ECE 468, Fall Midterm 2

Size: px
Start display at page:

Download "ECE 468, Fall Midterm 2"

Transcription

1 ECE 468, Fall 08. Midterm INSTRUCTIONS (read carefully) Fill in your name and PUID. NAME: PUID: Please sign the following: I affirm that the answers given on this test are mine and mine alone. I did not receive help from any person or material (other than those eplicitly allowed). There are 5 problems. Make sure you have a complete eam. The point value of each problem is indicated net to the problem, as well as in the table below. Points may be deducted for solutions which are correct but ecessively complicated, hard to understand, or poorly eplained. Please keep your solutions short and crisp. The I DON T KNOW rule: if you do not know the answer to a problem, you can simply write I DON T KNOW and you will get 0% of credit for that problem. The number of points you get in this manner cannot eceed 0 points across the whole eam. It is wise to skim all problems and point values first, to best plan your time. This is an open book, open note eam. Use the back of sheets if necessary. See the proctor if you need more paper. Please bring any apparent bugs to the attention of the proctors. After the midterm is over, discuss its contents with other ECE 468 students only after verifying that they have also taken the eam (e.g. they aren t about to take the conflict eam). Some people are taking the conflict eam so please make sure before you discuss with anyone! The eam is designed for one hour (you can take 75 mins to finish). We indicate net to each problem how much time we suggest you spend on it. We also suggest you spend the last 0 minutes of the eam reviewing your answers. X Problem Possible Score Total 00

2 Problem : Optimization Short Answers (6 points) [0 minutes] The following questions concern the interactions between different optimizations a compiler can do. You should be able to answer them in to sentences each. (4 points each) (A) Performing register allocation before instruction scheduling can lead to worse (longer-running) schedules. Why? (4 points). Register allocation minimizes the number of registers used but introduces more dependencies between instructions (two independent variables may share a single register). Hence it reduces the freedom of instruction scheduling and possibly results in longer schedules. (B) Performing common subepression elimination (CSE) can make instruction scheduling worse. Why? (Assume, for this question only, that register allocation is not an issue; you have enough registers to never have to spill) (4 points). Similar to the answer for question (A), CSE between two independent instructions introduces new dependencies, potentially making instruction scheduling harder and longer. (C) Doing a poor job of alias analysis (i.e., the compiler thinks too many variables could alias each other) can make register allocation worse. Why? (4 points).

3 When aliased variables are allocated to different registers, etra operations (e.g., save dirty registers to memory or free invalid registers) are needed to maintain the consistency between the variables. These operations are unnecessary unless the variables indeed alias each other. (D) Performing common subepression elimination can make register allocation worse. Why? (4 points) The variable used to memoize a common subepression becomes live, no matter whether it was live before the CSE. The new live variables put more pressure on register allocation and may cause etra spill code. Problem : Function Calls and Semantic Actions (0 points) [5 minutes] (A) For the following function, show what the activation record for calling the function would be, including both what the caller sets up and what the callee sets up. Make the following assumptions: (i) the machine has four registers, plus an FP register and an SP register, and all the registers are 4 bytes; (ii) the program is using caller saves; (iii) the compiler had to spill one temporary in foo (holding an integer) to the stack. Show the stack growing down (as in the notes); (iv) Assume doubles are 8 bytes, and ints, floats and pointers are 4 bytes. 3

4 For each entry in the stack, show how many bytes that entry takes up. (0 points): double foo (int, double y) { double z; float bar;... //some computation return z; } rest of stack saved registers (4*4 bytes) return val for caller (8 bytes) arg for foo (4 bytes) arg y for foo (4 bytes) caller s old return address (4 bytes) caller s old frame pointer (4 bytes) z (8 bytes) bar (4 bytes) spilled temporary (4 bytes) caller callee Problem 3: Common Subepression Elimination (5 points) [0 minutes] Consider the following piece of code: A = B + C B = A + C 3 D = B + C 4 A = B + C 5 C = A + C (A) Assume there is no aliasing between variables. For each statement, list which epressions are available after the statement eecutes. (5 points) After Instruction Available Epressions 4

