36 Modular Arithmetic

Size: px
Start display at page:

Download "36 Modular Arithmetic"

Transcription

1 36 Modular Arithmetic Tom Lewis Fall Term 2010 Tom Lewis () 36 Modular Arithmetic Fall Term / 10

2 Outline 1 The set Z n 2 Addition and multiplication 3 Modular additive inverse 4 Modular multiplicative inverse 5 What are the invertible elements of Z n? Tom Lewis () 36 Modular Arithmetic Fall Term / 10

3 The set Z n Given an integer n 1, let Z n = {0, 1, 2, 3,, n 1}; We call this the set of integers modulo n. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

4 The set Z n Given an integer n 1, let Z n = {0, 1, 2, 3,, n 1}; We call this the set of integers modulo n. Note It is helpful to think of these as representatives of the equivalence classes modulo n of Z. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

5 Addition and multiplication Let a, b Z n. We define a b = (a + b) mod n a b = (a b) mod n Tom Lewis () 36 Modular Arithmetic Fall Term / 10

6 Addition and multiplication Let a, b Z n. We define a b = (a + b) mod n a b = (a b) mod n Problem Construct addition and multiplication tables for Z 3 and Z 4. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

7 Addition and multiplication Theorem Let n 2 be an integer. Let a, b, and c be elements of Z n. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

8 Addition and multiplication Theorem Let n 2 be an integer. Let a, b, and c be elements of Z n. Commutative a b = b a and a b = b a Tom Lewis () 36 Modular Arithmetic Fall Term / 10

9 Addition and multiplication Theorem Let n 2 be an integer. Let a, b, and c be elements of Z n. Commutative a b = b a and a b = b a Associative a (b c) = (a b) c and a (b c) = (a b) c Tom Lewis () 36 Modular Arithmetic Fall Term / 10

10 Addition and multiplication Theorem Let n 2 be an integer. Let a, b, and c be elements of Z n. Commutative a b = b a and a b = b a Associative a (b c) = (a b) c and a (b c) = (a b) c Identity a 0 = 0 and a 1 = a Tom Lewis () 36 Modular Arithmetic Fall Term / 10

11 Addition and multiplication Theorem Let n 2 be an integer. Let a, b, and c be elements of Z n. Commutative a b = b a and a b = b a Associative a (b c) = (a b) c and a (b c) = (a b) c Identity a 0 = 0 and a 1 = a Distributive a (b c) = (a b) (a c) Tom Lewis () 36 Modular Arithmetic Fall Term / 10

12 Modular additive inverse Theorem Given a Z n, there exists a unique x Z n such that a x = 0 mod n Tom Lewis () 36 Modular Arithmetic Fall Term / 10

13 Modular additive inverse Theorem Given a Z n, there exists a unique x Z n such that a x = 0 mod n Given a Z n, let a denote the unique element such that a is called the additive inverse of a. a ( a) = 0 mod n Tom Lewis () 36 Modular Arithmetic Fall Term / 10

14 Modular additive inverse Given a, b Z n, define a b = a ( b) Tom Lewis () 36 Modular Arithmetic Fall Term / 10

15 Modular additive inverse Given a, b Z n, define Problem a b = a ( b) Tom Lewis () 36 Modular Arithmetic Fall Term / 10

16 Modular additive inverse Given a, b Z n, define a b = a ( b) Problem Evaluate 8 and compute 3 8 in Z 11. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

17 Modular additive inverse Given a, b Z n, define a b = a ( b) Problem Evaluate 8 and compute 3 8 in Z 11. Evaluate 8 and compute 3 8 in Z 15. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

18 Modular multiplicative inverse Let a Z n. A reciprocal of a is a number b Z n such that a b = 1. A number that has a reciprocal is called invertible. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

19 Modular multiplicative inverse Let a Z n. A reciprocal of a is a number b Z n such that a b = 1. A number that has a reciprocal is called invertible. Problem Tom Lewis () 36 Modular Arithmetic Fall Term / 10

