#include "Tree.h" Root = nullptr;

Size: px
Start display at page:

Download "#include "Tree.h" Root = nullptr;"

Transcription

1 #include "Tree.h" Tree::Tree() ******* //Output marker 1 ******* cout << "Birth certifiacte of a Tree object" << endl; ******* Root = nullptr; Tree :: ~Tree() ******* //Output marker 2 ******* cout << "Death certifiacte of a Tree object" << endl; ******* DeleteCompleteTree(Root); //The only difference from Display is // the call to DisplayTreeX in the code void Tree::DisplayX() cout << endl << "Contents in the tree:" << endl; DisplayTreeX(Root); cout << endl; //The only difference from DisplayTree is // the order of displaying the contents void Tree::DisplayTreeX(TreeNode * SubtreeRoot) if (SubtreeRoot!= nullptr) DisplayTreeX(SubtreeRoot->Left); DisplayTreeX(SubtreeRoot->Right); cout << SubtreeRoot->Value << endl; //The only difference from Insert is // the call to InsertTreeX in the code void Tree::InsertX(int Val)

2 InsertTreeX(Root, Val); //The only difference from InsertTree is // the type of the parameter SubtreeRoot void Tree::InsertTreeX(TreeNode * SubtreeRoot, int Val) SubtreeRoot = new TreeNode; SubtreeRoot->Left = nullptr; SubtreeRoot->Right = nullptr; SubtreeRoot->Value = Val; // handle the duplicate if (Val == SubtreeRoot->Value) //search to the Left if (Val < SubtreeRoot->Value) InsertTreeX(SubtreeRoot->Left, Val); //search to the Right InsertTreeX(SubtreeRoot->Right, Val); //The only difference from Insert is // the call to InsertTreeX in the code int Tree::Fun1() return Fun1_Of_Tree(Root); //The only difference from InsertTree is // the type of the parameter SubtreeRoot int Tree::Fun1_Of_Tree(TreeNode * SubtreeRoot) return 0; int result; result = 1 return result; + Fun1_Of_Tree(SubtreeRoot->Left) + Fun1_Of_Tree(SubtreeRoot->Right); //Hint: Compare it with Search

3 TreeNode * Tree::GetPointer(int Val) return GetPointerTree(Root, Val); //Hint: Compare it with SearchTree TreeNode * Tree::GetPointerTree(TreeNode * SubtreeRoot, int Val) return nullptr; if (SubtreeRoot->Value == Val) return SubtreeRoot; if (Val < SubtreeRoot->Value) return GetPointerTree(SubtreeRoot->Left, Val); return GetPointerTree(SubtreeRoot->Right, Val); //Hint: Compare it with GetPredecessor int Tree::GetX(int Val) TreeNode * SubtreeRoot; SubtreeRoot = GetPointer(Val); return -1; TreeNode * temp = SubtreeRoot; while (temp->right!= nullptr) temp = temp->right; int data = temp->value; return data; ******** // The following is the same as the original code ******** void Tree :: Clear() DeleteCompleteTree(Root); Root = nullptr; void Tree :: Insert(int Val)

4 InsertTree(Root, Val); void Tree :: InsertTree(TreeNode * & SubtreeRoot, int Val) if (SubtreeRoot==nullptr) SubtreeRoot= new TreeNode; SubtreeRoot->Left=nullptr; SubtreeRoot->Right=nullptr; SubtreeRoot->Value = Val; // handle duplicate if (Val == SubtreeRoot->Value) //search Left if (Val < SubtreeRoot->Value) InsertTree(SubtreeRoot->Left, Val); //search Right InsertTree(SubtreeRoot->Right,Val); void Tree::Display() cout << endl << "Contents in the tree:" << endl; DisplayTree(Root); cout << endl; void Tree :: DisplayTree(TreeNode * SubtreeRoot) if (SubtreeRoot!= nullptr) DisplayTree(SubtreeRoot->Left); cout<<subtreeroot->value << endl; DisplayTree(SubtreeRoot->Right); void Tree::Write(ostream & output) WriteTree(output, Root); cout << endl; void Tree :: WriteTree(ostream & output, TreeNode * SubtreeRoot) if (SubtreeRoot!= nullptr) WriteTree(output, SubtreeRoot->Left); output << SubtreeRoot->Value << endl;

