Ngày 9 tháng 12 năm Discrete Mathematics Lecture-15

Size: px
Start display at page:

Download "Ngày 9 tháng 12 năm Discrete Mathematics Lecture-15"

Transcription

1 Discrete Mathematics Lecture-15 Ngày 9 tháng 12 năm 2011

2

3

4 ex

5 ex

6 ex a 1 mod b (gcd(a,b) = 1)

7 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1.

8 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have?

9 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n))

10 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n)

11 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n) Returns n!

12 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n) Returns n! is_prime(n)

13 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n) Returns n! is_prime(n) Returns True or False

14 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n) Returns n! is_prime(n) Returns True or False pow(a,b,c)

15 ex a 1 mod b (gcd(a,b) = 1) Returns an integer c < b such that a c mod b = 1. How many digits does the integer n have? len(str(n)) factorial(n) Returns n! is_prime(n) Returns True or False pow(a,b,c) Returns a b mod c.

16 Some theorems we shall be using Fermat s Theorem: If p is prime and 0 < a < p then a p 1 mod p = 1.

17 Some theorems we shall be using Fermat s Theorem: If p is prime and 0 < a < p then a p 1 mod p = 1. Chinese Remainder Theorem: Given [a 1, a 2,..., a k ] pairwise relatively prime integers and integers [m 1, m 2,..., m k ], m i < a i then there is a unique integer M < k i=1 m i such that M mod a i = m i

18 Some theorems we shall be using Fermat s Theorem: If p is prime and 0 < a < p then a p 1 mod p = 1. Chinese Remainder Theorem: Given [a 1, a 2,..., a k ] pairwise relatively prime integers and integers [m 1, m 2,..., m k ], m i < a i then there is a unique integer M < k i=1 m i such that M mod a i = m i Euler s Theorem: Recall: φ(n) = {a 1 a < n}, gcd(n, a) = 1}. If gcd(n, a) = 1 then a φ(n) mod n = 1.

19 Some theorems we shall be using Fermat s Theorem: If p is prime and 0 < a < p then a p 1 mod p = 1. Chinese Remainder Theorem: Given [a 1, a 2,..., a k ] pairwise relatively prime integers and integers [m 1, m 2,..., m k ], m i < a i then there is a unique integer M < k i=1 m i such that M mod a i = m i Euler s Theorem: Recall: φ(n) = {a 1 a < n}, gcd(n, a) = 1}. If gcd(n, a) = 1 then a φ(n) mod n = 1. Wallis Theorem (p 1)! mod p = 1 if and only if p is prime.

20 Some theorems we shall be using Fermat s Theorem: If p is prime and 0 < a < p then a p 1 mod p = 1. Chinese Remainder Theorem: Given [a 1, a 2,..., a k ] pairwise relatively prime integers and integers [m 1, m 2,..., m k ], m i < a i then there is a unique integer M < k i=1 m i such that M mod a i = m i Euler s Theorem: Recall: φ(n) = {a 1 a < n}, gcd(n, a) = 1}. If gcd(n, a) = 1 then a φ(n) mod n = 1. Wallis Theorem (p 1)! mod p = 1 if and only if p is prime. Primitive Roots: The finite field GF(q) has primitive roots ( {a k, 0 k q 2} = GF (q)).

UCT Algorithm Circle: Number Theory

UCT Algorithm Circle: Number Theory UCT Algorithm Circle: 7 April 2011 Outline Primes and Prime Factorisation 1 Primes and Prime Factorisation 2 3 4 Some revision (hopefully) What is a prime number? An integer greater than 1 whose only factors

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

The Chinese remainder theorem

The Chinese remainder theorem Mathematics, KTH Bengt Ek October 2015 Supplementary material for SF2736, Discrete mathematics: The Chinese remainder theorem We know that for all m Z + and all a Z, all integers x that satisfy x a (mod

More information

(a) Symmetric model (b) Cryptography (c) Cryptanalysis (d) Steganography

(a) Symmetric model (b) Cryptography (c) Cryptanalysis (d) Steganography Code No: RR410504 Set No. 1 1. Write short notes on (a) Symmetric model (b) Cryptography (c) Cryptanalysis (d) Steganography 3. (a) Illustrate Diffie-hellman Key Exchange scheme for GF(P) [6M] (b) Consider