5 After Instruction Available Epressions B + C A + C 3 A + C, B + C 4 B + C 5 (B) What does the code look like after performing CSE? Leave the code in IR form. When eliminating a redundant epression, replace it with the variable that holds the previous result of computing the epression. (5 points) A = B + C B = A + C 3 D = B + C 4 A = D 5 C = A + C (C) How would your response to part (B) change if C and D were aliased? (5 points) No redundant epression can be eliminated at all. Problem 4: Register Allocation (4 points) [5 minutes] Consider the following code (assume this is the full program): 5

6 READ(A) B = A 3 A = A + B 4 C = B + A 5 D = C A 6 E = D + A 7 A = C E 8 B = B + A 9 WRITE(A) //this counts as a use of A 0 WRITE(B) //this counts as a use of B (A) Answer the following questions: ) Show which variables and temporaries are live after each instruction (assume no aliasing). (0 points) After Instruction Live Variables After Instruction Live Variables {A} {B, A} 3 {B, A} 4 {B, C, A} 5 {B, C, D, A} 6 {B, C, E} 7 {B, A} 8 {B, A} 9 {B} 0 {} (B) For the following scenarios, show what code needs to be generated using bottom-up register allocation for the given three-address-code instruction and give the state of the registers after code generation (if a value in a register is dirty, mark it with a *) If variables need to be spilled, spill non-dirty registers before dirty registers, and if there is a tie, spill the numerically lower register. Before instruction 5, assume the state of the registers is as follows: 6

7 R R R3 A B* C* What code is generated for instruction 5, D = C * A (assume B, C, D and A are live after this instruction) (4 points)? MUL R3 R R What is the state of the registers after this code (3 points)? R R R3 R R R3 D* B* C* Based on the register states you computed above, what code is generated for the net instruction, E = D + A (assume B, C, and E are live after this instruction) (4 points)? STORE R B LOAD A R 3 ADD R R R What is the state of the registers after this code (3 points)? R R R3 7

8 R R R3 E* C* Problem 5: Instruction Scheduling (35 points) [0 minutes] For the following problems, assume a machine that has ALUs and L/S units. The ALUs can eecute ADDs with a single-cycle latency. Only ALU0 can eecute SUBs with a two-cycle latency. Only ALU can eecute MULs with a two-cycle latency. LDs take two cycles, and occupy either ALU in the first cycle and either L/S unit in the second. STs occupy either L/S unit for one cycle. Assume that ALU0 is pipelined, but ALU is not. Assume that neither L/S unit is pipelined. (A) There are ten reservation tables for instructions LD, ST, ADD, SUB, and MUL. Fill in the five empty ones (0 points): ADD: SUB: ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ADD: MUL: ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S LOAD: ALU0 ALU L/S0 L/S LOAD: ALU0 ALU L/S0 L/S LOAD3: ALU0 ALU L/S0 L/S LOAD4: ALU0 ALU L/S0 L/S STORE: ALU0 ALU L/S0 L/S STORE: ALU0 ALU L/S0 L/S ADD: SUB: LOAD: LOAD3: ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ADD: MUL: LOAD: LOAD4: ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S ALU0 ALU L/S0 L/S 8

9 STORE: ALU0 ALU L/S0 L/S STORE: ALU0 ALU L/S0 L/S (B) Fill in the five missing arrows (including latencies) and the four missing heights to the datadependence graph for the following piece of code. Show the heights of each node in the graph (recall that the height of an instruction with no dependent instructions is its latency) (9 points): LD A, R; //Load A into R LD B, R; //Load B into R 3 R3 = R R 4 R4 = R LD C, R5; 6 R6 = R4 + R 7 R7 = R5 R6 8 ST R7, C //Store R7 into C 9 R8 = R3 + R6 0 ST R8, D //Store R8 into D 3: R3 = R*R [4] 9: R8 = R3+R6 [] 0: ST R8, D [] 4: R4 = R+3 [ ] : LD B, R [ ] 6: R6 = R4+R [ ] 8: ST R7, C [] : LD A, R [ ] 5: LD C, R5 [5] 7: R7=R5-R6 [3] The DDG with heights of each node is shown below. 9