5 WriteTree(output, SubtreeRoot->Right); bool Tree:: Search(int Val) return SearchTree(Root, Val); bool Tree:: SearchTree(TreeNode * SubtreeRoot, int Val) return false; if (SubtreeRoot->Value == Val) return true; if (Val < SubtreeRoot->Value) return SearchTree(SubtreeRoot->Left, Val); return SearchTree(SubtreeRoot->Right, Val); void Tree :: DeleteCompleteTree(TreeNode * SubtreeRoot) if (SubtreeRoot!= nullptr) DeleteCompleteTree(SubtreeRoot->Left); DeleteCompleteTree(SubtreeRoot->Right); delete SubtreeRoot; ************* // The following are three global functions as additional Code // used to support the deletion of a node from a tree // Not in the book **** bool Tree::GetPredecessor(TreeNode * SubtreeRoot, int& data) // Find the predecessor of the root node in SubtreeRoot. // If there is one, return true and store the predecessor data in data //Otherwise, return false. if (SubtreeRoot == nullptr (SubtreeRoot->Left) == nullptr) return false; TreeNode * temp = SubtreeRoot->Left; while (temp->right!= nullptr) temp = temp->right; data = temp->value; return true;

6 void Tree::DeleteItem(TreeNode *& SubtreeRoot, int item) // Deletes item from tree. // Post: item is not in tree rooted at SubtreeRoot. if (item < SubtreeRoot->Value) DeleteItem(SubtreeRoot->Left, item); if (item > SubtreeRoot->Value) DeleteItem(SubtreeRoot->Right, item); DeleteNode(SubtreeRoot); // Look in Left subtree. // Look in Right subtree. // Node found; call DeleteNode. void Tree::DeleteNode(TreeNode *& SubtreeRoot) // Deletes the node pointed to by SubtreeRoot. //cout << "To delete " << tree->value << endl; if (SubtreeRoot->Left!= nullptr && SubtreeRoot->Right!= nullptr) int data; GetPredecessor(SubtreeRoot, data); SubtreeRoot->Value = data; DeleteItem(SubtreeRoot->Left, data); TreeNode * tempptr; tempptr = SubtreeRoot; // Delete predecessor node. if (SubtreeRoot->Left == nullptr) SubtreeRoot = SubtreeRoot->Right; if (SubtreeRoot->Right == nullptr) SubtreeRoot = SubtreeRoot->Left; delete tempptr; ****************** // The following is an additional member function of the Tree class. // It directly or indirectly uses the three functions above to // delete an item from the tree. // Not in the book **** void Tree::Delete(int item) // Calls recursive function Delete to delete item from tree. DeleteItem(Root, item);

7 //Clear and empty the current tree. //Read int values from the istream object "input", which may represent a file or just cin //and then store them into the Tree "atree". // istream & operator>> (istream & input, Tree & atree) int n; if (&input == &cin) n = -1; while (n < 0) cout << "How many elements to add into the linked list?"; cin >> n; atree.clear(); cout << endl << "Enter them one by one" << endl; for (int i=0; i<n; i++) int temp; cout << "[" << i << "]:"; cin >> temp; atree.insert(temp); // (&input!= &cin) input >> n; if (n >= 0) atree.clear(); return input; for (int i=0; i<n; i++) int temp; input >> temp; atree.insert(temp); return input; //Writing out the integer values currently stored in the Tree "atree" //into the ostream object "output", which may represent a file or just cout. ostream & operator<< (ostream & output, Tree & atree)

8 if (&output == &cout) atree.display(); //(output!= cout) atree.write(output); return output;

Homework Assignment #3

Homework Assignment #3 CISC 2200 Data Structure Spring, 2016 Homework Assignment #3 1 Which of these formulas gives the maximum total number of nodes in a binary tree that has N levels? (Remember that the root is Level 0.) Explain

More information

Tree Travsersals and BST Iterators

Tree Travsersals and BST Iterators Tree Travsersals and BST Iterators PIC 10B May 25, 2016 PIC 10B Tree Travsersals and BST Iterators May 25, 2016 1 / 17 Overview of Lecture 1 Sorting a BST 2 In-Order Travsersal 3 Pre-Order Traversal 4

More information

Learning Recursion. Recursion [ Why is it important?] ~7 easy marks in Exam Paper. Step 1. Understand Code. Step 2. Understand Execution

Learning Recursion. Recursion [ Why is it important?] ~7 easy marks in Exam Paper. Step 1. Understand Code. Step 2. Understand Execution Recursion [ Why is it important?] ~7 easy marks in Exam Paper Seemingly Different Coding Approach In Fact: Strengthen Top-down Thinking Get Mature in - Setting parameters - Function calls - return + work

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

1 #include <iostream> 2 using namespace std; 3 4 // implementing the dynamic List ADT using Linked List 5 6 class Node{ 7 8 private: 9 int data; 10

1 #include <iostream> 2 using namespace std; 3 4 // implementing the dynamic List ADT using Linked List 5 6 class Node{ 7 8 private: 9 int data; 10 1 #include 2 using namespace std; 3 4 // implementing the dynamic List ADT using Linked List 5 6 class Node{ 7 8 private: 9 int data; 10 Node* nextnodeptr; 11 12 public: 13 Node(){} 14 15 void