More information

Chapter 3 Public Key Cryptography

Chapter 3 Public Key Cryptography Cryptography and Network Security Chapter 3 Public Key Cryptography Lectured by Nguyễn Đức Thái Outline Number theory overview Public key cryptography RSA algorithm 2 Prime Numbers A prime number is an

More information

Lecture 2 Applied Cryptography (Part 2)

Lecture 2 Applied Cryptography (Part 2) Lecture 2 Applied Cryptography (Part 2) Patrick P. C. Lee Tsinghua Summer Course 2010 2-1 Roadmap Number theory Public key cryptography RSA Diffie-Hellman DSA Certificates Tsinghua Summer Course 2010 2-2

More information

Public Key Cryptography

Public Key Cryptography graphy CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L07, Steve/Courses/2011/S2/CSS322/Lectures/rsa.tex,

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Public Key Cryptography Modular Arithmetic RSA

More information

Admin ENCRYPTION. Admin. Encryption 10/29/15. Assignment 6. 4 more assignments: Midterm next Thursday. What is it and why do we need it?

Admin ENCRYPTION. Admin. Encryption 10/29/15. Assignment 6. 4 more assignments: Midterm next Thursday. What is it and why do we need it? Admin Assignment 6 4 more assignments:! Assignment 7, due 11/13 5pm! Assignment 8, due 11/20 5pm! Assignments 9 & 10, due 12/9 11:59pm ENCRYPTION David Kauchak CS52 Spring 2015 Admin Midterm next Thursday!

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Number Theory Open, Round 1 Test #101

Number Theory Open, Round 1 Test #101 Number Theory Open, Round 1 Test #101 1. Write your 6-digit ID# in the I.D. NUMBER grid, left-justified, and bubble. Check that each column has only one number darkened. 2. In the EXAM NO. grid, write

More information

CIS 110: Introduction to Computer Programming

CIS 110: Introduction to Computer Programming CIS 110: Introduction to Computer Programming Lecture 3 Express Yourself ( 2.1) 9/16/2011 CIS 110 (11fa) - University of Pennsylvania 1 Outline 1. Data representation and types 2. Expressions 9/16/2011

More information

Uzzah and the Ark of the Covenant

Uzzah and the Ark of the Covenant Uzzah and the Ark of the Covenant And when they came to the threshing floor of Chidon, Uzzah put out his hand to take hold of the ark, for the oxen stumbled. 10 And the anger of the LORD was kindled against

More information

NUMB3RS Activity: Creating Codes. Episode: Backscatter

NUMB3RS Activity: Creating Codes. Episode: Backscatter Teacher Page 1 NUMB3RS Activity: Creating Codes Topic: Codes Grade Level: 10-12 Objective: Explore several coding methods Time: 30+ minutes Materials: TI-83/84 Plus calculator Introduction While lecturing

More information

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm.

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 1 / 43 Today Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 2 / 43 Finding an inverse? We showed how to efficiently tell if there is an inverse. Extend euclid to

More information

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( )

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( ) Calculating exact values of without using recurrence relations This note describes an algorithm for calculating exact values of, the number of partitions of into distinct positive integers each less than

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms CS 472 Spring 13 Lecture 6 Mohammad Almalag 2/19/2013 Public Key Algorithms - Introduction Public key algorithms are a motley crew, how? All hash algorithms do the same thing: Take

More information

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea.

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea. Trail Making Game Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, 305-701, Republic of Korea. May 7, 2009 Abstract Trail Making is a game played on a graph with

More information

Primitive Elements. Samuel Slocum, Evan Wall April 27, a p 1 1(modp)

Primitive Elements. Samuel Slocum, Evan Wall April 27, a p 1 1(modp) Primitive Elements Samuel Slocum, Evan Wall April 27, 2015 1 Introduction A Primitive element is a number a Z p given a prime p such that it has order p 1 and therefore the following equation holds. a

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security CRYPTOGRAPHY AND NETWORK SECURITY PRAKASH C. GUPTA Former Head Department of Information Technology Maharashtra Institute of Technology Pune Delhi-110092 2015 CRYPTOGRAPHY

More information

A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS

A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS Ounasser Abid 1 and Omar Khadir 2 1, 2 Laboratory of Mathematics, Cryptography and Mechanics, FSTM University Hassan II of Casablanca, Morocco

More information

Chapter 9. Public Key Cryptography, RSA And Key Management

Chapter 9. Public Key Cryptography, RSA And Key Management Chapter 9 Public Key Cryptography, RSA And Key Management RSA by Rivest, Shamir & Adleman of MIT in 1977 The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on

More information

Structured programming

Structured programming Exercises 8 Version 1.0, 1 December, 2016 Table of Contents 1. Recursion................................................................... 1 1.1. Problem 1...............................................................