10 3: R3 = R*R [4] 9: R8 = R3+R6 [] 0: ST R8, D [] 4: R4 = R+3 [5] : LD B, R [7] : LD A, R [6] 5: LD C, R5 [5] 8: ST R7, C [] 6: R6 = R4+R [4] 7: R7=R5-R6 [3] (C) For each instruction above, show in which cycle it will be eecuted if we use height-based list scheduling (we have scheduled instructions and for you). If there is a tie in heights, give priority to the instruction earlier in program order. Use the reservation tables from Part. Show your work in the table below. You may not use all of the rows. ( points) Cycle ALU0 ALU L/S0 L/S Cycle ALU0 ALU L/S0 L/S (D) Would the program run faster if you had 3 L/S units? Why or why not? (You shouldn t have to re-do the entire schedule to answer this question) (4 points) 0

11 Yes, the program would run faster with the third L/S unit. Instruction 5 can be scheduled to start at cycle, using ALU0 and L/S. Then Instruction 4 can still start at cycle 3 by using ALU. One cycle got saved and the rest of the instructions can be scheduled in the same way.

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100 ECE 2035(B) Programming for Hardware/Software Systems Fall 2013 Exam Two October 22 nd 2013 Name: Q1: /20 Q2: /30 Q3: /24 Q4: /26 Total: /100 1/6 For functional call related questions, let s assume the

More information

Computer Architecture I Midterm I

Computer Architecture I Midterm I Computer Architecture I Midterm I April 11 2017 Computer Architecture I Midterm I Chinese Name: Pinyin Name: E-Mail... @shanghaitech.edu.cn: Question Points Score 1 1 2 12 3 16 4 14 5 18 6 17 7 22 Total:

More information

Register Allocation & Liveness Analysis

Register Allocation & Liveness Analysis Department of Computer Sciences Register Allocation & Liveness Analysis CS502 Purdue University is an Equal Opportunity/Equal Access institution. Department of Computer Sciences In IR tree code generation,

More information

Midterm 2. CMSC 430 Introduction to Compilers Spring Instructions Total 100. Name: April 18, 2012

Midterm 2. CMSC 430 Introduction to Compilers Spring Instructions Total 100. Name: April 18, 2012 Name: Midterm 2 CMSC 430 Introduction to Compilers Spring 2012 April 18, 2012 Instructions This exam contains 10 pages, including this one. Make sure you have all the pages. Write your name on the top

More information

EECS 470 Midterm Exam Winter 2008 answers

EECS 470 Midterm Exam Winter 2008 answers EECS 470 Midterm Exam Winter 2008 answers Name: KEY unique name: KEY Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: #Page Points 2 /10

More information

2/12/2018. Recall Why ISAs Define Calling Conventions. ECE 220: Computer Systems & Programming. Recall the Structure of the LC-3 Stack Frame

2/12/2018. Recall Why ISAs Define Calling Conventions. ECE 220: Computer Systems & Programming. Recall the Structure of the LC-3 Stack Frame University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 220: Computer Systems & Programming Stack Frames Revisited Recall Why ISAs Define Calling Conventions A compiler

More information

EECS 470 Midterm Exam Winter 2009

EECS 470 Midterm Exam Winter 2009 EECS 70 Midterm Exam Winter 2009 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points 1 / 18 2 / 12 3 / 29 / 21

More information

Variables and Bindings

Variables and Bindings Net: Variables Variables and Bindings Q: How to use variables in ML? Q: How to assign to a variable? # let = 2+2;; val : int = 4 let = e;; Bind the value of epression e to the variable Variables and Bindings

More information

EECS 470 Midterm Exam

EECS 470 Midterm Exam EECS 470 Midterm Exam Fall 2009 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: # Points Page 2 /18 Page 3 /15

More information

Compiler Architecture

Compiler Architecture Code Generation 1 Compiler Architecture Source language Scanner (lexical analysis) Tokens Parser (syntax analysis) Syntactic structure Semantic Analysis (IC generator) Intermediate Language Code Optimizer

More information

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS Lectures 5 Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS 1 OOPS - What does this C code do? int foo(char *s) { int L = 0; while (*s++) { ++L; } return L; } 2

More information

Implementing Functions at the Machine Level

Implementing Functions at the Machine Level Subroutines/Functions Implementing Functions at the Machine Level A subroutine is a program fragment that... Resides in user space (i.e, not in OS) Performs a well-defined task Is invoked (called) by a