More information

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Computer Science 302 Spring 2007 Practice Final Examination: Part I Computer Science 302 Spring 2007 Practice Final Examination: Part I Name: This practice examination is much longer than the real final examination will be. If you can work all the problems here, you will

More information

Final Exam Solutions PIC 10B, Spring 2016

Final Exam Solutions PIC 10B, Spring 2016 Final Exam Solutions PIC 10B, Spring 2016 Problem 1. (10 pts) Consider the Fraction class, whose partial declaration was given by 1 class Fraction { 2 public : 3 Fraction ( int num, int den ); 4... 5 int

More information

Problem 1: Get val soon! (15 marks)

Problem 1: Get val soon! (15 marks) Problem 1: Get val soon! (15 marks) In this problem, we will model a very simple machine. This machine operates on integers. The operation of this machine is described in the next paragraph. This machine

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms First Semester 2017/2018 Linked Lists Eng. Anis Nazer Linked List ADT Is a list of nodes Each node has: data (can be any thing, int, char, Person, Point, day,...) link to

More information

ECE 244 Programming Fundamentals Fall Lab Assignment #5: Binary Search Trees

ECE 244 Programming Fundamentals Fall Lab Assignment #5: Binary Search Trees ECE 244 Programming Fundamentals Fall 2012 1. Objectives Lab Assignment #5: Binary Search Trees The objectives of this assignment are to provide you with more practice on the use of the various C++ concepts/constructs

More information

Lab Instructor : Jean Lai

Lab Instructor : Jean Lai Lab Instructor : Jean Lai Group related statements to perform a specific task. Structure the program (No duplicate codes!) Must be declared before used. Can be invoked (called) as any number of times.

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

selectors, methodsinsert() andto_string() the depth of a tree and a membership function

selectors, methodsinsert() andto_string() the depth of a tree and a membership function Binary Search Trees 1 Sorting Numbers using a Tree a sorting algorithm using a tree of integer numbers 2 Header Files defining a node struct defining a tree class 3 Definition of Methods selectors, methodsinsert()

More information

Final Exam. Name: Student ID: Section: Signature:

Final Exam. Name: Student ID: Section: Signature: Final Exam PIC 10B, Spring 2016 Name: Student ID: Section: Discussion 3A (2:00 2:50 with Kelly) Discussion 3B (3:00 3:50 with Andre) I attest that the work presented in this exam is my own. I have not

More information

Due Date: See Blackboard

Due Date: See Blackboard Source File: ~/2315/45/lab45.(C CPP cpp c++ cc cxx cp) Input: under control of main function Output: under control of main function Value: 4 Integer data is usually represented in a single word on a computer.

More information

The University Of Michigan. EECS402 Lecture 07. Andrew M. Morgan. Sorting Arrays. Element Order Of Arrays

The University Of Michigan. EECS402 Lecture 07. Andrew M. Morgan. Sorting Arrays. Element Order Of Arrays The University Of Michigan Lecture 07 Andrew M. Morgan Sorting Arrays Element Order Of Arrays Arrays are called "random-access" data structures This is because any element can be accessed at any time Other

More information

Section #9 Solutions

Section #9 Solutions Nick Troccoli Section #9 CS 106X Week 10 Section #9 Solutions 1. Hash Function Quality (hashing) Based on handouts by various current and past CS106B/X instructors and TAs. hash1 is valid, but not good

More information

UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter

UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter What you will learn from Lab 7 In this laboratory, you will understand how to use typical function prototype with

More information

C++ Programming: From Problem Analysis to Program Design, Fourth Edition. Chapter 5: Control Structures II (Repetition)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition. Chapter 5: Control Structures II (Repetition) C++ Programming: From Problem Analysis to Program Design, Fourth Edition Chapter 5: Control Structures II (Repetition) Objectives In this chapter, you will: Learn about repetition (looping) control structures

More information

CS242 COMPUTER PROGRAMMING

CS242 COMPUTER PROGRAMMING CS242 COMPUTER PROGRAMMING I.Safa a Alawneh Variables Outline 2 Data Type C++ Built-in Data Types o o o o bool Data Type char Data Type int Data Type Floating-Point Data Types Variable Declaration Initializing

More information

Understanding main() function Input/Output Streams

Understanding main() function Input/Output Streams Understanding main() function Input/Output Streams Structure of a program // my first program in C++ #include int main () { cout

More information

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures The main body and cout Agenda 1 Fundamental data types Declarations and definitions Control structures References, pass-by-value vs pass-by-references The main body and cout 2 C++ IS AN OO EXTENSION OF

More information

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7.