20 Modular multiplicative inverse Let a Z n. A reciprocal of a is a number b Z n such that a b = 1. A number that has a reciprocal is called invertible. Problem Find a reciprocal of 3 in Z 7. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

21 Modular multiplicative inverse Let a Z n. A reciprocal of a is a number b Z n such that a b = 1. A number that has a reciprocal is called invertible. Problem Find a reciprocal of 3 in Z 7. Find a reciprocal of 5 in Z 6. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

22 Modular multiplicative inverse Let a Z n. A reciprocal of a is a number b Z n such that a b = 1. A number that has a reciprocal is called invertible. Problem Find a reciprocal of 3 in Z 7. Find a reciprocal of 5 in Z 6. Show that 2 is not invertible in Z 6. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

23 Modular multiplicative inverse Theorem If a is invertible in Z n, then it has a unique inverse in Z n, denoted by a 1. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

24 Modular multiplicative inverse Theorem If a is invertible in Z n, then it has a unique inverse in Z n, denoted by a 1. (Division) Let n be a positive integer and let b be an invertible element of Z n. Let a Z n be arbitrary. Then a/b is defined by a b 1. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

25 Modular multiplicative inverse Theorem If a is invertible in Z n, then it has a unique inverse in Z n, denoted by a 1. (Division) Let n be a positive integer and let b be an invertible element of Z n. Let a Z n be arbitrary. Then a/b is defined by a b 1. Problem Compute 3/5 in Z 6. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

26 What are the invertible elements of Z n? Theorem Let n be a positive integer and let p Z n. p and n are relatively prime if and only if p is invertible in Z n. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

27 What are the invertible elements of Z n? Theorem Let n be a positive integer and let p Z n. p and n are relatively prime if and only if p is invertible in Z n. Problem Evaluate 81/35 in Z 144. Tom Lewis () 36 Modular Arithmetic Fall Term / 10

Modular Arithmetic. Marizza Bailey. December 14, 2015

Modular Arithmetic. Marizza Bailey. December 14, 2015 Modular Arithmetic Marizza Bailey December 14, 2015 Introduction to Modular Arithmetic If someone asks you what day it is 145 days from now, what would you answer? Would you count 145 days, or find a quicker

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

Ch 3.4 The Integers and Division

Ch 3.4 The Integers and Division Integers and Division 1 Ch 3.4 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

Rational Numbers: Multiply and Divide

Rational Numbers: Multiply and Divide Rational Numbers: Multiply and Divide Multiplying Positive and Negative Numbers You know that when you multiply a positive number by a positive number, the result is positive. Multiplication with negative

More information

Algorithmic number theory Cryptographic hardness assumptions. Table of contents

Algorithmic number theory Cryptographic hardness assumptions. Table of contents Algorithmic number theory Cryptographic hardness assumptions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Primes and Divisibility Modular

More information

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm MA/CSSE 473 Day 06 Euclid's Algorithm MA/CSSE 473 Day 06 Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm 1 Quick look at review topics in textbook REVIEW

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

Unit 3: Multiplication and Division Reference Guide pages x 7 = 392 factors: 56, 7 product 392

Unit 3: Multiplication and Division Reference Guide pages x 7 = 392 factors: 56, 7 product 392 Lesson 1: Multiplying Integers and Decimals, part 1 factor: any two or more numbers multiplied to form a product 56 x 7 = 392 factors: 56, 7 product 392 Integers: all positive and negative whole numbers

More information

Cryptology complementary. Finite fields the practical side (1)

Cryptology complementary. Finite fields the practical side (1) Cryptology complementary Finite fields the practical side (1) Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 15 Finite Fields in practice

More information

Algorithms (III) Yijia Chen Shanghai Jiaotong University

Algorithms (III) Yijia Chen Shanghai Jiaotong University Algorithms (III) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Factoring: Given a number N, express it as a product of its prime factors. Many security protocols are based on the

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic INF2270 Spring 2010 Philipp Häfliger Lecture 4: Signed Binaries and Arithmetic content Karnaugh maps revisited Binary Addition Signed Binary Numbers Binary Subtraction Arithmetic Right-Shift and Bit Number