More information

System Software Assignment 1 Runtime Support for Procedures

System Software Assignment 1 Runtime Support for Procedures System Software Assignment 1 Runtime Support for Procedures Exercise 1: Nested procedures Some programming languages like Oberon and Pascal support nested procedures. 1. Find a run-time structure for such

More information

ENCM 369 Winter 2017 Lab 3 for the Week of January 30

ENCM 369 Winter 2017 Lab 3 for the Week of January 30 page 1 of 11 ENCM 369 Winter 2017 Lab 3 for the Week of January 30 Steve Norman Department of Electrical & Computer Engineering University of Calgary January 2017 Lab instructions and other documents for

More information

CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25

CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25 CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25 http://inst.eecs.berkeley.edu/~cs152/sp08 The problem

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

SOLUTION. Midterm #1 February 26th, 2018 Professor Krste Asanovic Name:

SOLUTION. Midterm #1 February 26th, 2018 Professor Krste Asanovic Name: SOLUTION Notes: CS 152 Computer Architecture and Engineering CS 252 Graduate Computer Architecture Midterm #1 February 26th, 2018 Professor Krste Asanovic Name: I am taking CS152 / CS252 This is a closed

More information

CSE351 Spring 2018, Final Exam June 6, 2018

CSE351 Spring 2018, Final Exam June 6, 2018 CSE351 Spring 2018, Final Exam June 6, 2018 Please do not turn the page until 2:30. Last Name: First Name: Student ID Number: Name of person to your left: Name of person to your right: Signature indicating:

More information

LECTURE 19. Subroutines and Parameter Passing

LECTURE 19. Subroutines and Parameter Passing LECTURE 19 Subroutines and Parameter Passing ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments behind a simple name. Data abstraction: hide data

More information

ECE 573 Midterm 1 September 29, 2009

ECE 573 Midterm 1 September 29, 2009 ECE 573 Midterm 1 September 29, 2009 Name: Purdue email: Please sign the following: I affirm that the answers given on this test are mine and mine alone. I did not receive help from an person or material

More information

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.

More information

Data Structure Layout. In HERA/Assembly

Data Structure Layout. In HERA/Assembly Data Structure Layout In HERA/Assembly Today, we re going to build some data structures in HERA First, a note on memory Registers are very fast RAM is relatively slow We use a cache to sit between them

More information

University of Illinois at Urbana-Champaign First Midterm Exam, ECE 220 Honors Section

University of Illinois at Urbana-Champaign First Midterm Exam, ECE 220 Honors Section University of Illinois at Urbana-Champaign First Midterm Exam, ECE 220 Honors Section Name: SOLUTION IS IN RED Thursday 15 February 2018 Net ID: Be sure that your exam booklet has ELEVEN pages. Write your

More information

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions Recap Epressions (Synta) Compile-time Static Eec-time Dynamic Types (Semantics) Recap Integers: +,-,* floats: +,-,* Booleans: =,

More information

CSC258: Computer Organization. Microarchitecture

CSC258: Computer Organization. Microarchitecture CSC258: Computer Organization Microarchitecture 1 Wrap-up: Function Conventions 2 Key Elements: Caller Ensure that critical registers like $ra have been saved. Save caller-save registers. Place arguments

More information

CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005

CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005 CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005 In this assignment you will implement garbage collection for the MiniJava compiler. The project includes the two

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2016 Lecture 4a Andrew Tolmach Portland State University 1994-2016 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Lecture 5. Announcements: Today: Finish up functions in MIPS

Lecture 5. Announcements: Today: Finish up functions in MIPS Lecture 5 Announcements: Today: Finish up functions in MIPS 1 Control flow in C Invoking a function changes the control flow of a program twice. 1. Calling the function 2. Returning from the function In

More information

Compositional Cutpoint Verification

Compositional Cutpoint Verification Compositional Cutpoint Verification Eric Smith (Stanford University) Collaborators: David Dill (Stanford University) David Hardin (Rockwell Collins) Contact ewsmith@stanford.edu Background Based on A Symbolic

