Kabanov Tartu, 13.02.2006 PREVIOUSLY ON TYPE SYSTEMS Arithmetical expressions and Booleans Evaluation semantics Normal forms & Values Getting stuck Safety
More informationApplication of recursion. Grammars and Parsing. Recursive grammar. Grammars
Application of recursion Grammars and Parsing So far, we have written recursive programs on integers. Let us now consider a new application, grammars and parsing, that shows off the full power of recursion.
More informationLANGUAGE PROCESSORS. Presented By: Prof. S.J. Soni, SPCE Visnagar.
LANGUAGE PROCESSORS Presented By: Prof. S.J. Soni, SPCE Visnagar. Introduction Language Processing activities arise due to the differences between the manner in which a software designer describes the
More information1 Variations of the Traveling Salesman Problem
Stanford University CS26: Optimization Handout 3 Luca Trevisan January, 20 Lecture 3 In which we prove the equivalence of three versions of the Traveling Salesman Problem, we provide a 2approximate algorithm,
More informationCS161 Handout 07 Summer 2013 July 17, 2013 Guide to Reductions. Thanks to Julie Tibshirani for helping with this handout!
CS161 Handout 07 Summer 2013 July 17, 2013 Guide to Reductions Thanks to Julie Tibshirani for helping with this handout! We'll design many algorithms over the course of this class. Often, the algorithms
More informationSpecifying Systems. Leslie Lamport. 27 Feb Preliminary Draft
Specifying Systems Leslie Lamport 27 Feb 2002 Preliminary Draft Copyright c 2001 by Leslie Lamport. You may download an electronic version of this book and print one copy for your own use only. You may
More informationDecision Procedures in the Theory of BitVectors
Decision Procedures in the Theory of BitVectors Sukanya Basu Guided by: Prof. Supratik Chakraborty Department of Computer Science and Engineering, Indian Institute of Technology, Bombay May 1, 2010 Sukanya
More informationThe MatrixTree Theorem and Its Applications to Complete and Complete Bipartite Graphs
The MatrixTree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent
More informationCONVENTIONAL EXECUTABLE SEMANTICS. Grigore Rosu CS422 Programming Language Semantics
CONVENTIONAL EXECUTABLE SEMANTICS Grigore Rosu CS422 Programming Language Semantics Conventional Semantic Approaches A language designer should understand the existing design approaches, techniques and
More informationTHE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH
THE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH SOEUN PARK arxiv:0809.1179v1 [math.co] 7 Sep 2008 Abstract. The Tower of Hanoi problem with k pegs and n disks has been much studied via its associated
More informationVariants of Turing Machines
November 4, 2013 Robustness Robustness Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes Robustness Robustness of
More informationP Is Not Equal to NP. ScholarlyCommons. University of Pennsylvania. Jon Freeman University of Pennsylvania. October 1989
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science October 1989 P Is Not Equal to NP Jon Freeman University of Pennsylvania Follow this and
More informationMore Untyped Lambda Calculus & Simply Typed Lambda Calculus
Concepts in Programming Languages Recitation 6: More Untyped Lambda Calculus & Simply Typed Lambda Calculus Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky,
More informationHandout on Answer Set Programming
Handout on Answer Set Programming Yuliya Lierler Univresity of Nebraska, Omaha Tell me and I forget. Show me and I remember. Involve me and I understand. (Chinese proverb) The Moore method is a deductive
More informationIntroduction to Axiomatic Semantics
Introduction to Axiomatic Semantics Meeting 10, CSCI 5535, Spring 2009 Announcements Homework 3 due tonight Homework 2 is graded 13 (mean), 14 (median), out of 21 total, but Graduate class: final project
More information4 Mathematical Data Types
mcs 2015/5/18 1:43 page 81 #89 4 Mathematical Data Types We have assumed that you ve already been introduced to the concepts of sets, sequences, and functions, and we ve used them informally several times
More informationIntroduction to Logic Programming
Introduction to Logic Programming Foundations, FirstOrder Language Temur Kutsia RISC, Johannes Kepler University Linz, Austria kutsia@risc.jku.at What is a Logic Program Logic program is a set of certain
More informationThe Drinking Philosophers Problem1
The Drinking Philosophers Problem The classical Dining Philosophers Problem problem synchronization among competing processes five philosophers (thinking, hungry, and eating) around a table five chopsticks
More informationMathematical Logic Part One
Mathematical Logic Part One Question: How do we formalize the logic we've been using in our proofs? Where We're Going Propositional Logic (Today) Basic logical connectives. Truth tables. Logical equivalences.
