Victor Malyshkin (Ed.) Malyshkin (Ed.) 13th International Conference, PaCT 2015 Petrozavodsk, Russia, August 31 September 4, 2015 Proceedings

Size: px
Start display at page:

Download "Victor Malyshkin (Ed.) Malyshkin (Ed.) 13th International Conference, PaCT 2015 Petrozavodsk, Russia, August 31 September 4, 2015 Proceedings"

Transcription

1 Victor Malyshkin (Ed.) Lecture Notes in Computer Science The LNCS series reports state-of-the-art results in computer science re search, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. The type of material published traditionally includes proceedings (published in time for the respective conference) post-proceedings (consisting of thoroughly revised final full papers) research monographs (which may be based on outstanding PhD work, research projects, technical reports, etc.) Malyshkin (Ed.) 1 LNCS 9251 Parallel Computing Technologies More recently, several color-cover sublines have been added featuring, beyond a collection of papers, various added-value components; these sublines in clude tutorials (textbook-like monographs or collections of lectures given at advanced courses) state-of-the-art surveys (offering complete and mediated coverage of a topic) hot topics (introducing emergent topics to the broader community) In parallel to the printed book, each new volume is published electronically in LNCS Online. Detailed information on LNCS can be found at Proposals for publication should be sent to LNCS Editorial, Tiergartenstr. 17, Heidelberg, Germany lncs@springer.com LNCS 9251 Parallel Computing Technologies 13th International Conference, PaCT 2015 Petrozavodsk, Russia, August 31 September 4, 2015 Proceedings ISSN ISBN springer.com PaCT

2 Heuristic Algorithms for Optimizing Array Operations in Parallel PGAS-programs Ivan Kulagin 1, Alexey Paznikov 1,2, and Mikhail Kurnosov 1,3 1 Siberian State University of Telecommunications and Information Sciences, 86 Kirova str., Novosibirsk, Russia, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS, 13 Lavrentev ave., Novosibirsk, Russia, Saint Petersburg Electrotechnical University LETI, 5 Professor Popov str., Saint-Petersburg, Russia, ikulagin@sibsutis.ru,apaznikov@isp.nsc.ru,mkurnosov@gmail.com Abstract. The algorithms for optimizing array operations in PGASprograms are represented. They minimize execution time by taking into account hierarchical structure of computer systems in reduction and by preloading of remote elements to nodes while accessing distributed arrays. Algorithms are implemented for Cray Chapel and IBM X10. Keywords: PGAS, compiler optimization, reduction, scalar replacement 1 Introduction The main approach to the parallel programs development in modern distributed computer systems (CS) is message-passing interface (MPICH2, Open MPI, Intel MPI). The major challenge for modern CS is their lack of programmability. To exploit all the resources of modern systems, we need to use diverse technologies (OpenMP/Intel TBB/Intel Cilk Plus, NVIDIA CUDA/OpenCL, SSE/AVX) in conjunction with the MPI. While this model provides a great deal of flexibility and performance potential, it burdens programmers with the complexity of utilizing multiple programming systems in the same applications. Need of simplification parallel programming has lead the development of high-level tools, e.g. the languages that implement the model of a partitioned global address space (PGAS), including Cray Chapel, IBM X10, UPC. PGASprograms does not explicitly call communication functions unlike MPI; instead they operate with distributed structures and instructions for parallel tasks management (threads, activities) and synchronization. All the communications are scheduled by the compiler and performed by the runtime-system which provides the transparent access to remote nodes memory. High abstraction level of PGAS allows to reduce the complexity of parallel programs development, but requires the development of effective methods for optimizing compilation. The reported study was partially supported by RFBR, research projects , and by Ministry of Education and Science of the Russian Federation (02.G from )

