1 Algorithms, Inputs, Outputs

Size: px
Start display at page:

Download "1 Algorithms, Inputs, Outputs"

Transcription

1 1 Algorithms, Inputs, Outputs In the last class we discussed Universal Turing machines and the evolution in thought from circuitry being the important thing to the table of state transitions, or computer program, being the important thing. Recall that a Universal Turing machine is one Turing machine that has wiring that can SIMULATE any other Turing machine. So we now think of a universal Turing machine, which takes as input (so what is already on the tape when it is turned on) an encoding of a state transition table describing a particular Turing machine that the universal Turing machine will simulate, and the initial state of the tape for the Turing machine to be simulated. So now instead of building special-purpose Turing machines we just build a universal one and get it to simulate any other Turing machine. It is worth mentioning that there are still situations where it is useful to build a special purpose computer. If you need to build a lot of them it is often much cheaper to build special-purpose computers (that do one task) instead of the more general-purpose computers like Universal Turing machines. For example the brains of a stoplight, are often just the wiring of a special purpose computer. It is common in the area of industrial control systems to build these special purpose computers (for cost reasons). The design of these machines involves the study of state transitions just like we have been talking about, and it is common to visualize these transitions using tools from graph theory, with vertices machine states and arcs representing transitions between states. See Wikipedia page on State Diagrams for example. It may be hard to see the connection between modern computers and (Universal) Turing machines we have been talking about. Turing machines seem so simple, all you can do is detect and manipulate patterns on the tape, and move the head around! Modern computers don t have a tape and you can do graphics and sound and stuff! It is not too far from the truth to think of a modern computer as a sophisticated Universal Turing machine in the following ways. Firstly, and importantly, modern computer memory is designed so that the head of the machine can move over the memory very quickly. In fact it can access any element on the tape in one step. You can think of the memory as a large array M and the head of the tape can access any element of the array (any cell on the tape) in one step. This is quite different than moving the head around one cell at a time and makes things much faster. This way of designing memory is called Random Access Memory, or the RAM in your computer. We saw that we could design state tables for moving binary strings around, comparing strings, telling if a string is a palindrome, adding strings representing binary numbers, and so on. Another way to conceptualize how modern computers differ from what we ve been talking about is that people have already written the state transisition tables for many of the things that people who write computer programs want to do, like work with binary strings

2 that represent letters (ASCII), compare strings, treat strings as numbers and add, multiply, etc them, represent sounds images and movies as (long!) strings of numbers,... So all this grunt work has been done and already built into modern computers. The result is modern computer languages (like python, java, C,... ) that make life much easier for the programmer. So we won t talk so much about state transitions anymore. We will instead think of the more abstract programs or ALGORITHMS, which could (in theory) be represented by a list of states and state transitions ENCODED as a STRING on the tape of a universal Turing machine, but more likely is described by some modern computer language (but again, encoded as a string!). It will also be important to think about the INPUTS to the algorithithm (just like the input to a Turing machine what is on the tape when it starts) and also the outputs of the algorithm. So to say it again, we think of programs as STRINGS that can be read by a universal Turing machine type computer and executed. Turing machines remain important as a SIMPLE but powerful MODEL of a computer. Clearly they are simple. However they are powerful because there are a number of theoretical results that suggest (roughly!) that ANYTHING that it is POSSIBLE to compute CAN be computed by a Turing machine. This belief (it is not proven in the mathematical sense) is called the Church-Turing thesis. Modern computers are obviously much more sophisticated than Turing machines, even though anything they compute can be computed by a Turing machine (though perhaps much more slowly). One big difference is in how modern computer memory is handled. The Turing machine has a memory tape which the head has to pass over one element at a time. Modern computer memory is randomly accessible (that s why it s called RAM randomly accessible memory), meaning that you can think of the entire computer memory as being numbered boxes, and you can request the contents of or change the contents of a memory element directly. IMPORTANTLY, Getting the contents of memory location 5 takes the same time as getting the contents of memory location 5000 there is no tape that needs to be passed over. Modern computer languages have some kind of array type that will allow you to store numbers at various addresses in this fashion. In addition, modern computer lanagues allow the programmer to more easily write the more sophisticated instructions and constructs we are used to from our earlier computing courses, like looping, conditionals, variable nameing, reading, and assignment. You could do these things using state tables also but it would be cumbersome. If you are used to C/C++, there are two big differences in python to be aware of. First, scoping in C/C++ is done using..., but in python it s done with indentiation. Secondly, variables in C/C++ must be declared as having a type. You don t need to do this in python. You can put anything in to a python variable. Finally the octothorpe (hash marks) mean the rest of the line is a comment.