More information

Applied Cryptography and Network Security

Applied Cryptography and Network Security Applied Cryptography and Network Security William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #8: RSA Didn t we learn about RSA last time? During the last lecture, we saw what RSA does and learned

More information

36 Modular Arithmetic

36 Modular Arithmetic 36 Modular Arithmetic Tom Lewis Fall Term 2010 Tom Lewis () 36 Modular Arithmetic Fall Term 2010 1 / 10 Outline 1 The set Z n 2 Addition and multiplication 3 Modular additive inverse 4 Modular multiplicative

More information

Ch 3.4 The Integers and Division

Ch 3.4 The Integers and Division Integers and Division 1 Ch 3.4 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

Elementary number theory

Elementary number theory Elementary number theory The notion of primes, greatest common divisors, congruences and Euler s phi function. the number theoretic concepts and Sage commands Sage Implementation of the RSA algorithm.

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 33 Key size in RSA The security of the RSA system is dependent on the diculty

More information

Exercises for Discrete Maths

Exercises for Discrete Maths Exercises for Discrete Maths Discrete Maths Teacher: Alessandro Artale Teaching Assistants: Elena Botoeva, Daniele Porello http://www.inf.unibz.it/~artale/dml/dml.htm Week 6 Computer Science Free University

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Zeon PDF Driver Trial

Zeon PDF Driver Trial IEEE P1363.2 Submission / D2001-06-21 (draft) Standard Specifications for Public Key Cryptography: Password-based Techniques Abstract. This document contains possible additions to IEEE P1363.2/D2001-05-14

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Giuseppe F. Italiano Universita` di Roma Tor Vergata italiano@disp.uniroma2.it Motivation Until early 70s, cryptography was mostly owned by government and military Symmetric cryptography

More information

Total No. of Questions : 09 ] [ Total No.of Pages : 02

Total No. of Questions : 09 ] [ Total No.of Pages : 02 CS / IT 321 (CR) Total No. of Questions : 09 ] [ Total No.of Pages : 02 III/IV B. TECH. DEGREE EXAMINATIONS, OCT / NOV - 2015 Second Semester COMPUTER SCIENCE & ENGINEERING NETWK SECURITY Time : Three

More information

RSA. Public Key CryptoSystem

RSA. Public Key CryptoSystem RSA Public Key CryptoSystem DIFFIE AND HELLMAN (76) NEW DIRECTIONS IN CRYPTOGRAPHY Split the Bob s secret key K to two parts: K E, to be used for encrypting messages to Bob. K D, to be used for decrypting

More information

Study Guide to Mideterm Exam

Study Guide to Mideterm Exam YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #7 Professor M. J. Fischer February 20, 2012 Study Guide to Mideterm Exam For the exam, you are responsible

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1 PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 1 Pimentel 141 Mccone

More information

RSA (material drawn from Avi Kak Lecture 12, Lecture Notes on "Computer and Network Security" Used in asymmetric crypto.

RSA (material drawn from Avi Kak Lecture 12, Lecture Notes on Computer and Network Security Used in asymmetric crypto. RSA (material drawn from Avi Kak (kak@purdue.edu) Lecture 12, Lecture Notes on "Computer and Network Security" Used in asymmetric crypto. protocols The RSA algorithm is based on the following property

More information

Tuesday, January 17, 17. Crypto - mini lecture 1

Tuesday, January 17, 17. Crypto - mini lecture 1 Crypto - mini lecture 1 Cryptography Symmetric key cryptography (secret key crypto): sender and receiver keys identical Asymmetric key cryptography (public key crypto): encryption key public, decryption

More information

Lecture 5: Lazy Evaluation and Infinite Data Structures

Lecture 5: Lazy Evaluation and Infinite Data Structures Lecture 5: Lazy Evaluation and Infinite Data Structures Søren Haagerup Department of Mathematics and Computer Science University of Southern Denmark, Odense October 3, 2017 How does Haskell evaluate a