3 2 Ivan Kulagin, Alexey Paznikov, Mikhail Kurnosov One can emphasize the two most common patterns in parallel PGAS-programs: (i) iteration by distributed arrays, (ii) specified reduction operation for distributed arrays elements (reduce, reduction). The existing algorithms of operations on distributed arrays [4, 3] does not take into account the features of PGAS, such as high intensity of one-side communications, memory consistency, multithreading, etc. The compiler optimization algorithms implemented in IBM X10 [1], UPC [2] do not minimize overheads in PGAS-programs that perform cyclic access to the array s elements, located on the remote nodes. In this paper, we propose the algorithms for optimizing the communications in operations on distributed arrays. The algorithms are implemented for Cray Chapel and IBM X10. 2 Communications Optimization 2.1 PGAS Model Let P = {1, 2,..., N} is the set of SMP/NUMA-nodes of a distributed CS. Each node i P consists of n CPU cores and the local memory. PGAS model realizes the abstraction of a multicore node locale (region, place). Each locale manages its own local memory segment. Dynamically spawned tasks (activities, threads) run within the locale. A task can access the global address space comprised nodes local memory segments. The local segment access performs much faster, because the access to the remote ones demands the communications. The design units required for developing of PGAS-programs: begin S performs the instructions S asynchronously on the separate thread, on i S performs the instructions S on the node i, on x S performs the instructions S on the node which owns the object x, coforall S performs each iteration of the loop body S in the independent thread, sync T the synchronization variable. 2.2 Parallel Reduction Algorithm Reduction is the collective operation, which performs some associative operation with the distributed array V [1 : D]. The result r of the operation is placed in the memory of the thread initialized reduction: r = V [1] V [2]... V [D]. This paper offers the algorithm BlockReduce of reduction in PGAS-programs (Figure 1). In Figure 2 you can see the algorithm for Cray Chapel. Each node i P is aware of the set V i of array s V elements storing in its local memory. In the first stage (Figure 2, lines 3-17) of the sub-arrays V i are splitted into n parts (by number of cores) (Figure 2, line 6). Then these parts are processed in parallel. The threads t = 1, 2,..., n of each node i perform reduction with their sub-array V it (Figure 2, lines 7-11). On the second stage the nodes organize the binary tree with the root is first locale. Each operation for the pair of values r[first], r[second] is performed in the separate thread on that node, wherein the value r[first] is located. After the reduction of all the values the barrier is performed.

4 Heuristic Algorithms for Optimizing Array Operations 3 Fig. 1: Distribution of array elements in the algorithm BlockReduce Barrier may be implemented e.g. by Dissemination barrier algorithm (O(log N)). Then BlockReduce complexity equals T = O( V /N + log N). In the current implementation we used the Centralized barrier with the time O(N). 2.3 Arrays Access Optimization Another common pattern in PGAS-programs is the looping through the elements, wherein the threads access the elements in the memory of other nodes (Figure 3a). In this case, the runtime-system provides required elements. In current days PGAS-compilers use relatively straightforward heuristics. Accessing to a remote array s element causes the copying entire array to the local memory. Though copying the whole array is redundant and incurs communication overheads. Scalar replacement algorithm [1, 2] reduces these overheads. While the looping through remote array s elements, runtime-system copies to local memory the entire array at each iteration (Figure 3a). That scheme is highly inefficient. Scalar replacement also may cause the redundant copying in loops because the total number of sent elements exceeds the entire array. We propose the ArrayPreload algorithm optimizing the looping access to remote arrays for minimizing communication time. ArrayPreload prevents multiple copying of remote arrays by preemptive copying the array once before loop Input: V [1 : D] distributed array, operation for reduction. Output: r reduction result for the array V. 1: procedure BlockReduce(V [1 : D], ) 2: Parallel computation of operation over the local elements in the locales 3: coforall i in [1, 2,..., N] do 4: on i 5: Split V i to n (cores number) blocks V it 6: SplitArray(V i, n) 7: coforall t in [1, 2,..., n] do 8: forall x in V it do 9: r[i][t] r[i][t] x 10: end for 11: end coforall 12: forall t in [1, 2,..., n] do 13: r[i] is the reduction of elements V i located on the locale i 14: r[i] r[i] r[i][t] 15: end for 16: end on 17: end coforall 18: return r Bintree(r[1 : N]) 19: end procedure Fig. 2: Algorithm BlockReduce