More information

Algorithms (III) Yu Yu. Shanghai Jiaotong University

Algorithms (III) Yu Yu. Shanghai Jiaotong University Algorithms (III) Yu Yu Shanghai Jiaotong University Review of the Previous Lecture Factoring: Given a number N, express it as a product of its prime factors. Many security protocols are based on the assumed

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

Notes for Lecture 10

Notes for Lecture 10 COS 533: Advanced Cryptography Lecture 10 (October 16, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Dylan Altschuler Notes for Lecture 10 1 Motivation for Elliptic Curves Diffie-Hellman For

More information

Algorithms (III) Yijia Chen Shanghai Jiaotong University

Algorithms (III) Yijia Chen Shanghai Jiaotong University Algorithms (III) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Factoring: Given a number N, express it as a product of its prime factors. Many security protocols are based on the

More information

The Chinese remainder theorem

The Chinese remainder theorem Mathematics, KTH Bengt Ek October 2015 Supplementary material for SF2736, Discrete mathematics: The Chinese remainder theorem We know that for all m Z + and all a Z, all integers x that satisfy x a (mod

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

More information

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE:

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE: Rational number operations can often be simplified by converting mixed numbers to improper fractions Add ( 2) EXAMPLE: 2 Multiply 1 Negative fractions can be written with the negative number in the numerator

More information

5858 ASCII Expression

5858 ASCII Expression 5858 ASCII Expression Mathematical expressions appearing in old papers and old technical articles are printed with typewriter in several lines, where a fixed-width or monospaced font is required to print

More information

Arithmetic in Quaternion Algebras

Arithmetic in Quaternion Algebras Arithmetic in Quaternion Algebras Graduate Algebra Symposium Jordan Wiebe University of Oklahoma November 5, 2016 Jordan Wiebe (University of Oklahoma) Arithmetic in Quaternion Algebras November 5, 2016

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Exponent Form and Basic Properties Order of Operations Using Divisibility Rules Finding Factors and Common Factors Primes, Prime

More information

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties Chapter 3: Arithmetic Properties CHAPTER 3: ARITHMETIC PROPERTIES Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Arithmetic Properties Date: Lesson: Learning Log Title:

More information

Lecture IV : Cryptography, Fundamentals

Lecture IV : Cryptography, Fundamentals Lecture IV : Cryptography, Fundamentals Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Computer Science Department, National Chiao Tung University Spring 2012 Basic Principles

More information

Lecture 2 Algorithms with numbers

Lecture 2 Algorithms with numbers Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 2 Algorithms with numbers 1 RSA Algorithm Why does RSA work? RSA is based

More information

UCT Algorithm Circle: Number Theory

UCT Algorithm Circle: Number Theory UCT Algorithm Circle: 7 April 2011 Outline Primes and Prime Factorisation 1 Primes and Prime Factorisation 2 3 4 Some revision (hopefully) What is a prime number? An integer greater than 1 whose only factors

More information

Lecture 7 Number Theory Euiseong Seo

Lecture 7 Number Theory Euiseong Seo Lecture 7 Number Theory Euiseong Seo (euiseong@skku.edu) 1 Number Theory God created the integers. All else is the work of man Leopold Kronecker Study of the property of the integers Specifically, integer

More information

Cryptography: Matrices and Encryption

Cryptography: Matrices and Encryption Cryptography: Matrices and Encryption By: Joseph Pugliano and Brandon Sehestedt Abstract The focus of this project is investigating how to generate keys in order to encrypt words using Hill Cyphers. Other

More information

Number Theory and RSA Public-Key Encryption

Number Theory and RSA Public-Key Encryption Number Theory and RSA Public-Key Encryption Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University E-mail: natarajan.meghanathan@jsums.edu CIA Triad: Three Fundamental

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

ECE 646 Fall 2009 Final Exam December 15, Multiple-choice test

ECE 646 Fall 2009 Final Exam December 15, Multiple-choice test ECE 646 Fall 2009 Final Exam December 15, 2009 Multiple-choice test 1. (1 pt) Parallel processing can be used to speed up the following cryptographic transformations (please note that multiple answers

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 7 January 30, 2012 CPSC 467b, Lecture 7 1/44 Public-key cryptography RSA Factoring Assumption Computing with Big Numbers Fast Exponentiation

More information

1 Elementary number theory

1 Elementary number theory 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...}, along with their most basic arithmetical and ordering properties.