3 2 Estimating computation times and common loop structures Consider the following python program: i = 0 s = 0 n=100 while i < n: s=s+i i=i+1 print(s) Imagine a scenario where it takes 1 unit (say 1 second) for the computer to perform ( execute ) each line. How many seconds will it take for this program to run from beginning to end? Well, let s pretend to be (simulate) the computer using pencil and paper to keep track of which instruction we are performing and the values of all the computer variables after we do each instruction. The first three lines, where we create the variables and put a number value into each takes 1 unit of time each. The way the computer does the while loop is that it just checks the condition (is i < n?) and IF SO it does each line in the loop body once, after which the computer jumps back to the start of the loop where it is again checed if the value of i is less than n or not. IF NOT then the computer jumps over the lines of the loop body and continues executing the instructions that immediately follow the loop body (so in our case the print statement.) So the line with the while condition is performed 101 values in total (once each for i = 0, 1, 2,..., 100 ), and the s = s + 1 line is performed 100 times, once each for the i values {0, 1, 2,..., 99}. The i = i + 1 line is performed 100 times also. The remaining lines are perfomed once. The following table shows how many times the work associated with each line is performed: So the total amount of time is instruction times performed i = 0 1 s = 0 1 n = while i < n: 101 s=s+i 100 i=i print( s ) = 305

4 units of time. Generalizing to any value for n, we find the total time to be (n + 1) + (n) + (n) + 1 = 3n + 5 units. Note that the time required is very close to 3n for large values of n, and the vast majority of the time is taken up by the three lines associated with the loop. In the following program, which is a different way to write a simple loop program in python, the computer will do a similar kind of thing to perform the for loop, starting i at 0, performing some kind of check that the value of variable i is less than the value of n, and if so performing the steps of the loop body and if not continuing by performing the instructions after the loop body. i = 0 s = 0 n=100 for i in range(n): s=s+i print( s ) So, if we assume that performing each line of the following program takes 1 unit (again say 1 second), and we assume that the lines of the loop body are each performed once for each value of i in {0, 1, 2, 3,..., 99} then the following table shows how many times the work associated with each line is performed: instruction times performed i = 0 1 s = 0 1 n=100 1 for i in range(n): 100 s=s+i 100 print( s ) 1 Thus, if we total the number of times any line is performed we get line executions in total, which makes for 204 line executions alltogether, and thus 204 units of time. Generalizing, we can say the above program would take n + n + 1 = 2n + 4 units of time to execute. So for large values of n the total time would be close to 2n, since the +4 would be insignificant for large n. Again, we see the nn term comes from the instructions associated with the loop, which contribute more to the total time because they are performed multiple times. Now, if you look at the above two examples, you will see that both loops do basically the same thing. Some people might look blindly at the above computations and decide that 203 is less than 305, (and more generally 2n+4 is less than 3n+5) so I ll use the second algorithm. THIS WOULD BE WRONG. The reason is because our assumptions are not correct the reality is that each line does NOT take the same amount of time (1 unit) of time to perform.

5 In reality the computational work required to perform each each line is a little bit different, depending on what the line is! However it is still extremely useful to consider how many times each line of a program is performed, because if we do assume that each line takes more or less the same amount of effort, our estimates of total time won t be far off. Furthermore we can still get useful and accurate information about how long it will take a program to run using this technique, which we will see later. Finally if we want better estimates we can incorporate more exact costs of the cost of each line into the above table and multiply that by the number of times that line gets performed for a more exact estimate of the total time required. So for now let us just continue assuming each line takes the same amount of work, and focus our attention on the number of times each line is performed. Another example, this time with a double loop. n=1000 s = 0 for i in range(n): for j in range(n): t = math.sqrt(i*j+1) s=s+t print(s) The outside loop makes i take on each of the values 0, 1, 2,..., 999, which is n different values in total. For EACH of these values of i, the inner loop using j is performed, which makes j take on each of the values {0, 1, 2,..., 999}, which is n different values. Hence the lines associated with the innermost loop, of which there are 3, are performed for each of the values (i, j) in the set {(i, j) 0 i 1000, 0 j 1000}, which is a set of size n n = n 2. So the following table shows how many times the work associated with each line is performed: instruction times performed n= s = 0 1 for i in range(n): n for j in range(n): n*n t = math.sqrt(i*j+1) n*n s=s+t n*n print(s) 1 We thus see that, again with the moderately correct assumption that each line takes 1 unit of time to perform, that the above loop takes 3n 2 + n + 3 steps to perform. Again note that as n grows larger, some lines get executed a LOT more times than others, and so will be responsible for most of the required computation time. It is VERY important that you clearly understand that when you have a program with a loop, the instructions/lines in the loop usually get executed more times than others and so

6 will contribute more to the total required time. It is therefore important for us to be aware of how many times each line gets executed (at least approximately) if we are to understand how long it takes for programs to run.