5 4 Ivan Kulagin, Alexey Paznikov, Mikhail Kurnosov iterations (Figure 3b). Figure 3 shows the example of optimization of array A access for IBM X10 language. Unoptimized version (Figure 3a) incurs passing the array A to the id node on each iteration. The optimization (Figure 3b) involves the copying array A in advance to every node to the local array locala. The statement at used in IBM X10 corresponds the statement on. (a) Version without optimization (b) Optimized version (ArrayPreload) Fig. 3: Example of optimization by passing the array A in a IBM X10 program The ArrayPreload algorithm is based on static analyze by Abstract Syntax Tree (AST) traversal. The first stage realizes the search of the loops with accessing remote array elements. The second checks if array is not changed during the loop iterations so as to avoid violation the original program during optimization. The way this examination depends on compiler implementation, e.g. this check may be implemented on base of previously built loop context. The third stage makes AST transformation which includes loop prologues for each found arrays. The prologue performs coping a remote array to local memory once before iterations. The remote array access is replaced by access to the local one copied by prologue loop. Computational complexity of the algorithm ArrayPreload is determined of the AST height. 3 Experiments and Results Experiments are carried out on the cluster A (16 nodes: 2 x Quad-Core Intel Xeon E5420, Gigabit Ethernet) and cluster B (6 nodes: 2 x Quad-Core Intel Xeon E5420, Infiniband QDR). The algorithms are implemented for the languages Cray Chapel (BlockReduce) and IBM X10 (ArrayPreload). The evaluation of reduction algorithms was done on the basis of microbenchmarks (reduction of distributed array of length D = 4000,..., 20000) and Chapel programs PTRANS (transposition of distributed matrices) and minimd (molecular dynamics). Node number N was varying from 1 to 16. BlockReduce efficiency depends on the N and D. Algorithm outperforms by 10 30% the default algorithm DefaultReduce. Slight benefit on the real programs is due to the reduce computation time is much less than the total execution time. For the efficiency evaluation of ArrayPreload and Scalar replacement the microbenchmark was used. The benchmark performs the looping through the array s elements placed in the memory of remote nodes.

6 Heuristic Algorithms for Optimizing Array Operations 5 (a) ArrayPreload algorithm (b) Scalar replacement algorithm Fig. 4: Speedup of test program (cluster A) Both ArrayPreload and Scalar replacement perform the speed-up from 5 to 82 times (Figure 4). Generally the efficiency depends on the interconnect performance, the number of nodes, the size of array, the number of iterations. 4 Conclusion The proposed algorithms reduces the execution time of PGAS programs by means of minimizing the communication overheads. It has been achieved by preemptive copying of remote arrays and taking into account the computer system structure. The algorithms may be used for the wide range of PGAS languages. References 1. R. Barik, J. Zhao, D. Grove, I. Peshansky, Z. Budimlic, and V. Sarkar. Communication Optimizations for Distirbuted-Memory X10 Programs. In IEEE International Parallel and Distributed Processing Symposium, pages 1 13, W. Chen, C. Iancu, and K. Yelick. Communication Optimizations for Fine-grained UPC Applications. In 14th International Conference on Parallel Architectures and Compilation Techniques (PACT), pages , M. Kurnosov. All-to-all broadcast algorithms in hierarchical distributed computer systems. Vestnik of computer and information technologies, 5:27 34, [in Russian]. 4. R. Rabenseifner. Optimization of Collective Reduction Operations. Computational Science - ICCS Lecture Notes in Computer Science, 3036:1 9, 2004.

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Alexey Paznikov Saint Petersburg Electrotechnical University

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

Affine Loop Optimization using Modulo Unrolling in CHAPEL

Affine Loop Optimization using Modulo Unrolling in CHAPEL Affine Loop Optimization using Modulo Unrolling in CHAPEL Aroon Sharma, Joshua Koehler, Rajeev Barua LTS POC: Michael Ferguson 2 Overall Goal Improve the runtime of certain types of parallel computers

More information

NUMA-Aware Shared-Memory Collective Communication for MPI

NUMA-Aware Shared-Memory Collective Communication for MPI NUMA-Aware Shared-Memory Collective Communication for MPI Shigang Li Torsten Hoefler Marc Snir Presented By: Shafayat Rahman Motivation Number of cores per node keeps increasing So it becomes important

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Roshan Dathathri Thejas Ramashekar Chandan Reddy Uday Bondhugula Department of Computer Science and Automation

More information

Multicore programming in CilkPlus

Multicore programming in CilkPlus Multicore programming in CilkPlus Marc Moreno Maza University of Western Ontario, Canada CS3350 March 16, 2015 CilkPlus From Cilk to Cilk++ and Cilk Plus Cilk has been developed since 1994 at the MIT Laboratory

More information

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing Programming Models for Multi- Threading Brian Marshall, Advanced Research Computing Why Do Parallel Computing? Limits of single CPU computing performance available memory I/O rates Parallel computing allows

More information

WHY PARALLEL PROCESSING? (CE-401)

WHY PARALLEL PROCESSING? (CE-401) PARALLEL PROCESSING (CE-401) COURSE INFORMATION 2 + 1 credits (60 marks theory, 40 marks lab) Labs introduced for second time in PP history of SSUET Theory marks breakup: Midterm Exam: 15 marks Assignment:

More information

LLVM-based Communication Optimizations for PGAS Programs

LLVM-based Communication Optimizations for PGAS Programs LLVM-based Communication Optimizations for PGAS Programs nd Workshop on the LLVM Compiler Infrastructure in HPC @ SC15 Akihiro Hayashi (Rice University) Jisheng Zhao (Rice University) Michael Ferguson

More information

A Parallelizing Compiler for Multicore Systems

A Parallelizing Compiler for Multicore Systems A Parallelizing Compiler for Multicore Systems José M. Andión, Manuel Arenaz, Gabriel Rodríguez and Juan Touriño 17th International Workshop on Software and Compilers for Embedded Systems (SCOPES 2014)

More information

Decoupled Software Pipelining in LLVM

Decoupled Software Pipelining in LLVM Decoupled Software Pipelining in LLVM 15-745 Final Project Fuyao Zhao, Mark Hahnenberg fuyaoz@cs.cmu.edu, mhahnenb@andrew.cmu.edu 1 Introduction 1.1 Problem Decoupled software pipelining [5] presents an

More information

Linear Algebra Programming Motifs

Linear Algebra Programming Motifs Linear Algebra Programming Motifs John G. Lewis Cray Inc. (retired) March 2, 2011 Programming Motifs 1, 2 & 9 Dense Linear Algebra Graph Algorithms (and Sparse Matrix Reordering) (2) SIAM CSE 11 Features

More information

Towards Approximate Computing: Programming with Relaxed Synchronization

Towards Approximate Computing: Programming with Relaxed Synchronization Towards Approximate Computing: Programming with Relaxed Synchronization Lakshminarayanan Renganarayana Vijayalakshmi Srinivasan Ravi Nair (presenting) Dan Prener IBM T.J. Watson Research Center October

More information

Purity: An Integrated, Fine-Grain, Data- Centric, Communication Profiler for the Chapel Language

Purity: An Integrated, Fine-Grain, Data- Centric, Communication Profiler for the Chapel Language Purity: An Integrated, Fine-Grain, Data- Centric, Communication Profiler for the Chapel Language Richard B. Johnson and Jeffrey K. Hollingsworth Department of Computer Science, University of Maryland,

More information

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS Computer Science 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.679 Dominik Żurek Marcin Pietroń Maciej Wielgosz Kazimierz Wiatr THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT

More information

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today Graduate Students and Super Undergraduates... CS 553: Algorithmic Language Compilers (PLDI) look for other sources of information make decisions, because all research problems are under-specified evaluate

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

A Comprehensive Study on the Performance of Implicit LS-DYNA

A Comprehensive Study on the Performance of Implicit LS-DYNA 12 th International LS-DYNA Users Conference Computing Technologies(4) A Comprehensive Study on the Performance of Implicit LS-DYNA Yih-Yih Lin Hewlett-Packard Company Abstract This work addresses four

More information

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004 A Study of High Performance Computing and the Cray SV1 Supercomputer Michael Sullivan TJHSST Class of 2004 June 2004 0.1 Introduction A supercomputer is a device for turning compute-bound problems into

More information

Enforcing Textual Alignment of

Enforcing Textual Alignment of Parallel Hardware Parallel Applications IT industry (Silicon Valley) Parallel Software Users Enforcing Textual Alignment of Collectives using Dynamic Checks and Katherine Yelick UC Berkeley Parallel Computing

More information

Acknowledgments. Amdahl s Law. Contents. Programming with MPI Parallel programming. 1 speedup = (1 P )+ P N. Type to enter text

Acknowledgments. Amdahl s Law. Contents. Programming with MPI Parallel programming. 1 speedup = (1 P )+ P N. Type to enter text Acknowledgments Programming with MPI Parallel ming Jan Thorbecke Type to enter text This course is partly based on the MPI courses developed by Rolf Rabenseifner at the High-Performance Computing-Center

More information

High performance computing and numerical modeling

High performance computing and numerical modeling High performance computing and numerical modeling Volker Springel Plan for my lectures Lecture 1: Collisional and collisionless N-body dynamics Lecture 2: Gravitational force calculation Lecture 3: Basic

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

Evaluating Algorithms for Shared File Pointer Operations in MPI I/O

Evaluating Algorithms for Shared File Pointer Operations in MPI I/O Evaluating Algorithms for Shared File Pointer Operations in MPI I/O Ketan Kulkarni and Edgar Gabriel Parallel Software Technologies Laboratory, Department of Computer Science, University of Houston {knkulkarni,gabriel}@cs.uh.edu

More information

Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures

Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures University of Virginia Dept. of Computer Science Technical Report #CS-2011-09 Jeremy W. Sheaffer and Kevin