More information

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation Prelude COMP 181 Lecture 14 Intermediate representations and code generation October 19, 2006 Who is Seth Lloyd? Professor of mechanical engineering at MIT, pioneer in quantum computing Article in Nature:

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Variable Types and Memory Sections. Types of Variables in C

COMP3221: Microprocessors and. and Embedded Systems. Overview. Variable Types and Memory Sections. Types of Variables in C COMP3221: Microprocessors and Embedded Systems Lecture 12: Functions I http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session 2, 2005 Overview Variable types Memory sections in C Parameter passing

More information

CS152 Computer Architecture and Engineering. Complex Pipelines

CS152 Computer Architecture and Engineering. Complex Pipelines CS152 Computer Architecture and Engineering Complex Pipelines Assigned March 6 Problem Set #3 Due March 20 http://inst.eecs.berkeley.edu/~cs152/sp12 The problem sets are intended to help you learn the

More information

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer CS 61C: Great Ideas in Computer Architecture Everything is a Number Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13 9/19/13 Fall 2013 - - Lecture #7 1 New- School Machine Structures

More information

Cache Organizations for Multi-cores

Cache Organizations for Multi-cores Lecture 26: Recap Announcements: Assgn 9 (and earlier assignments) will be ready for pick-up from the CS front office later this week Office hours: all day next Tuesday Final exam: Wednesday 13 th, 7:50-10am,

More information

Data Transfer Instructions

Data Transfer Instructions Data Transfer Instructions (Credit: Hui Wu/COMP2121 Lecture Notes) Load Direct (ld): ld Rd, v Rd {r0, r1,..., r31} and v {x, x+, -x, y, y+, -y, z, z+, -z} (remember the X, Y, Z pointers) Load Program Memory

More information

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons CS 61C: Great Ideas in Computer Architecture Strings and Func.ons Instructor: Krste Asanovic, Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs61c/sp12 Fall 2012 - - Lecture #7 1 New- School Machine Structures

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

News. CSE 130: Programming Languages. Environments & Closures. Functions are first-class values. Recap: Functions as first-class values

News. CSE 130: Programming Languages. Environments & Closures. Functions are first-class values. Recap: Functions as first-class values CSE 130: Programming Languages Environments & Closures News PA 3 due THIS Friday (5/1) Midterm NEXT Friday (5/8) Ranjit Jhala UC San Diego Recap: Functions as first-class values Arguments, return values,

More information

ECE 468/573 Midterm 1 October 1, 2014

ECE 468/573 Midterm 1 October 1, 2014 ECE 468/573 Midterm 1 October 1, 2014 Name: Purdue email: Please sign the following: I affirm that the answers given on this test are mine and mine alone. I did not receive help from any person or material

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Implementing Subroutines. Outline [1]

Implementing Subroutines. Outline [1] Implementing Subroutines In Text: Chapter 9 Outline [1] General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

Code generation and local optimization

Code generation and local optimization Code generation and local optimization Generating assembly How do we convert from three-address code to assembly? Seems easy! But easy solutions may not be the best option What we will cover: Instruction

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

Code generation and local optimization

Code generation and local optimization Code generation and local optimization Generating assembly How do we convert from three-address code to assembly? Seems easy! But easy solutions may not be the best option What we will cover: Instruction

More information

Lecture 4: Instruction Set Design/Pipelining

Lecture 4: Instruction Set Design/Pipelining Lecture 4: Instruction Set Design/Pipelining Instruction set design (Sections 2.9-2.12) control instructions instruction encoding Basic pipelining implementation (Section A.1) 1 Control Transfer Instructions

More information

UW CSE 351, Winter 2013 Midterm Exam

UW CSE 351, Winter 2013 Midterm Exam Full Name: Student ID: UW CSE 351, Winter 2013 Midterm Exam February 15, 2013 Instructions: Make sure that your exam is not missing any of the 9 pages, then write your full name and UW student ID on the

More information

CS153: Compilers Lecture 8: Compiling Calls

CS153: Compilers Lecture 8: Compiling Calls CS153: Compilers Lecture 8: Compiling Calls Stephen Chong https://www.seas.harvard.edu/courses/cs153 Announcements Project 2 out Due Thu Oct 4 (7 days) Project 3 out Due Tuesday Oct 9 (12 days) Reminder:

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-08 In Class Example Handout Part A: J-Type Example: If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: e.g. j addr would seemingly

More information

Functions and Procedures

Functions and Procedures Functions and Procedures Function or Procedure A separate piece of code Possibly separately compiled Located at some address in the memory used for code, away from main and other functions (main is itself

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

CSE413 Midterm. Question Max Points Total 100

CSE413 Midterm. Question Max Points Total 100 CSE413 Midterm 05 November 2007 Name Student ID Answer all questions; show your work. You may use: 1. The Scheme language definition. 2. One 8.5 * 11 piece of paper with handwritten notes Other items,

More information

ECE 411 Exam 1. This exam has 5 problems. Make sure you have a complete exam before you begin.

ECE 411 Exam 1. This exam has 5 problems. Make sure you have a complete exam before you begin. This exam has 5 problems. Make sure you have a complete exam before you begin. Write your name on every page in case pages become separated during grading. You will have three hours to complete this exam.

More information

CA Compiler Construction

CA Compiler Construction CA4003 - Compiler Construction David Sinclair When procedure A calls procedure B, we name procedure A the caller and procedure B the callee. A Runtime Environment, also called an Activation Record, is

More information

Functions in MIPS. Functions in MIPS 1

Functions in MIPS. Functions in MIPS 1 Functions in MIPS We ll talk about the 3 steps in handling function calls: 1. The program s flow of control must be changed. 2. Arguments and return values are passed back and forth. 3. Local variables

More information

Programming Languages

Programming Languages CSE 130 : Fall 2008 Programming Languages Lecture 3: Epressions and Types Ranjit Jhala UC San Diego News PA 1 due (net) Fri 10/10 5pm PA 2 out today or tomorrow Office hours posted on Webpage: Held in

More information

Pipeline Architecture RISC

Pipeline Architecture RISC Pipeline Architecture RISC Independent tasks with independent hardware serial No repetitions during the process pipelined Pipelined vs Serial Processing Instruction Machine Cycle Every instruction must

More information

Midterm II CS164, Spring 2006

Midterm II CS164, Spring 2006 Midterm II CS164, Spring 2006 April 11, 2006 Please read all instructions (including these) carefully. Write your name, login, SID, and circle the section time. There are 10 pages in this exam and 4 questions,

More information

CMSC 313 Fall2009 Midterm Exam 1 Section 01 October 12, 2009

CMSC 313 Fall2009 Midterm Exam 1 Section 01 October 12, 2009 CMSC 313 Fall2009 Midterm Exam 1 Section 01 October 12, 2009 Name Score UMBC Username Notes: a. Please write clearly. Unreadable answers receive no credit. b. For short answer questions your answer should

More information

Lecture: Static ILP. Topics: compiler scheduling, loop unrolling, software pipelining (Sections C.5, 3.2)

Lecture: Static ILP. Topics: compiler scheduling, loop unrolling, software pipelining (Sections C.5, 3.2) Lecture: Static ILP Topics: compiler scheduling, loop unrolling, software pipelining (Sections C.5, 3.2) 1 Static vs Dynamic Scheduling Arguments against dynamic scheduling: requires complex structures

More information

What Compilers Can and Cannot Do. Saman Amarasinghe Fall 2009

What Compilers Can and Cannot Do. Saman Amarasinghe Fall 2009 What Compilers Can and Cannot Do Saman Amarasinghe Fall 009 Optimization Continuum Many examples across the compilation pipeline Static Dynamic Program Compiler Linker Loader Runtime System Optimization

More information

CS 314 Principles of Programming Languages. Lecture 13

CS 314 Principles of Programming Languages. Lecture 13 CS 314 Principles of Programming Languages Lecture 13 Zheng Zhang Department of Computer Science Rutgers University Wednesday 19 th October, 2016 Zheng Zhang 1 CS@Rutgers University Class Information Reminder:

More information

CS 2410 Mid term (fall 2018)

CS 2410 Mid term (fall 2018) CS 2410 Mid term (fall 2018) Name: Question 1 (6+6+3=15 points): Consider two machines, the first being a 5-stage operating at 1ns clock and the second is a 12-stage operating at 0.7ns clock. Due to data