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

CSCI 270: Introduction to Algorithms and Theory of Computing Fall 2017 Prof: Leonard Adleman Scribe: Joseph Bebel

CSCI 270: Introduction to Algorithms and Theory of Computing Fall 2017 Prof: Leonard Adleman Scribe: Joseph Bebel CSCI 270: Introduction to Algorithms and Theory of Computing Fall 2017 Prof: Leonard Adleman Scribe: Joseph Bebel We will now discuss computer programs, a concrete manifestation of what we ve been calling

More information

2SKILL. Variables Lesson 6. Remembering numbers (and other stuff)...

2SKILL. Variables Lesson 6. Remembering numbers (and other stuff)... Remembering numbers (and other stuff)... Let s talk about one of the most important things in any programming language. It s called a variable. Don t let the name scare you. What it does is really simple.

More information

Learning to Provide Modern Solutions

Learning to Provide Modern Solutions 1 Learning to Provide Modern Solutions Over the course of this book, you will learn to enhance your existing applications to modernize the output of the system. To do this, we ll take advantage of the

More information

Lecture 1: Overview

Lecture 1: Overview 15-150 Lecture 1: Overview Lecture by Stefan Muller May 21, 2018 Welcome to 15-150! Today s lecture was an overview that showed the highlights of everything you re learning this semester, which also meant

More information

p x i 1 i n x, y, z = 2 x 3 y 5 z

p x i 1 i n x, y, z = 2 x 3 y 5 z 3 Pairing and encoding functions Our aim in this part of the course is to show that register machines can compute everything that can be computed, and to show that there are things that can t be computed.

More information

Lecture 2: Analyzing Algorithms: The 2-d Maxima Problem

Lecture 2: Analyzing Algorithms: The 2-d Maxima Problem Lecture 2: Analyzing Algorithms: The 2-d Maxima Problem (Thursday, Jan 29, 1998) Read: Chapter 1 in CLR. Analyzing Algorithms: In order to design good algorithms, we must first agree the criteria for measuring

More information

Algorithm Analysis. College of Computing & Information Technology King Abdulaziz University. CPCS-204 Data Structures I

Algorithm Analysis. College of Computing & Information Technology King Abdulaziz University. CPCS-204 Data Structures I Algorithm Analysis College of Computing & Information Technology King Abdulaziz University CPCS-204 Data Structures I Order Analysis Judging the Efficiency/Speed of an Algorithm Thus far, we ve looked

More information

Excel Basics: Working with Spreadsheets

Excel Basics: Working with Spreadsheets Excel Basics: Working with Spreadsheets E 890 / 1 Unravel the Mysteries of Cells, Rows, Ranges, Formulas and More Spreadsheets are all about numbers: they help us keep track of figures and make calculations.

More information

T H E I N T E R A C T I V E S H E L L

T H E I N T E R A C T I V E S H E L L 3 T H E I N T E R A C T I V E S H E L L The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. Ada Lovelace, October 1842 Before

More information

1 Achieving IND-CPA security

1 Achieving IND-CPA security ISA 562: Information Security, Theory and Practice Lecture 2 1 Achieving IND-CPA security 1.1 Pseudorandom numbers, and stateful encryption As we saw last time, the OTP is perfectly secure, but it forces

More information

COSC 311: ALGORITHMS HW1: SORTING

COSC 311: ALGORITHMS HW1: SORTING COSC 311: ALGORITHMS HW1: SORTIG Solutions 1) Theoretical predictions. Solution: On randomly ordered data, we expect the following ordering: Heapsort = Mergesort = Quicksort (deterministic or randomized)

More information

Pointers in C/C++ 1 Memory Addresses 2

Pointers in C/C++ 1 Memory Addresses 2 Pointers in C/C++ Contents 1 Memory Addresses 2 2 Pointers and Indirection 3 2.1 The & and * Operators.............................................. 4 2.2 A Comment on Types - Muy Importante!...................................