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON

Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON Marc Tajchman* a a Commissariat à l énergie atomique

More information

Bulk Synchronous and SPMD Programming. The Bulk Synchronous Model. CS315B Lecture 2. Bulk Synchronous Model. The Machine. A model

Bulk Synchronous and SPMD Programming. The Bulk Synchronous Model. CS315B Lecture 2. Bulk Synchronous Model. The Machine. A model Bulk Synchronous and SPMD Programming The Bulk Synchronous Model CS315B Lecture 2 Prof. Aiken CS 315B Lecture 2 1 Prof. Aiken CS 315B Lecture 2 2 Bulk Synchronous Model The Machine A model An idealized

More information

Performance impact of dynamic parallelism on different clustering algorithms

Performance impact of dynamic parallelism on different clustering algorithms Performance impact of dynamic parallelism on different clustering algorithms Jeffrey DiMarco and Michela Taufer Computer and Information Sciences, University of Delaware E-mail: jdimarco@udel.edu, taufer@udel.edu

More information

Debugging CUDA Applications with Allinea DDT. Ian Lumb Sr. Systems Engineer, Allinea Software Inc.

Debugging CUDA Applications with Allinea DDT. Ian Lumb Sr. Systems Engineer, Allinea Software Inc. Debugging CUDA Applications with Allinea DDT Ian Lumb Sr. Systems Engineer, Allinea Software Inc. ilumb@allinea.com GTC 2013, San Jose, March 20, 2013 Embracing GPUs GPUs a rival to traditional processors

More information

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads)

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads) Parallel Programming Models Parallel Programming Models Shared Memory (without threads) Threads Distributed Memory / Message Passing Data Parallel Hybrid Single Program Multiple Data (SPMD) Multiple Program

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne Distributed Computing: PVM, MPI, and MOSIX Multiple Processor Systems Dr. Shaaban Judd E.N. Jenne May 21, 1999 Abstract: Distributed computing is emerging as the preferred means of supporting parallel

More information

Towards ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics

Towards ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics Towards ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics N. Melab, T-V. Luong, K. Boufaras and E-G. Talbi Dolphin Project INRIA Lille Nord Europe - LIFL/CNRS UMR 8022 - Université

More information

Parallel Programming Features in the Fortran Standard. Steve Lionel 12/4/2012

Parallel Programming Features in the Fortran Standard. Steve Lionel 12/4/2012 Parallel Programming Features in the Fortran Standard Steve Lionel 12/4/2012 Agenda Overview of popular parallelism methodologies FORALL a look back DO CONCURRENT Coarrays Fortran 2015 Q+A 12/5/2012 2

More information

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Multigrid Solvers Method of solving linear equation

More information

Subset Sum Problem Parallel Solution

Subset Sum Problem Parallel Solution Subset Sum Problem Parallel Solution Project Report Harshit Shah hrs8207@rit.edu Rochester Institute of Technology, NY, USA 1. Overview Subset sum problem is NP-complete problem which can be solved in

More information

Multithreaded Parallelism and Performance Measures

Multithreaded Parallelism and Performance Measures Multithreaded Parallelism and Performance Measures Marc Moreno Maza University of Western Ontario, London, Ontario (Canada) CS 3101 (Moreno Maza) Multithreaded Parallelism and Performance Measures CS 3101

More information

Asymmetric Partitioning in Thread-Level Speculation

Asymmetric Partitioning in Thread-Level Speculation McGill University School of Computer Science Sable Research Group Asymmetric Partitioning in Thread-Level Speculation Sable Technical Report No. sable-2015-2 Alexander Krolik, Clark Verbrugge November

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Smart Interconnect for Next Generation HPC Platforms Gilad Shainer, August 2016, 4th Annual MVAPICH User Group (MUG) Meeting Mellanox Connects the World s Fastest Supercomputer

More information

Objective. We will study software systems that permit applications programs to exploit the power of modern high-performance computers.