More information

Public-key encipherment concept

Public-key encipherment concept Date: onday, October 21, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on Public Key Cryptography Public-key encipherment concept Each user in a secure communication

More information

3/22/17. Admin. Assignment 6 ENCRYPTION. David Kauchak CS52 Spring Survey: How is the class going? Survey: respondents. 24 total respondents

3/22/17. Admin. Assignment 6 ENCRYPTION. David Kauchak CS52 Spring Survey: How is the class going? Survey: respondents. 24 total respondents Admin Assignment 6 ENCRYPTION David Kauchak CS52 Spring 2016 Survey: respondents Survey: How is the class going? 24 total respondents 1 Survey: How is the difficulty of the class? Survey: time spent per

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

x= suppose we want to calculate these large values 1) x= ) x= ) x=3 100 * ) x= ) 7) x=100!

x= suppose we want to calculate these large values 1) x= ) x= ) x=3 100 * ) x= ) 7) x=100! HighPower large integer calculator intended to investigate the properties of large numbers such as large exponentials and factorials. This application is written in Delphi 7 and can be easily ported to

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Applied Cryptography and Computer Security CSE 664 Spring 2018

Applied Cryptography and Computer Security CSE 664 Spring 2018 Applied Cryptography and Computer Security Lecture 13: Public-Key Cryptography and RSA Department of Computer Science and Engineering University at Buffalo 1 Public-Key Cryptography What we already know

More information

Introduction to Cryptography Lecture 7

Introduction to Cryptography Lecture 7 Introduction to Cryptography Lecture 7 El Gamal Encryption RSA Encryption Benny Pinkas page 1 1 Public key encryption Alice publishes a public key PK Alice. Alice has a secret key SK Alice. Anyone knowing

More information

Public Key Encryption

Public Key Encryption Public Key Encryption A case study THE RSA CRYPTOSYSTEM Public 31/05/14 Key Encryption 2 Rivest Shamir Adleman (1978) Key generation 1. Generate two large, distinct primes p, q (100 200 decimal digits)

More information

Public Key Cryptography and the RSA Cryptosystem

Public Key Cryptography and the RSA Cryptosystem Public Key Cryptography and the RSA Cryptosystem Two people, say Alice and Bob, would like to exchange secret messages; however, Eve is eavesdropping: One technique would be to use an encryption technique

More information

Today. Finish Euclid. Bijection/CRT/Isomorphism. Review for Midterm.

Today. Finish Euclid. Bijection/CRT/Isomorphism. Review for Midterm. Today Finish Euclid. Bijection/CRT/Isomorphism. Review for Midterm. Finding an inverse? We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse. Euclid s GCD algorithm.

More information

Chapter 9 Public Key Cryptography. WANG YANG

Chapter 9 Public Key Cryptography. WANG YANG Chapter 9 Public Key Cryptography WANG YANG wyang@njnet.edu.cn Content Introduction RSA Diffie-Hellman Key Exchange Introduction Public Key Cryptography plaintext encryption ciphertext decryption plaintext

More information

Public Key Algorithms

Public Key Algorithms CSE597B: Special Topics in Network and Systems Security Public Key Cryptography Instructor: Sencun Zhu The Pennsylvania State University Public Key Algorithms Public key algorithms RSA: encryption and

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

CS Network Security. Nasir Memon Polytechnic University Module 7 Public Key Cryptography. RSA.

CS Network Security. Nasir Memon Polytechnic University Module 7 Public Key Cryptography. RSA. CS 393 - Network Security Nasir Memon Polytechnic University Module 7 Public Key Cryptography. RSA. Course Logistics Homework 2 revised. Due next Tuesday midnight. 2/26,28/02 Module 7 - Pubic Key Crypto

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design Preface About the Author Dependency Chart xiii xix xxi Chapter 1: Logic and Sets 1 1.1: Logical Operators: Statements and Truth Values, Negations, Conjunctions, and Disjunctions, Truth Tables, Conditional

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple.