More informationWorkbook Unit 13: Natural Deduction Proofs (IV)
Workbook Unit 13: Natural Deduction Proofs (IV) Overview 1 1. The Biconditional Introduction Rule ( Int) 2 2. The Disjunction Elimination Rule ( Elim) 7 3. Reductio ad absurdum arguments: ~Int and ~Elim
More informationCS40S13: Functional Completeness
CS40S13: Functional Completeness Victor Amelkin victor@cs.ucsb.edu April 12, 2013 In class, we have briefly discussed what functional completeness means and how to prove that a certain system (a set)
More informationIntroduction to Boolean Algebra
Introduction to Boolean Algebra Boolean algebra which deals with twovalued (true / false or and ) variables and functions find its use in modern digital computers since they too use twolevel systems
More informationJava s Precedence. Extended Grammar for Boolean Expressions: Implication. Parse tree. Highest precedence. Lowest precedence
The Tiling Problem The Halting Problem Highest precedence Java s Precedence G!del, Escher, Bach Natural, yet unsolvable problems Adding variables Adding operators Lecture 19 Lab 4: A Matter of Expression
More informationT h e incomplete database
T h e incomplete database Karen L. Kwast University of Amsterdam Departments of Mathematics and Computer Science, Plantage Muidergracht 24, 1018 TV, Amsterdam Abstract The introduction of nulls (unknown
More informationMIT Specifying Languages with Regular Expressions and ContextFree Grammars
MIT 6.035 Specifying Languages with Regular essions and ContextFree Grammars Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Language Definition Problem How to precisely
More informationThe syntax and semantics of Beginning Student
The syntax and semantics of Beginning Student Readings: HtDP, Intermezzo 1 (Section 8). We are covering the ideas of section 8, but not the parts of it dealing with section 6/7 material (which will come
More informationThe syntax and semantics of Beginning Student
The syntax and semantics of Beginning Student Readings: HtDP, Intermezzo 1 (Section 8). We are covering the ideas of section 8, but not the parts of it dealing with section 6/7 material (which will come
More informationPropositional Resolution Part 3. Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence
Propositional Resolution Part 3 Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence Resolution Strategies We present here some Deletion Strategies and discuss their Completeness. Deletion
More informationA NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH
A NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH STEPHAN WAGNER Abstract. In a recent article by Bród and Skupień, sharp upper and lower bounds for the number of dominating sets in a tree were determined.
More informationLL(k) Parsing. Predictive Parsers. LL(k) Parser Structure. Sample Parse Table. LL(1) Parsing Algorithm. Push RHS in Reverse Order 10/17/2012
Predictive Parsers LL(k) Parsing Can we avoid backtracking? es, if for a given input symbol and given nonterminal, we can choose the alternative appropriately. his is possible if the first terminal of
More informationA Generating Plans from Proofs
A Generating Plans from Proofs Michael Benedikt, University of Oxford and Balder ten Cate, LogicBlox and UCSanta Cruz and Efthymia Tsamoura, University of Oxford Categories and Subject Descriptors: H.2.3
More informationType Checking. Outline. General properties of type systems. Types in programming languages. Notation for type rules.