More information

Arithmetic in Quaternion Algebras

Arithmetic in Quaternion Algebras Arithmetic in Quaternion Algebras 31st Automorphic Forms Workshop Jordan Wiebe University of Oklahoma March 6, 2017 Jordan Wiebe (University of Oklahoma) Arithmetic in Quaternion Algebras March 6, 2017

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Public Key Cryptography Modular Arithmetic RSA

More information

Encryption à la Mod Name

Encryption à la Mod Name Rock Around the Clock Part Encryption à la Mod Let s call the integers,, 3,, 5, and the mod 7 encryption numbers and define a new mod 7 multiplication operation, denoted by, in the following manner: a

More information

Connecting Statements. Today. First there was logic jumping forward.. ..and then proofs and then induction...

Connecting Statements. Today. First there was logic jumping forward.. ..and then proofs and then induction... Today Review for Midterm. First there was logic... A statement is a true or false. Statements? 3 = 4 1? Statement! 3 = 5? Statement! 3? Not a statement! n = 3? Not a statement...but a predicate. Predicate:

More information

Lecture (04) Boolean Algebra and Logic Gates

Lecture (04) Boolean Algebra and Logic Gates Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

More information

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS BASIC KNOWLEDGE 1. Decimal representation: A decimal is used to represent a portion of whole. It contains three parts: an integer (which indicates the number of wholes), a decimal point (which separates

More information

Cryptography Worksheet

Cryptography Worksheet Cryptography Worksheet People have always been interested in writing secret messages. In ancient times, people had to write secret messages to keep messengers and interceptors from reading their private

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

Introduction to Cryptography and Security Mechanisms. Abdul Hameed

Introduction to Cryptography and Security Mechanisms. Abdul Hameed Introduction to Cryptography and Security Mechanisms Abdul Hameed http://informationtechnology.pk Before we start 3 Quiz 1 From a security perspective, rather than an efficiency perspective, which of the

More information

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n 20181004 Modular Arithmetic We are accustomed to performing arithmetic on infinite sets of numbers. But sometimes we need to perform arithmetic on a finite set, and we need it to make sense and be consistent

More information

Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1

Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1 CS 70 Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1 PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 2050 VLSB A1 Hearst Annex 120 Latimer

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Digital Logic Design: a rigorous approach c

Digital Logic Design: a rigorous approach c Digital Logic Design: a rigorous approach c Chapter 5: Binary Representation Guy Even Moti Medina School of Electrical Engineering Tel-Aviv Univ. November 7, 2017 Book Homepage: http://www.eng.tau.ac.il/~guy/even-medina

More information

Hashing. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Hashing. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will revisit the dictionary search problem, where we want to locate an integer v in a set of size n or

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 taking a regular n-gon back to itself, with the operation being composition. These polygons

More information

NUMB3RS Activity: Creating Codes. Episode: Backscatter

NUMB3RS Activity: Creating Codes. Episode: Backscatter Teacher Page 1 NUMB3RS Activity: Creating Codes Topic: Codes Grade Level: 10-12 Objective: Explore several coding methods Time: 30+ minutes Materials: TI-83/84 Plus calculator Introduction While lecturing

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

What Is A Relation? Example. is a relation from A to B.