More information

Order from Chaos. Nebraska Wesleyan University Mathematics Circle

Order from Chaos. Nebraska Wesleyan University Mathematics Circle Order from Chaos Nebraska Wesleyan University Mathematics Circle Austin Mohr Department of Mathematics Nebraska Wesleyan University February 2, 20 The (, )-Puzzle Start by drawing six dots at the corners

More information

Random Oracles - OAEP

Random Oracles - OAEP Random Oracles - OAEP Anatoliy Gliberman, Dmitry Zontov, Patrick Nordahl September 23, 2004 Reading Overview There are two papers presented this week. The first paper, Random Oracles are Practical: A Paradigm

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

Starting Boolean Algebra

Starting Boolean Algebra Boolean Algebra March 2, 27 Diagram for FunChip2 Here is a picture of FunChip2 that we created more or less randomly in class on /25 (used in various Activities): Starting Boolean Algebra Boolean algebra

More information

Module 10A Lecture - 20 What is a function? Why use functions Example: power (base, n)

Module 10A Lecture - 20 What is a function? Why use functions Example: power (base, n) Programming, Data Structures and Algorithms Prof. Shankar Balachandran Department of Computer Science and Engineering Indian Institute of Technology, Madras Module 10A Lecture - 20 What is a function?

More information

Centrality Book. cohesion.

Centrality Book. cohesion. Cohesion The graph-theoretic terms discussed in the previous chapter have very specific and concrete meanings which are highly shared across the field of graph theory and other fields like social network

More information

Admin. How's the project coming? After these slides, read chapter 13 in your book. Quizzes will return

Admin. How's the project coming? After these slides, read chapter 13 in your book. Quizzes will return Recursion CS 1 Admin How's the project coming? After these slides, read chapter 13 in your book Yes that is out of order, but we can read it stand alone Quizzes will return Tuesday Nov 29 th see calendar

More information

Variables and Data Representation

Variables and Data Representation You will recall that a computer program is a set of instructions that tell a computer how to transform a given set of input into a specific output. Any program, procedural, event driven or object oriented

More information

Math 4242 Polynomial Time algorithms, IndependentSet problem

Math 4242 Polynomial Time algorithms, IndependentSet problem Math 4242 Polynomial Time algorithms, IndependentSet problem Many of the algorithms we have looked at so far have a reasonable running time. Not all algorithms do. We make this idea more precise. Definition:

More information

Chapter 1: Introduction to Computer Science and Media Computation

Chapter 1: Introduction to Computer Science and Media Computation Chapter 1: Introduction to Computer Science and Media Computation Story What is computer science about? What computers really understand, and where Programming Languages fit in Media Computation: Why digitize

More information

Today, we will dispel the notion that Java is a magical language that allows us to solve any problem we want if we re smart enough.

Today, we will dispel the notion that Java is a magical language that allows us to solve any problem we want if we re smart enough. CSE 311: Foundations of Computing Lecture 25: Limits of Computation Showing a Language L is not regular 1. Suppose for contradiction that some DFA M accepts L. 2. Consider an INFINITE set of half strings

More information

CS 275 Automata and Formal Language Theory. First Problem of URMs. (a) Definition of the Turing Machine. III.3 (a) Definition of the Turing Machine

CS 275 Automata and Formal Language Theory. First Problem of URMs. (a) Definition of the Turing Machine. III.3 (a) Definition of the Turing Machine CS 275 Automata and Formal Language Theory Course Notes Part III: Limits of Computation Chapt. III.3: Turing Machines Anton Setzer http://www.cs.swan.ac.uk/ csetzer/lectures/ automataformallanguage/13/index.html

More information

CS 1124 Media Computation. Steve Harrison Lecture 1.2 (August 27, 2008)

CS 1124 Media Computation. Steve Harrison Lecture 1.2 (August 27, 2008) CS 1124 Media Computation Steve Harrison Lecture 1.2 (August 27, 2008) Today Computer science Look at Jython Look at some cool image things Pixels Why study CS? What is computer science about? What do

More information

Properties and Definitions

Properties and Definitions Section 0.1 Contents: Operations Defined Multiplication as an Abbreviation Visualizing Multiplication Commutative Properties Parentheses Associative Properties Identities Zero Product Answers to Exercises

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

Functional Programming in Haskell Prof. Madhavan Mukund and S. P. Suresh Chennai Mathematical Institute

Functional Programming in Haskell Prof. Madhavan Mukund and S. P. Suresh Chennai Mathematical Institute Functional Programming in Haskell Prof. Madhavan Mukund and S. P. Suresh Chennai Mathematical Institute Module # 02 Lecture - 03 Characters and Strings So, let us turn our attention to a data type we have

More information

Introduction to Analysis of Algorithms

Introduction to Analysis of Algorithms Introduction to Analysis of Algorithms Analysis of Algorithms To determine how efficient an algorithm is we compute the amount of time that the algorithm needs to solve a problem. Given two algorithms