Outline Type Checking General properties of type systems Types in programming languages Notation for type rules Logical rules of inference Common type rules 2 Static Checking Refers to the compiletime
More informationDescribing Syntax and Semantics
Describing Syntax and Semantics Introduction Syntax: the form or structure of the expressions, statements, and program units Semantics: the meaning of the expressions, statements, and program units Syntax
More informationCS 125 Section #4 RAMs and TMs 9/27/16
CS 125 Section #4 RAMs and TMs 9/27/16 1 RAM A wordram consists of: A fixed set of instructions P 1,..., P q. Allowed instructions are: Modular arithmetic and integer division on registers; the standard
More informationMATH 54  LECTURE 4 DAN CRYTSER
MATH 54  LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an
More information1 Undirected Vertex Geography UVG
Geography Start with a chip sitting on a vertex v of a graph or digraph G. A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip from x to y deletes the edge (x,
More informationAlgebra of Sets (Mathematics & Logic A)
Algebra of Sets (Mathematics & Logic A) RWK/MRQ October 28, 2002 Note. These notes are adapted (with thanks) from notes given last year by my colleague Dr Martyn Quick. Please feel free to ask me (not
More informationDO NOT REDISTRIBUTE THIS SOLUTION FILE
Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT REDISTRIBUTE
More informationA Solidify Understanding Task
17 A Solidify Understanding Task We know that two triangles are congruent if all pairs of corresponding sides are congruent and all pairs of corresponding angles are congruent. We may wonder if knowing
More informationOutline. General properties of type systems. Types in programming languages. Notation for type rules. Common type rules. Logical rules of inference
Type Checking Outline General properties of type systems Types in programming languages Notation for type rules Logical rules of inference Common type rules 2 Static Checking Refers to the compiletime
More informationFall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives
CS 6A Scheme Fall 207 Discussion 7: October 25, 207 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write
More informationSoftware Testing. Software Testing
Software Testing Software Testing Error: mistake made by the programmer/ developer Fault: a incorrect piece of code/document (i.e., bug) Failure: result of a fault Goal of software testing: Cause failures
More informationThe clique number of a random graph in (,1 2) Let ( ) # subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )
The clique number of a random graph in (,1 2) Let () # subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)
More informationLecture 5: The Halting Problem. Michael Beeson
Lecture 5: The Halting Problem Michael Beeson Historical situation in 1930 The diagonal method appears to offer a way to extend just about any definition of computable. It appeared in the 1920s that it
More informationSection 2.4: Arguments with Quantified Statements
Section 2.4: Arguments with Quantified Statements In this section, we shall generalize the ideas we developed in Section 1.3 to arguments which involve quantified statements. Most of the concepts we shall
More informationIndependence Number and CutVertices
Independence Number and CutVertices Ryan Pepper University of Houston Downtown, Houston, Texas 7700 pepperr@uhd.edu Abstract We show that for any connected graph G, α(g) C(G) +1, where α(g) is the independence
More informationCS2 Language Processing note 3
CS2 Language Processing note 3 CS2Ah 5..4 CS2 Language Processing note 3 Nondeterministic finite automata In this lecture we look at nondeterministic finite automata and prove the Conversion Theorem, which
More informationThe clique number of a random graph in (,1 2) Let ( ) # subgraphs in = 2 =: ( ) 2 ( ) ( )
1 The clique number of a random graph in (,1 2) Let () # subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)
More informationCMPS 277 Principles of Database Systems. https://courses.soe.ucsc.edu/courses/cmps277/fall11/01. Lecture #3
CMPS 277 Principles of Database Systems https://courses.soe.ucsc.edu/courses/cmps277/fall11/01 Lecture #3 1 Summary of Lectures #1 and #2 Codd s Relational Model based on the concept of a relation (table)
More informationProblem Set 2 Solutions
Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent.  G is a tree;  G is minimally connected (it is
More informationLecture 6: Sequential Sorting
15150 Lecture 6: Sequential Sorting Lecture by Dan Licata February 2, 2012 Today s lecture is about sorting. Along the way, we ll learn about divide and conquer algorithms, the tree method, and complete
More information