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

EECS 470 Midterm Exam

EECS 470 Midterm Exam EECS 470 Midterm Exam Winter 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: # Points Page 2 /12 Page 3

More information

Run-time Environment

Run-time Environment Run-time Environment Prof. James L. Frankel Harvard University Version of 3:08 PM 20-Apr-2018 Copyright 2018, 2016, 2015 James L. Frankel. All rights reserved. Storage Organization Automatic objects are

More information

Computer Architecture Prof. Mainak Chaudhuri Department of Computer Science & Engineering Indian Institute of Technology, Kanpur

Computer Architecture Prof. Mainak Chaudhuri Department of Computer Science & Engineering Indian Institute of Technology, Kanpur Computer Architecture Prof. Mainak Chaudhuri Department of Computer Science & Engineering Indian Institute of Technology, Kanpur Lecture - 7 Case study with MIPS-I So, we were discussing (Refer Time: 00:20),

More information

Low-Level Issues. Register Allocation. Last lecture! Liveness analysis! Register allocation. ! More register allocation. ! Instruction scheduling

Low-Level Issues. Register Allocation. Last lecture! Liveness analysis! Register allocation. ! More register allocation. ! Instruction scheduling Low-Level Issues Last lecture! Liveness analysis! Register allocation!today! More register allocation!later! Instruction scheduling CS553 Lecture Register Allocation I 1 Register Allocation!Problem! Assign

More information

Instruction scheduling

Instruction scheduling Instruction scheduling iaokang Qiu Purdue University ECE 468 October 12, 2018 What is instruction scheduling? Code generation has created a sequence of assembly instructions But that is not the only valid

More information

register allocation saves energy register allocation reduces memory accesses.

register allocation saves energy register allocation reduces memory accesses. Lesson 10 Register Allocation Full Compiler Structure Embedded systems need highly optimized code. This part of the course will focus on Back end code generation. Back end: generation of assembly instructions

More information

Deallocation Mechanisms. User-controlled Deallocation. Automatic Garbage Collection

Deallocation Mechanisms. User-controlled Deallocation. Automatic Garbage Collection Deallocation Mechanisms User-controlled Deallocation Allocating heap space is fairly easy. But how do we deallocate heap memory no longer in use? Sometimes we may never need to deallocate! If heaps objects

More information

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems University of Waterloo Midterm Examination Model Solution CS350 Operating Systems Fall, 2003 1. (10 total marks) Suppose that two processes, a and b, are running in a uniprocessor system. a has three threads.

More information

CPS311 Lecture: Procedures Last revised 9/9/13. Objectives:

CPS311 Lecture: Procedures Last revised 9/9/13. Objectives: CPS311 Lecture: Procedures Last revised 9/9/13 Objectives: 1. To introduce general issues that any architecture must address in terms of calling/returning from procedures, passing parameters (including

More information

Compilers and computer architecture: A realistic compiler to MIPS

Compilers and computer architecture: A realistic compiler to MIPS 1 / 1 Compilers and computer architecture: A realistic compiler to MIPS Martin Berger November 2017 Recall the function of compilers 2 / 1 3 / 1 Recall the structure of compilers Source program Lexical

More information

CS 61C: Great Ideas in Computer Architecture. (Brief) Review Lecture

CS 61C: Great Ideas in Computer Architecture. (Brief) Review Lecture CS 61C: Great Ideas in Computer Architecture (Brief) Review Lecture Instructor: Justin Hsia 7/16/2013 Summer 2013 Lecture #13 1 Topic List So Far (1/2) Number Representation Signed/unsigned, Floating Point

More information

Variables vs. Registers/Memory. Simple Approach. Register Allocation. Interference Graph. Register Allocation Algorithm CS412/CS413

Variables vs. Registers/Memory. Simple Approach. Register Allocation. Interference Graph. Register Allocation Algorithm CS412/CS413 Variables vs. Registers/Memory CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 33: Register Allocation 18 Apr 07 Difference between IR and assembly code: IR (and abstract assembly) manipulate

More information

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Malloc Lab & Midterm Solutions. Recitation 11: Tuesday: 11/08/2016

Malloc Lab & Midterm Solutions. Recitation 11: Tuesday: 11/08/2016 Malloc Lab & Midterm Solutions Recitation 11: Tuesday: 11/08/2016 Malloc 2 Important Notes about Malloc Lab Malloc lab has been updated from previous years Supports a full 64 bit address space rather than

More information

Today. Putting it all together

Today. Putting it all together Today! One complete example To put together the snippets of assembly code we have seen! Functions in MIPS Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang Putting it all together! Count

More information

Code Generation. Dragon: Ch (Just part of it) Holub: Ch 6.