More information

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] 1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

More information

Order from Chaos. University of Nebraska-Lincoln Discrete Mathematics Seminar

Order from Chaos. University of Nebraska-Lincoln Discrete Mathematics Seminar Order from Chaos University of Nebraska-Lincoln Discrete Mathematics Seminar Austin Mohr Department of Mathematics Nebraska Wesleyan University February 8, 20 The (, )-Puzzle Start by drawing six dots

More information

Lecture 10: Introduction to Correctness

Lecture 10: Introduction to Correctness Lecture 10: Introduction to Correctness Aims: To look at the different types of errors that programs can contain; To look at how we might detect each of these errors; To look at the difficulty of detecting

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 15 Testing

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 15 Testing CSE 374 Programming Concepts & Tools Hal Perkins Fall 2015 Lecture 15 Testing Where we are Some very basic software engineering topics in the midst of tools Today: testing (how, why, some terms) Later:

More information

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250 (Cont'd) Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Last time we introduced the idea behind Hash Tables, and discussed hash functions and the issue of collisions.

More information

BACKUP, CLONE OR IMAGE? WHY YOU SHOULD BE INTERESTED

BACKUP, CLONE OR IMAGE? WHY YOU SHOULD BE INTERESTED BACKUP, CLONE OR IMAGE? WHY YOU SHOULD BE INTERESTED BACKUP For most people, this means making copies of important files. If the originals are lost, damaged or inaccessible, the copies can be used. Usually,

More information

CS 125 Section #4 RAMs and TMs 9/27/16

CS 125 Section #4 RAMs and TMs 9/27/16 CS 125 Section #4 RAMs and TMs 9/27/16 1 RAM A word-ram consists of: A fixed set of instructions P 1,..., P q. Allowed instructions are: Modular arithmetic and integer division on registers; the standard

More information

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and Computer Language Theory Chapter 4: Decidability 1 Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

More information

Physics 306 Computing Lab 5: A Little Bit of This, A Little Bit of That

Physics 306 Computing Lab 5: A Little Bit of This, A Little Bit of That Physics 306 Computing Lab 5: A Little Bit of This, A Little Bit of That 1. Introduction You have seen situations in which the way numbers are stored in a computer affects a program. For example, in the

More information

false, import, new 1 class Lecture2 { 2 3 "Data types, Variables, and Operators" 4

false, import, new 1 class Lecture2 { 2 3 Data types, Variables, and Operators 4 1 class Lecture2 { 2 3 "Data types, Variables, and Operators" 4 5 } 6 7 // Keywords: 8 byte, short, int, long, char, float, double, boolean, true, false, import, new Zheng-Liang Lu Java Programming 44

More information

6.001 Notes: Section 4.1

6.001 Notes: Section 4.1 6.001 Notes: Section 4.1 Slide 4.1.1 In this lecture, we are going to take a careful look at the kinds of procedures we can build. We will first go back to look very carefully at the substitution model,

More information

C++ Data Types. 1 Simple C++ Data Types 2. 3 Numeric Types Integers (whole numbers) Decimal Numbers... 5

C++ Data Types. 1 Simple C++ Data Types 2. 3 Numeric Types Integers (whole numbers) Decimal Numbers... 5 C++ Data Types Contents 1 Simple C++ Data Types 2 2 Quick Note About Representations 3 3 Numeric Types 4 3.1 Integers (whole numbers)............................................ 4 3.2 Decimal Numbers.................................................

More information

CPS122 Lecture: From Python to Java last revised January 4, Objectives:

CPS122 Lecture: From Python to Java last revised January 4, Objectives: Objectives: CPS122 Lecture: From Python to Java last revised January 4, 2017 1. To introduce the notion of a compiled language 2. To introduce the notions of data type and a statically typed language 3.

More information

These are notes for the third lecture; if statements and loops.