What Is A Relation? Example. is a relation from A to B. 3.3 Relations What Is A Relation? Let A and B be nonempty sets. A relation R from A to B is a subset of the Cartesian product A B. If R A B and if (a, b) R, we say that a is related to b by R and we write

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 of the plane preserving a regular n-gon, with the operation being composition. These polygons

More information

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx 1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2013 CS 161 Computer Security 3/14 Asymmetric cryptography Previously we saw symmetric-key cryptography, where Alice and Bob share a secret key K. However, symmetric-key cryptography can

More information

A nice outline of the RSA algorithm and implementation can be found at:

A nice outline of the RSA algorithm and implementation can be found at: Cryptography Lab: RSA Encryption and Decryption Lab Objectives: After this lab, the students should be able to Explain the simple concepts of encryption and decryption to protect information in transmission.

More information

What did we talk about last time? Public key cryptography A little number theory

What did we talk about last time? Public key cryptography A little number theory Week 4 - Friday What did we talk about last time? Public key cryptography A little number theory If p is prime and a is a positive integer not divisible by p, then: a p 1 1 (mod p) Assume a is positive

More information

Hash Table and Hashing

Hash Table and Hashing Hash Table and Hashing The tree structures discussed so far assume that we can only work with the input keys by comparing them. No other operation is considered. In practice, it is often true that an input

More information

(1) Modular arithmetic

(1) Modular arithmetic (1) Modular arithmetic In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for integers, where numbers "wrap يلتف حولaround " after they reach a certain value

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Outline. hash tables hash functions open addressing chained hashing

Outline. hash tables hash functions open addressing chained hashing Outline hash tables hash functions open addressing chained hashing 1 hashing hash browns: mixed-up bits of potatoes, cooked together hashing: slicing up and mixing together a hash function takes a larger,

More information

3.3 The Five-Number Summary Boxplots

3.3 The Five-Number Summary Boxplots 3.3 The Five-Number Summary Boxplots Tom Lewis Fall Term 2009 Tom Lewis () 3.3 The Five-Number Summary Boxplots Fall Term 2009 1 / 9 Outline 1 Quartiles 2 Terminology Tom Lewis () 3.3 The Five-Number Summary

More information

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10.

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10. PA Ch 5 Rational Expressions Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 0. Since decimals are special

More information

Chapter 9. Public Key Cryptography, RSA And Key Management

Chapter 9. Public Key Cryptography, RSA And Key Management Chapter 9 Public Key Cryptography, RSA And Key Management RSA by Rivest, Shamir & Adleman of MIT in 1977 The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic Randolph High School Math League 2014-2015 Page 1 1 Introduction Introduction to Modular Arithmetic Modular arithmetic is a topic residing under Number Theory, which roughly speaking is the study of integers

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 9 Elliptic Curve Cryptography

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 9 Elliptic Curve Cryptography Understanding Cryptography by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 9 Elliptic Curve Cryptography ver. February 2nd, 2015 These slides were prepared by Tim Güneysu, Christof Paar

More information

Lecture Notes, CSE 232, Fall 2014 Semester

Lecture Notes, CSE 232, Fall 2014 Semester Lecture Notes, CSE 232, Fall 2014 Semester Dr. Brett Olsen Week 11 - Number Theory Number theory is the study of the integers. The most basic concept in number theory is divisibility. We say that b divides

More information

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

More information

Using an RSA Accelerator for Modular Inversion

Using an RSA Accelerator for Modular Inversion Using an RSA Accelerator for Modular Inversion by Martin Seysen CHES 2005 Coprocessors on Smart Cards Coprocessors on smart cards have been designed to speed up RSA Examples: Infineon SLE66 ACE Hitachi/Renesas

More information

EC500. Design of Secure and Reliable Hardware. Lecture 9. Mark Karpovsky

EC500. Design of Secure and Reliable Hardware. Lecture 9. Mark Karpovsky EC500 Design of Secure and Reliable Hardware Lecture 9 Mark Karpovsky 1 1 Arithmetical Codes 1.1 Detection and Correction of errors in arithmetical channels (adders, multipliers, etc) Let = 0,1,,2 1 and

More information

! Addition! Multiplication! Bigger Example - RSA cryptography

! Addition! Multiplication! Bigger Example - RSA cryptography ! Addition! Multiplication! Bigger Example - RSA cryptography Modular Arithmetic Modular Exponentiation Primality Testing (Fermat s little theorem) Probabilistic algorithm Euclid s Algorithm for gcd (greatest

More information

Lecture Notes on Ints

Lecture Notes on Ints Lecture Notes on Ints 15-122: Principles of Imperative Computation Frank Pfenning Lecture 2 August 26, 2010 1 Introduction Two fundamental types in almost any programming language are booleans and integers.