Code Generation. Dragon: Ch (Just part of it) Holub: Ch 6. Code Generation Dragon: Ch 7. 8. (Just part of it) Holub: Ch 6. Compilation Processes Again Choice of Intermediate Code Representation (IR) IR examples Parse tree Three address code (e.g., x := y op z)

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

Midterm 2. CMSC 430 Introduction to Compilers Fall 2018

Midterm 2. CMSC 430 Introduction to Compilers Fall 2018 Name: Directory ID: University ID: Midterm 2 CMSC 430 Introduction to Compilers Fall 2018 Instructions This exam contains 14 pages, including this one. Make sure you have all the pages. Write your name,

More information

Heap Management. Heap Allocation

Heap Management. Heap Allocation Heap Management Heap Allocation A very flexible storage allocation mechanism is heap allocation. Any number of data objects can be allocated and freed in a memory pool, called a heap. Heap allocation is

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

CPSC 313, 04w Term 2 Midterm Exam 2 Solutions

CPSC 313, 04w Term 2 Midterm Exam 2 Solutions 1. (10 marks) Short answers. CPSC 313, 04w Term 2 Midterm Exam 2 Solutions Date: March 11, 2005; Instructor: Mike Feeley 1a. Give an example of one important CISC feature that is normally not part of a

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Database Systems: Fall 2008 Quiz I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Database Systems: Fall 2008 Quiz I Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.830 Database Systems: Fall 2008 Quiz I There are 17 questions and 10 pages in this quiz booklet. To receive

More information

Advanced Computer Architecture CMSC 611 Homework 3. Due in class Oct 17 th, 2012

Advanced Computer Architecture CMSC 611 Homework 3. Due in class Oct 17 th, 2012 Advanced Computer Architecture CMSC 611 Homework 3 Due in class Oct 17 th, 2012 (Show your work to receive partial credit) 1) For the following code snippet list the data dependencies and rewrite the code

More information

Project 3 Due October 21, 2015, 11:59:59pm

Project 3 Due October 21, 2015, 11:59:59pm Project 3 Due October 21, 2015, 11:59:59pm 1 Introduction In this project, you will implement RubeVM, a virtual machine for a simple bytecode language. Later in the semester, you will compile Rube (a simplified

More information

CS433 Midterm. Prof Josep Torrellas. October 16, Time: 1 hour + 15 minutes

CS433 Midterm. Prof Josep Torrellas. October 16, Time: 1 hour + 15 minutes CS433 Midterm Prof Josep Torrellas October 16, 2014 Time: 1 hour + 15 minutes Name: Alias: Instructions: 1. This is a closed-book, closed-notes examination. 2. The Exam has 4 Questions. Please budget your

More information

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University CS558 Programming Languages Winter 2018 Lecture 4a Andrew Tolmach Portland State University 1994-2018 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012)

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to

More information

Final CSE 131B Winter 2003

Final CSE 131B Winter 2003 Login name Signature Name Student ID Final CSE 131B Winter 2003 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 _ (20 points) _ (25 points) _ (21 points) _ (40 points) _ (30 points) _ (25 points)

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Advanced C Programming

Advanced C Programming Advanced C Programming Compilers Sebastian Hack hack@cs.uni-sb.de Christoph Weidenbach weidenbach@mpi-inf.mpg.de 20.01.2009 saarland university computer science 1 Contents Overview Optimizations Program

More information

There are 16 total numbered pages, 7 Questions. You have 2 hours. Budget your time carefully!

There are 16 total numbered pages, 7 Questions. You have 2 hours. Budget your time carefully! UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, October 27, 2014 ECE454H1 Computer Systems Programming Closed book, Closed note No programmable electronics allowed

More information

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Procedure Calls A procedure of a subroutine is like an agent which needs certain information to perform a

More information