These are notes for the third lecture; if statements and loops. These are notes for the third lecture; if statements and loops. 1 Yeah, this is going to be the second slide in a lot of lectures. 2 - Dominant language for desktop application development - Most modern

More information

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011 CMPSCI 187: Programming With Data Structures Lecture 5: Analysis of Algorithms Overview 16 September 2011 Analysis of Algorithms Overview What is Analysis of Algorithms? L&C s Dishwashing Example Being

More information

Learning the Binary System

Learning the Binary System Learning the Binary System www.brainlubeonline.com/counting_on_binary/ Formated to L A TEX: /25/22 Abstract This is a document on the base-2 abstract numerical system, or Binary system. This is a VERY

More information

6.001 Notes: Section 6.1

6.001 Notes: Section 6.1 6.001 Notes: Section 6.1 Slide 6.1.1 When we first starting talking about Scheme expressions, you may recall we said that (almost) every Scheme expression had three components, a syntax (legal ways of

More information

COPYRIGHTED MATERIAL. An Introduction to Computers That Will Actually Help You in Life. Chapter 1. Memory: Not Exactly 0s and 1s. Memory Organization

COPYRIGHTED MATERIAL. An Introduction to Computers That Will Actually Help You in Life. Chapter 1. Memory: Not Exactly 0s and 1s. Memory Organization Chapter 1 An Introduction to Computers That Will Actually Help You in Life Memory: Not Exactly 0s and 1s Memory Organization A Very Simple Computer COPYRIGHTED MATERIAL 2 Chapter 1 An Introduction to Computers

More information

Worksheet - Storing Data

Worksheet - Storing Data Unit 1 Lesson 12 Name(s) Period Date Worksheet - Storing Data At the smallest scale in the computer, information is stored as bits and bytes. In this section, we'll look at how that works. Bit Bit, like

More information

TOPIC 2 INTRODUCTION TO JAVA AND DR JAVA

TOPIC 2 INTRODUCTION TO JAVA AND DR JAVA 1 TOPIC 2 INTRODUCTION TO JAVA AND DR JAVA Notes adapted from Introduction to Computing and Programming with Java: A Multimedia Approach by M. Guzdial and B. Ericson, and instructor materials prepared

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Linked Lists

Linked Lists Linked Lists 2-17-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? Can you tell me what a linked list is and what

More information

COSC 2P95. Introduction. Week 1. Brock University. Brock University (Week 1) Introduction 1 / 18

COSC 2P95. Introduction. Week 1. Brock University. Brock University (Week 1) Introduction 1 / 18 COSC 2P95 Introduction Week 1 Brock University Brock University (Week 1) Introduction 1 / 18 Lectures and Labs Lectures are Thursdays, from 3pm 5pm (AS/STH 217) There are two lab sections Lab 1 is Mondays,

More information

Intro to Python Programming

Intro to Python Programming Intro to Python Programming If you re using chromebooks at your school, you can use an online editor called Trinket to code in Python, and you ll have an online portfolio of your projects which you can

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

A computer program is a set of instructions that causes a computer to perform some kind of action. It isn t the physical parts of a computer like the

A computer program is a set of instructions that causes a computer to perform some kind of action. It isn t the physical parts of a computer like the 1 Not All Snakes Slither A computer program is a set of instructions that causes a computer to perform some kind of action. It isn t the physical parts of a computer like the wires, microchips, cards,

More information

Matlab for FMRI Module 1: the basics Instructor: Luis Hernandez-Garcia

Matlab for FMRI Module 1: the basics Instructor: Luis Hernandez-Garcia Matlab for FMRI Module 1: the basics Instructor: Luis Hernandez-Garcia The goal for this tutorial is to make sure that you understand a few key concepts related to programming, and that you know the basics

More information

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng Slide Set 1 for ENEL 339 Fall 2014 Lecture Section 02 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2014 ENEL 353 F14 Section

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Complexity and Asymptotic Analysis

Computer Science 210 Data Structures Siena College Fall Topic Notes: Complexity and Asymptotic Analysis Computer Science 210 Data Structures Siena College Fall 2017 Topic Notes: Complexity and Asymptotic Analysis Consider the abstract data type, the Vector or ArrayList. This structure affords us the opportunity

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information

1.1 Information representation

1.1 Information representation Fundamentals of Data Representation: Before we jump into the world of number systems, we'll need a point of reference; I recommend that you copy the following table that you can refer to throughout this

More information

Project 1 Balanced binary

Project 1 Balanced binary CMSC262 DS/Alg Applied Blaheta Project 1 Balanced binary Due: 7 September 2017 You saw basic binary search trees in 162, and may remember that their weakness is that in the worst case they behave like

More information

A student was asked to point out interface elements in this code: Answer: cout. What is wrong?

A student was asked to point out interface elements in this code: Answer: cout. What is wrong? A student was asked to point out interface elements in this code: Answer: cout. What is wrong? Clarification of the concept of INTERFACE The interface we ve been talking about in OOP is not the man-machine

More information

6. Advanced Topics in Computability

6. Advanced Topics in Computability 227 6. Advanced Topics in Computability The Church-Turing thesis gives a universally acceptable definition of algorithm Another fundamental concept in computer science is information No equally comprehensive

More information

System.Collections.Generic.SortedSet: who needs another collection anyway?