Objective. We will study software systems that permit applications programs to exploit the power of modern high-performance computers. CS 612 Software Design for High-performance Architectures 1 computers. CS 412 is desirable but not high-performance essential. Course Organization Lecturer:Paul Stodghill, stodghil@cs.cornell.edu, Rhodes

More information

Parallel Programming. Libraries and Implementations

Parallel Programming. Libraries and Implementations Parallel Programming Libraries and Implementations Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters An Extension of XcalableMP PGAS Lanaguage for Multi-node Clusters Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku and Mitsuhisa Sato University of Tsukuba 1 Presentation Overview l Introduction

More information

Parallel Programming with Coarray Fortran

Parallel Programming with Coarray Fortran Parallel Programming with Coarray Fortran SC10 Tutorial, November 15 th 2010 David Henty, Alan Simpson (EPCC) Harvey Richardson, Bill Long, Nathan Wichmann (Cray) Tutorial Overview The Fortran Programming

More information

Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem

Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem Project Report Sandeep Kumar Ragila Rochester Institute of Technology sr5626@rit.edu Santosh Vodela Rochester Institute of Technology pv8395@rit.edu

More information

A Test Suite for High-Performance Parallel Java

A Test Suite for High-Performance Parallel Java page 1 A Test Suite for High-Performance Parallel Java Jochem Häuser, Thorsten Ludewig, Roy D. Williams, Ralf Winkelmann, Torsten Gollnick, Sharon Brunett, Jean Muylaert presented at 5th National Symposium

More information

Parallel Programming Environments. Presented By: Anand Saoji Yogesh Patel

Parallel Programming Environments. Presented By: Anand Saoji Yogesh Patel Parallel Programming Environments Presented By: Anand Saoji Yogesh Patel Outline Introduction How? Parallel Architectures Parallel Programming Models Conclusion References Introduction Recent advancements

More information

OP2 FOR MANY-CORE ARCHITECTURES

OP2 FOR MANY-CORE ARCHITECTURES OP2 FOR MANY-CORE ARCHITECTURES G.R. Mudalige, M.B. Giles, Oxford e-research Centre, University of Oxford gihan.mudalige@oerc.ox.ac.uk 27 th Jan 2012 1 AGENDA OP2 Current Progress Future work for OP2 EPSRC

More information

General introduction: GPUs and the realm of parallel architectures

General introduction: GPUs and the realm of parallel architectures General introduction: GPUs and the realm of parallel architectures GPU Computing Training August 17-19 th 2015 Jan Lemeire (jan.lemeire@vub.ac.be) Graduated as Engineer in 1994 at VUB Worked for 4 years

More information

Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s)

Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s) Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s) Islam Harb 08/21/2015 Agenda Motivation Research Challenges Contributions & Approach Results Conclusion Future Work 2

More information

Experiences with an SMP Implementation for X10 based on the Java Concurrency Utilities (Extended Abstract)

Experiences with an SMP Implementation for X10 based on the Java Concurrency Utilities (Extended Abstract) Experiences with an SMP Implementation for X1 based on the Java Concurrency Utilities (Extended Abstract) Rajkishore Barik IBM India Research Lab. rajbarik@in.ibm.com Allan Kielstra IBM Toronto Laboratory

More information

OpenMP for next generation heterogeneous clusters

OpenMP for next generation heterogeneous clusters OpenMP for next generation heterogeneous clusters Jens Breitbart Research Group Programming Languages / Methodologies, Universität Kassel, jbreitbart@uni-kassel.de Abstract The last years have seen great

More information

. Programming in Chapel. Kenjiro Taura. University of Tokyo

. Programming in Chapel. Kenjiro Taura. University of Tokyo .. Programming in Chapel Kenjiro Taura University of Tokyo 1 / 44 Contents. 1 Chapel Chapel overview Minimum introduction to syntax Task Parallelism Locales Data parallel constructs Ranges, domains, and

More information

Towards Virtual Shared Memory for Non-Cache-Coherent Multicore Systems

Towards Virtual Shared Memory for Non-Cache-Coherent Multicore Systems Towards Virtual Shared Memory for Non-Cache-Coherent Multicore Systems Bharath Ramesh, Calvin J. Ribbens Center for High-End Computing Systems Department of Computer Science, Virginia Tech, Blacksburg,

More information

Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD

Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD Riyaz Haque and David F. Richards This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

More information

Administration. Prerequisites. Meeting times. CS 380C: Advanced Topics in Compilers

Administration. Prerequisites. Meeting times. CS 380C: Advanced Topics in Compilers Administration CS 380C: Advanced Topics in Compilers Instructor: eshav Pingali Professor (CS, ICES) Office: POB 4.126A Email: pingali@cs.utexas.edu TA: TBD Graduate student (CS) Office: Email: Meeting

More information

Available online at ScienceDirect. Procedia Computer Science 103 (2017 )

Available online at   ScienceDirect. Procedia Computer Science 103 (2017 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 103 (2017 ) 505 510 XIIth International Symposium «Intelligent Systems», INTELS 16, 5-7 October 2016, Moscow, Russia Network-centric