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple. Chapter Pythagorean Triples.1 Introduction. The Pythagorean triples have been known since the time of Euclid and can be found in the third century work Arithmetica by Diophantus [9]. An ancient Babylonian

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Combinatorial Gems. Po-Shen Loh. June 2009

Combinatorial Gems. Po-Shen Loh. June 2009 Combinatorial Gems Po-Shen Loh June 2009 Although this lecture does not contain many offical Olympiad problems, the arguments which are used are all common elements of Olympiad problem solving. Some of

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

COP 4516: Math for Programming Contest Notes

COP 4516: Math for Programming Contest Notes COP 4516: Math for Programming Contest Notes Euclid's Algorithm Euclid's Algorithm is the efficient way to determine the greatest common divisor between two integers. Given two positive integers a and

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

Network Security. Chapter 4 Public Key Cryptography. Public Key Cryptography (4) Public Key Cryptography

Network Security. Chapter 4 Public Key Cryptography. Public Key Cryptography (4) Public Key Cryptography Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Encryption/Decryption using Public Key Cryptography Network Security Chapter 4 Public Key Cryptography However,

More information

RECURSION: n. SEE RECURSION 3

RECURSION: n. SEE RECURSION 3 RECURSION: n. SEE RECURSION 3 COMPUTER SCIENCE 61A June 30, 2015 1 Recursion A recursive function is a function that calls itself. Below is a recursive factorial function. def factorial(n): if n == 0 or

More information

Discrete Mathematics and Probability Theory Spring 2017 Rao Midterm 2

Discrete Mathematics and Probability Theory Spring 2017 Rao Midterm 2 CS 70 Discrete Mathematics and Probability Theory Spring 2017 Rao Midterm 2 PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: WRITE THE NAME OF your exam room: Name of the person

More information

Lecture Notes, CSE 232, Fall 2014 Semester

Lecture Notes, CSE 232, Fall 2014 Semester Lecture Notes, CSE 232, Fall 2014 Semester Dr. Brett Olsen Week 11 - Number Theory Number theory is the study of the integers. The most basic concept in number theory is divisibility. We say that b divides

More information

A nice outline of the RSA algorithm and implementation can be found at:

A nice outline of the RSA algorithm and implementation can be found at: Cryptography Lab: RSA Encryption and Decryption Lab Objectives: After this lab, the students should be able to Explain the simple concepts of encryption and decryption to protect information in transmission.

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.2001.1.1 COMPUTER SCIENCE TRIPOS Part IA Monday 4 June 2001 1.30 to 4.30 Paper 1 Answer two questions from Section A, and one question from each of Sections B, C, D and E. Submit the answers in six

More information

Comparison of Algorithms for Elliptic Curve Cryptography over Finite Fields of GF(2 m )

Comparison of Algorithms for Elliptic Curve Cryptography over Finite Fields of GF(2 m ) Comparison of Algorithms for Elliptic Curve Cryptography over Finite Fields of GF( m ) The IASTED International Conference on Communication, Network, and Information Security CNIS 003, December -1, 003

More information

Programming Techniques in Computer Algebra

Programming Techniques in Computer Algebra Programming Techniques in Computer Algebra Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf March 18, 2010 Yaounde, Cameroon Abstract Topics of This Talk In this talk

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

CS669 Network Security

CS669 Network Security UNIT II PUBLIC KEY ENCRYPTION Uniqueness Number Theory concepts Primality Modular Arithmetic Fermet & Euler Theorem Euclid Algorithm RSA Elliptic Curve Cryptography Diffie Hellman Key Exchange Uniqueness

More information

Problem Solving for Intro to Computer Science

Problem Solving for Intro to Computer Science Problem Solving for Intro to Computer Science The purpose of this document is to review some principles for problem solving that are relevant to Intro to Computer Science course. Introduction: A Sample

More information

星の研究. A Study of Stars. Junten Science Library 4. Revised English version based on the lecture on 2 nd Dec for

星の研究. A Study of Stars. Junten Science Library 4. Revised English version based on the lecture on 2 nd Dec for Junten Science Library Revised English version based on the lecture on nd Dec. 00 for Junten Junior High School and Chua Chu Kan Higih School in Singapore 星の研究 A Study of Stars Written and translated by

More information

Galois Field Package Manual

Galois Field Package Manual Galois Field Package Manual Ryoh Fuji-Hara University of Tuskuba Abstract When we implement an algebraic system like a group, a ring or a finite field within an existing symbolic computational language,