System.Collections.Generic.SortedSet: who needs another collection anyway? System.Collections.Generic.SortedSet: who needs another collection anyway? By Bill Wagner The.NET 4.0 library includes an additional collection class: The SortedSet. At first glance, it doesn t seem

More information

C Pointers 2013 Author Riko H i

C Pointers 2013 Author Riko H i http:/cdorm.net/understanding C Pointers 2013 Author Riko H i Copyright 2013 CDorm.net All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form

More information

What computers just cannot do. COS 116: 2/28/2008 Sanjeev Arora

What computers just cannot do. COS 116: 2/28/2008 Sanjeev Arora What computers just cannot do. COS 116: 2/28/2008 Sanjeev Arora Administrivia In class midterm in midterms week; Thurs Mar 13 (closed book;? No lab in midterms week; review session instead. What computers

More information

Intro to Algorithms. Professor Kevin Gold

Intro to Algorithms. Professor Kevin Gold Intro to Algorithms Professor Kevin Gold What is an Algorithm? An algorithm is a procedure for producing outputs from inputs. A chocolate chip cookie recipe technically qualifies. An algorithm taught in

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Introduction This handout briefly outlines most of the basic uses and functions of Excel that we will be using in this course. Although Excel may be used for performing statistical

More information

Reactive Programming with RxJS 5

Reactive Programming with RxJS 5 Extracted from: Reactive Programming with RxJS 5 Untangle Your Asynchronous JavaScript Code This PDF file contains pages extracted from Reactive Programming with RxJS 5, published by the Pragmatic Bookshelf.

More information

Win-Back Campaign- Re-Engagement Series

Win-Back Campaign- Re-Engagement Series Win-Back Campaign- Re-Engagement Series At this point the re-engagement campaign has ended, so if the prospect still hasn t responded it s time to turn up the heat. NOTE: In the emails below, everywhere

More information

false, import, new 1 class Lecture2 { 2 3 "Data types, Variables, and Operators" 4

false, import, new 1 class Lecture2 { 2 3 Data types, Variables, and Operators 4 1 class Lecture2 { 2 3 "Data types, Variables, and Operators" 4 5 } 6 7 // Keywords: 8 byte, short, int, long, char, float, double, boolean, true, false, import, new Zheng-Liang Lu Java Programming 44

More information

Intro. Speed V Growth

Intro. Speed V Growth Intro Good code is two things. It's elegant, and it's fast. In other words, we got a need for speed. We want to find out what's fast, what's slow, and what we can optimize. First, we'll take a tour of

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Spring 2019 Alexis Maciel Department of Computer Science Clarkson University Copyright c 2019 Alexis Maciel ii Contents 1 Analysis of Algorithms 1 1.1 Introduction.................................

More information

Many people find group theory pretty difficult because the logic behind it seems

Many people find group theory pretty difficult because the logic behind it seems VISUAL GOUP THEOY Many people find group theory pretty difficult because the logic behind it seems algebraic to the extreme and geometric not at all. However, there are a few ways to visualize groups that

More information

Introduction. A Brief Description of Our Journey

Introduction. A Brief Description of Our Journey Introduction If you still write RPG code as you did 20 years ago, or if you have ILE RPG on your resume but don t actually use or understand it, this book is for you. It will help you transition from the

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

CPS122 Lecture: From Python to Java

CPS122 Lecture: From Python to Java Objectives: CPS122 Lecture: From Python to Java last revised January 7, 2013 1. To introduce the notion of a compiled language 2. To introduce the notions of data type and a statically typed language 3.

More information

Chapter 11 :: Functional Languages

Chapter 11 :: Functional Languages Chapter 11 :: Functional Languages Programming Language Pragmatics Michael L. Scott Copyright 2016 Elsevier 1 Chapter11_Functional_Languages_4e - Tue November 21, 2017 Historical Origins The imperative

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

lecture notes September 2, How to sort?

lecture notes September 2, How to sort? .30 lecture notes September 2, 203 How to sort? Lecturer: Michel Goemans The task of sorting. Setup Suppose we have n objects that we need to sort according to some ordering. These could be integers or

More information

Algorithms in Systems Engineering IE172. Midterm Review. Dr. Ted Ralphs

Algorithms in Systems Engineering IE172. Midterm Review. Dr. Ted Ralphs Algorithms in Systems Engineering IE172 Midterm Review Dr. Ted Ralphs IE172 Midterm Review 1 Textbook Sections Covered on Midterm Chapters 1-5 IE172 Review: Algorithms and Programming 2 Introduction to