More information

Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming

Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming Fabiana Leibovich, Laura De Giusti, and Marcelo Naiouf Instituto de Investigación en Informática LIDI (III-LIDI),

More information

High Performance Computing (HPC) Introduction

High Performance Computing (HPC) Introduction High Performance Computing (HPC) Introduction Ontario Summer School on High Performance Computing Scott Northrup SciNet HPC Consortium Compute Canada June 25th, 2012 Outline 1 HPC Overview 2 Parallel Computing

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

Testing Docker Performance for HPC Applications

Testing Docker Performance for HPC Applications Testing Docker Performance for HPC Applications arxiv:1704.05592v1 [cs.pf] 19 Apr 2017 Alexey Ermakov ermakov.as@mipt.ru Alexey Vasyukov a.vasyukov@phystech.edu April 20, 2017 The main goal for this article

More information

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI T. Hoefler 1,2, A. Lumsdaine 1 and W. Rehm 2 1 Open Systems Lab 2 Computer Architecture Group Indiana University Technical

More information

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li Evaluation of sparse LU factorization and triangular solution on multicore architectures X. Sherry Li Lawrence Berkeley National Laboratory ParLab, April 29, 28 Acknowledgement: John Shalf, LBNL Rich Vuduc,

More information

Parallel and High Performance Computing CSE 745

Parallel and High Performance Computing CSE 745 Parallel and High Performance Computing CSE 745 1 Outline Introduction to HPC computing Overview Parallel Computer Memory Architectures Parallel Programming Models Designing Parallel Programs Parallel

More information

Introduction II. Overview

Introduction II. Overview Introduction II Overview Today we will introduce multicore hardware (we will introduce many-core hardware prior to learning OpenCL) We will also consider the relationship between computer hardware and

More information

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems Ed Hinkel Senior Sales Engineer Agenda Overview - Rogue Wave & TotalView GPU Debugging with TotalView Nvdia CUDA Intel Phi 2

More information

Towards a Holistic Approach to Auto-Parallelization

Towards a Holistic Approach to Auto-Parallelization Towards a Holistic Approach to Auto-Parallelization Integrating Profile-Driven Parallelism Detection and Machine-Learning Based Mapping Georgios Tournavitis, Zheng Wang, Björn Franke and Michael F.P. O

More information

Guided Prefetching Based on Runtime Access Patterns

Guided Prefetching Based on Runtime Access Patterns Guided Prefetching Based on Runtime Access Patterns Jie Tao 1, Georges Kneip 2, and Wolfgang Karl 2 1 Steinbuch Center for Computing Forschungszentrum Karlsruhe Karlsruhe Institute of Technology, Germany

More information

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Miao Luo, Hao Wang, & D. K. Panda Network- Based Compu2ng Laboratory Department of Computer Science and Engineering The Ohio State

More information

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL)

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) RN-08645-000_v01 September 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter 1. NCCL Overview...1

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Lecture 32: Partitioned Global Address Space (PGAS) programming models

Lecture 32: Partitioned Global Address Space (PGAS) programming models COMP 322: Fundamentals of Parallel Programming Lecture 32: Partitioned Global Address Space (PGAS) programming models Zoran Budimlić and Mack Joyner {zoran, mjoyner}@rice.edu http://comp322.rice.edu COMP

More information

A Static Cut-off for Task Parallel Programs

A Static Cut-off for Task Parallel Programs A Static Cut-off for Task Parallel Programs Shintaro Iwasaki, Kenjiro Taura Graduate School of Information Science and Technology The University of Tokyo September 12, 2016 @ PACT '16 1 Short Summary We

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

Architecture Conscious Data Mining. Srinivasan Parthasarathy Data Mining Research Lab Ohio State University

Architecture Conscious Data Mining. Srinivasan Parthasarathy Data Mining Research Lab Ohio State University Architecture Conscious Data Mining Srinivasan Parthasarathy Data Mining Research Lab Ohio State University KDD & Next Generation Challenges KDD is an iterative and interactive process the goal of which

More information

Assessment of New Languages of Multicore Processors

Assessment of New Languages of Multicore Processors Assessment of New Languages of Multicore Processors Mahmoud Parmouzeh, Department of Computer, Shabestar Branch, Islamic Azad University, Shabestar, Iran. parmouze@gmail.com AbdolNaser Dorgalaleh, Department

More information

Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs

Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs A paper comparing modern architectures Joakim Skarding Christian Chavez Motivation Continue scaling of performance

More information

Open Compute Stack (OpenCS) Overview. D.D. Nikolić Updated: 20 August 2018 DAE Tools Project,

Open Compute Stack (OpenCS) Overview. D.D. Nikolić Updated: 20 August 2018 DAE Tools Project, Open Compute Stack (OpenCS) Overview D.D. Nikolić Updated: 20 August 2018 DAE Tools Project, http://www.daetools.com/opencs What is OpenCS? A framework for: Platform-independent model specification 1.