More information

Counting. Ngày 29 tháng 10 năm Counting

Counting. Ngày 29 tháng 10 năm Counting Ngày 29 tháng 10 năm 2010 Question What do we count? Question What do we count? Question What do we count? Question Why do we count? Question What do we count? Question Why do we count? Question What do

More information

NUMBERS ODD ONE OUT NUMBERS ODD ONE OUT. page 1 / 5

NUMBERS ODD ONE OUT   NUMBERS ODD ONE OUT. page 1 / 5 page 1 / 5 page 2 / 5 numbers odd one out pdf In mathematics, parity is the property of an integer's inclusion in one of two categories: even or odd.an integer is even if it is divisible by two and odd

More information

Constructing Pairing-Friendly Elliptic Curves for Cryptography

Constructing Pairing-Friendly Elliptic Curves for Cryptography Constructing Pairing-Friendly Elliptic Curves for Cryptography University of California, Berkeley, USA 2nd KIAS-KMS Summer Workshop on Cryptography Seoul, Korea 30 June 2007 Outline 1 Recent Developments

More information

Outline Mousavi: ADT

Outline Mousavi: ADT Outline Abstract Data Types Mohammad Mousavi Eindhoven University of Technology, The Netherlands Requirement Analysis and Design Verification (RADV) Outline Outline Basic Concepts Booleans Standard Data

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

1 Elementary number theory

1 Elementary number theory 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...}, along with their most basic arithmetical and ordering properties.

More information

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications Using recursion to define objects CS 220: Discrete Structures and their Applications Recursive objects and 6.9 6.10 in zybooks We can use recursion to define functions: The factorial function can be defined

More information

1 Extended Euclidean Algorithm

1 Extended Euclidean Algorithm CS 124 Section #8 RSA, Random Walks, Linear Programming 3/27/17 1 Extended Euclidean Algorithm Given a, b, find x, y such that ax + by = d where d is the GCD of a, b. This will be necessary in implementing

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

Closed Book Examination. One and a half hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 20 th January 2010

Closed Book Examination. One and a half hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 20 th January 2010 Closed Book Examination COMP20010 One and a half hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Algorithms and Imperative Programming Date: Wednesday 20 th January 2010 Time: 14.00 15.30 Please

More information

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ).

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ). MATH 139 W12 Review 1 Checklist 1 Exam Checklist 1. Introduction to Predicates and Quantified Statements (chapters 3.1-3.4). universal and existential statements truth set negations of universal and existential

More information

On Jeśmanowicz Conjecture Concerning Pythagorean Triples

On Jeśmanowicz Conjecture Concerning Pythagorean Triples Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 143 148 DOI:10.3770/j.issn:2095-2651.2015.02.004 Http://jmre.dlut.edu.cn On Jeśmanowicz Conjecture Concerning Pythagorean

More information

Lecture 6: Overview of Public-Key Cryptography and RSA

Lecture 6: Overview of Public-Key Cryptography and RSA 1 Lecture 6: Overview of Public-Key Cryptography and RSA Yuan Xue In this lecture, we give an overview to the public-key cryptography, which is also referred to as asymmetric cryptography. We will first

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

Assignment 9 / Cryptography

Assignment 9 / Cryptography Assignment 9 / Cryptography Michael Hauser March 2002 Tutor: Mr. Schmidt Course: M.Sc Distributed Systems Engineering Lecturer: Mr. Owens CONTENTS Contents 1 Introduction 3 2 Simple Ciphers 3 2.1 Vignère

More information

Finite Fields can be represented in various ways. Generally, they are most

Finite Fields can be represented in various ways. Generally, they are most Using Fibonacci Cycles Modulo p to Represent Finite Fields 1 Caitlyn Conaway, Jeremy Porché, Jack Rebrovich, Shelby Robertson, and Trey Smith, PhD Abstract Finite Fields can be represented in various ways.

More information

(1) Modular arithmetic

(1) Modular arithmetic (1) Modular arithmetic In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for integers, where numbers "wrap يلتف حولaround " after they reach a certain value

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ Attacking Cryptographic Schemes Cryptanalysis Find mathematical weaknesses in constructions

More information

1 Extended Euclidean Algorithm

1 Extended Euclidean Algorithm CS 124 Section #8 RSA, Random Walks, Linear Programming 3/27/17 1 Extended Euclidean Algorithm Given a, b, find x, y such that ax + by = d where d is the GCD of a, b. This will be necessary in implementing

More information