More information

Insertion Sort: an algorithm for sorting an array

Insertion Sort: an algorithm for sorting an array Insertion Sort: an algorithm for sorting an array Let s use arrays to solve a problem that comes up often in programming, namely sorting. Suppose we have an array of objects that is in no particular order

More information

LESSON 2 VARIABLES, OPERATORS, EXPRESSIONS, AND USER INPUT

LESSON 2 VARIABLES, OPERATORS, EXPRESSIONS, AND USER INPUT LESSON VARIABLES, OPERATORS, EXPRESSIONS, AND USER INPUT PROF. JOHN P. BAUGH PROFJPBAUGH@GMAIL.COM PROFJPBAUGH.COM CONTENTS INTRODUCTION... Assumptions.... Variables and Data Types..... Numeric Data Types:

More information

MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015

MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015 CS161, Lecture 2 MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015 1 Introduction Today, we will introduce a fundamental algorithm design paradigm, Divide-And-Conquer,

More information

Instructor: Padraic Bartlett. Lecture 2: Schreier Diagrams

Instructor: Padraic Bartlett. Lecture 2: Schreier Diagrams Algebraic GT Instructor: Padraic Bartlett Lecture 2: Schreier Diagrams Week 5 Mathcamp 2014 This class s lecture continues last s class s discussion of the interplay between groups and graphs. In specific,

More information

Algorithm Design and Recursion. Search and Sort Algorithms

Algorithm Design and Recursion. Search and Sort Algorithms Algorithm Design and Recursion Search and Sort Algorithms Objectives To understand the basic techniques for analyzing the efficiency of algorithms. To know what searching is and understand the algorithms

More information

n = 1 What problems are interesting when n is just 1?

n = 1 What problems are interesting when n is just 1? What if n=1??? n = 1 What problems are interesting when n is just 1? Sorting? No Median finding? No Addition? How long does it take to add one pair of numbers? Multiplication? How long does it take to

More information

Programming Project. Remember the Titans

Programming Project. Remember the Titans Programming Project Remember the Titans Due: Data and reports due 12/10 & 12/11 (code due 12/7) In the paper Measured Capacity of an Ethernet: Myths and Reality, David Boggs, Jeff Mogul and Chris Kent

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

CS 101, Mock Computer Architecture

CS 101, Mock Computer Architecture CS 101, Mock Computer Architecture Computer organization and architecture refers to the actual hardware used to construct the computer, and the way that the hardware operates both physically and logically

More information

COMP 102: Computers and Computing

COMP 102: Computers and Computing COMP 102: Computers and Computing Lecture 5: What is Programming? Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca) Class web page: www.cim.mcgill.ca/~siddiqi/102.html Motivation The advantage of a computer

More information

(Refer Slide Time 3:31)

(Refer Slide Time 3:31) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

More information

The name of our class will be Yo. Type that in where it says Class Name. Don t hit the OK button yet.

The name of our class will be Yo. Type that in where it says Class Name. Don t hit the OK button yet. Mr G s Java Jive #2: Yo! Our First Program With this handout you ll write your first program, which we ll call Yo. Programs, Classes, and Objects, Oh My! People regularly refer to Java as a language that

More information

Binary. Hexadecimal BINARY CODED DECIMAL

Binary. Hexadecimal BINARY CODED DECIMAL Logical operators Common arithmetic operators, like plus, minus, multiply and divide, works in any number base but the binary number system provides some further operators, called logical operators. Meaning

More information

Slide Set 5. for ENCM 369 Winter 2014 Lecture Section 01. Steve Norman, PhD, PEng

Slide Set 5. for ENCM 369 Winter 2014 Lecture Section 01. Steve Norman, PhD, PEng Slide Set 5 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT (Cont'd) Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Last time we introduced the idea behind Hash Tables, and discussed hash functions and the issue of collisions.

More information

Memory Addressing, Binary, and Hexadecimal Review

Memory Addressing, Binary, and Hexadecimal Review C++ By A EXAMPLE Memory Addressing, Binary, and Hexadecimal Review You do not have to understand the concepts in this appendix to become well-versed in C++. You can master C++, however, only if you spend

More information

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 01 Introduction to Finite Automata Welcome everybody. This is

More information

Lecture 5: The Halting Problem. Michael Beeson

Lecture 5: The Halting Problem. Michael Beeson Lecture 5: The Halting Problem Michael Beeson Historical situation in 1930 The diagonal method appears to offer a way to extend just about any definition of computable. It appeared in the 1920s that it

More information