More information

CGF Lecture 2 Numbers

CGF Lecture 2 Numbers CGF Lecture 2 Numbers Numbers A number is an abstract entity used originally to describe quantity. i.e. 80 Students etc The most familiar numbers are the natural numbers {0, 1, 2,...} or {1, 2, 3,...},

More information

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING Unit 12: Functions These pages correspond to tet reading and are not covered in the lectures. Based on slides by Patrice Belleville and Steve

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

NZ Mathematics Level 1-Yr 9 Curriculum Objectives Addressed Within Numbers Up! Volcanic Panic

NZ Mathematics Level 1-Yr 9 Curriculum Objectives Addressed Within Numbers Up! Volcanic Panic 4-7 1-11 1 Number Count, order and compare numbers up to 5, then later to 9, and then up to 20. Make sets up to 5 (then 9, then 20). Explore the number system from zero to 99 Rote count from zero to 99

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers & Number Systems Introduction Numbers and Their Properties Multiples and Factors The Division Algorithm Prime and Composite Numbers Prime Factors

More information

Lecture 2 Applied Cryptography (Part 2)

Lecture 2 Applied Cryptography (Part 2) Lecture 2 Applied Cryptography (Part 2) Patrick P. C. Lee Tsinghua Summer Course 2010 2-1 Roadmap Number theory Public key cryptography RSA Diffie-Hellman DSA Certificates Tsinghua Summer Course 2010 2-2

More information

Primality Testing! 1

Primality Testing! 1 Primality Testing! 1 Goals of Assignment! Writing software as part of a large team" Living and breathing what COS 217 is about" Abstraction, separation of interfaces and implementations, modularity" Also,

More information

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson Quadratic Equations over Matrices over the Quaternions By Diana Oliff Mentor: Professor Robert Wilson Fields A field consists of a set of objects S and two operations on this set. We will call these operations

More information

Introduction to Cryptography Lecture 7

Introduction to Cryptography Lecture 7 Introduction to Cryptography Lecture 7 El Gamal Encryption RSA Encryption Benny Pinkas page 1 1 Public key encryption Alice publishes a public key PK Alice. Alice has a secret key SK Alice. Anyone knowing

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm.

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 1 / 43 Today Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 2 / 43 Finding an inverse? We showed how to efficiently tell if there is an inverse. Extend euclid to

More information

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD In this session, we will write another algorithm to solve a mathematical problem. If you

More information

More Natural Arithmetic in C++

More Natural Arithmetic in C++ More Natural Arithmetic in C++ Document number: P0999R0 Date: 2018 04 01 Reply to: James Dennett < jdennett@google.com > Audience: SG6, SG12, EWG, CWG. Synopsis A minor change to the rules of arithmetic

More information

Solutions to First Exam, Math 170, Section 002 Spring 2012

Solutions to First Exam, Math 170, Section 002 Spring 2012 Solutions to First Exam, Math 170, Section 002 Spring 2012 Multiple choice questions. Question 1. You have 11 pairs of socks, 4 black, 5 white, and 2 blue, but they are not paired up. Instead, they are

More information

Multi-matrices and arithmetical operations with multi-matrices

Multi-matrices and arithmetical operations with multi-matrices 1 Multi-matrices and arithmetical operations with multi-matrices Constantin Scheau National College M. Viteazul, Ploiesti, Romania c_scheau@yahoo.com Abstract. The multi-space structure has been defined

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Unit Maps: Grade 6 Math

Unit Maps: Grade 6 Math Rational Numbers 6.4 Number and operations. The student represents addition, subtraction, multiplication, and division of rational numbers while solving problems and justifying the solutions. Comparison

More information