More information

New Programming Paradigms: Partitioned Global Address Space Languages

New Programming Paradigms: Partitioned Global Address Space Languages Raul E. Silvera -- IBM Canada Lab rauls@ca.ibm.com ECMWF Briefing - April 2010 New Programming Paradigms: Partitioned Global Address Space Languages 2009 IBM Corporation Outline Overview of the PGAS programming

More information

Creating and Running Mobile Agents with XJ DOME

Creating and Running Mobile Agents with XJ DOME Creating and Running Mobile Agents with XJ DOME Kirill Bolshakov, Andrei Borshchev, Alex Filippoff, Yuri Karpov, and Victor Roudakov Distributed Computing & Networking Dept. St.Petersburg Technical University

More information

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, Nathan Clark Motivation Hardware Trends Put more cores

More information

Implementation Principles of File Management System for Omega Parallel DBMS *

Implementation Principles of File Management System for Omega Parallel DBMS * Implementation Principles of File Management System for Omega Parallel DBMS * Mikhail L. Zymbler Chelyabinsk State University Russia mzym@cgu.chel.su Leonid B. Sokolinsky Chelyabinsk State University Russia

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST

SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST O.V. Sukhoroslov Centre for Distributed Computing, Institute for Information Transmission Problems, Bolshoy Karetny per. 19 build.1,

More information

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT)

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Comparing Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Abstract Charles Severance Michigan State University East Lansing, Michigan,

More information

Implementation of Relational Operations in Omega Parallel Database System *

Implementation of Relational Operations in Omega Parallel Database System * Implementation of Relational Operations in Omega Parallel Database System * Abstract The paper describes the implementation of relational operations in the prototype of the Omega parallel database system

More information

Scalable Software Transactional Memory for Chapel High-Productivity Language

Scalable Software Transactional Memory for Chapel High-Productivity Language Scalable Software Transactional Memory for Chapel High-Productivity Language Srinivas Sridharan and Peter Kogge, U. Notre Dame Brad Chamberlain, Cray Inc Jeffrey Vetter, Future Technologies Group, ORNL

More information

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems Carl Pearson 1, I-Hsin Chung 2, Zehra Sura 2, Wen-Mei Hwu 1, and Jinjun Xiong 2 1 University of Illinois Urbana-Champaign, Urbana

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Chapter 3 Parallel Software

Chapter 3 Parallel Software Chapter 3 Parallel Software Part I. Preliminaries Chapter 1. What Is Parallel Computing? Chapter 2. Parallel Hardware Chapter 3. Parallel Software Chapter 4. Parallel Applications Chapter 5. Supercomputers

More information

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA Gilad Shainer 1, Tong Liu 1, Pak Lui 1, Todd Wilde 1 1 Mellanox Technologies Abstract From concept to engineering, and from design to

More information

Machine Learning for (fast) simulation

Machine Learning for (fast) simulation Machine Learning for (fast) simulation Sofia Vallecorsa for the GeantV team CERN, April 2017 1 Monte Carlo Simulation: Why Detailed simulation of subatomic particles is essential for data analysis, detector

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #15 3/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

Implementation of Parallel Path Finding in a Shared Memory Architecture

Implementation of Parallel Path Finding in a Shared Memory Architecture Implementation of Parallel Path Finding in a Shared Memory Architecture David Cohen and Matthew Dallas Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180 Email: {cohend4, dallam}

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

Sparse Matrix Operations on Multi-core Architectures

Sparse Matrix Operations on Multi-core Architectures Sparse Matrix Operations on Multi-core Architectures Carsten Trinitis 1, Tilman Küstner 1, Josef Weidendorfer 1, and Jasmin Smajic 2 1 Lehrstuhl für Rechnertechnik und Rechnerorganisation Institut für

More information

Caching Puts and Gets in a PGAS Language Runtime

Caching Puts and Gets in a PGAS Language Runtime Caching Puts and Gets in a PGAS Language Runtime Michael Ferguson Cray Inc. Daniel Buettner Laboratory for Telecommunication Sciences September 17, 2015 C O M P U T E S T O R E A N A L Y Z E Safe Harbor

More information