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7. Week 3 Functions & Arrays Gaddis: Chapters 6 and 7 CS 5301 Fall 2015 Jill Seaman 1 Function Definitions! Function definition pattern: datatype identifier (parameter1, parameter2,...) { statements... Where

More information

More File Operations. Lecture 17 COP 3014 Spring april 18, 2018

More File Operations. Lecture 17 COP 3014 Spring april 18, 2018 More File Operations Lecture 17 COP 3014 Spring 2018 april 18, 2018 eof() member function A useful member function of the input stream classes is eof() Stands for end of file Returns a bool value, answering

More information

A Recursively-Defined Tree Class

A Recursively-Defined Tree Class A Recursively-Defined Tree Class Jeffrey D. Oldham 2000 Apr 05 We explain how to use the recursively defined Tree class. The implementation file and example use code are available. 1 The Tree Class Using

More information

Assignment 4: SkipList

Assignment 4: SkipList Assignment 4: SkipList Goals : Working with dynamic arrays, pointers, doubly linked lists For this assignment, you will write a Skip List data structure to store integers. When searching a Skip List, items

More information

CS 216 Exam 1 Fall SOLUTION

CS 216 Exam 1 Fall SOLUTION CS 216 Exam 1 Fall 2004 - SOLUTION Name: Lab Section: Email Address: Student ID # This exam is closed note, closed book. You will have an hour and fifty minutes total to complete the exam. You may NOT

More information

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol.

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. 1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. B. Outputs to the console a floating point number f1 in scientific format

More information

Binary Trees. Examples:

Binary Trees. Examples: Binary Trees A tree is a data structure that is made of nodes and pointers, much like a linked list. The difference between them lies in how they are organized: In a linked list each node is connected

More information

Binary Search Trees Part Two

Binary Search Trees Part Two Binary Search Trees Part Two Recap from Last Time Binary Search Trees A binary search tree (or BST) is a data structure often used to implement maps and sets. The tree consists of a number of nodes, each

More information

Practice test for midterm 2

Practice test for midterm 2 Practice test for midterm 2 April 9, 2 18 1 Functions Write a function which takes in two int parameters and returns their average. (Remember that if a function takes in parameters, it does not need to

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 16, 2011 Section I A COMPUTER SCIENCE NO books, notes, or calculators may be used, and you must work entirely on your own. Name: PID: Question # Max Pts Category

More information

Name CPTR246 Spring '17 (100 total points) Exam 3

Name CPTR246 Spring '17 (100 total points) Exam 3 Name CPTR246 Spring '17 (100 total points) Exam 3 1. Linked Lists Consider the following linked list of integers (sorted from lowest to highest) and the changes described. Make the necessary changes in

More information

1 Short Answer (8 Points Each)

1 Short Answer (8 Points Each) 1 Short Answer (8 Points Each) 1. State the definitions of Big-O, Big-Ω, and Big-Θ. Big-O (Upper Bound): A function f(x) is O(g(x)) if and only if there exist a constant C and a constant k such that, for

More information

Chapter 8. Binary Search Trees. Fall 2013 Yanjun Li CISC Trees. Owner Jake. Waitress Waiter Cook Helper Joyce Chris Max Len

Chapter 8. Binary Search Trees. Fall 2013 Yanjun Li CISC Trees. Owner Jake. Waitress Waiter Cook Helper Joyce Chris Max Len Chapter 8 Binary Search Trees Fall 2013 Yanjun Li CISC 2200 1 Trees Owner Jake Manager Brad Chef Carol Waitress Waiter Cook Helper Joyce Chris Max Len Jake s Pizza Shop Fall 2013 Yanjun Li CISC 2200 2

More information

Lecture 2. Binary Trees & Implementations. Yusuf Pisan

Lecture 2. Binary Trees & Implementations. Yusuf Pisan CSS 343 Data Structures, Algorithms, and Discrete Math II Lecture 2 Binary Trees & Implementations Yusuf Pisan Overview 1. Huffman Coding and Arithmetic Expressions 2. 342 Topics a. Pointers & References

More information

Programming Language. Control Structures: Selection (switch) Eng. Anis Nazer First Semester

Programming Language. Control Structures: Selection (switch) Eng. Anis Nazer First Semester Programming Language Control Structures: Selection (switch) Eng. Anis Nazer First Semester 2018-2019 Multiple selection choose one of two things if/else choose one from many things multiple selection using

More information

Programming Language. Functions. Eng. Anis Nazer First Semester

Programming Language. Functions. Eng. Anis Nazer First Semester Programming Language Functions Eng. Anis Nazer First Semester 2016-2017 Definitions Function : a set of statements that are written once, and can be executed upon request Functions are separate entities

More information

CS 315 Data Structures mid-term 2

CS 315 Data Structures mid-term 2 CS 315 Data Structures mid-term 2 1) Shown below is an AVL tree T. Nov 14, 2012 Solutions to OPEN BOOK section. (a) Suggest a key whose insertion does not require any rotation. 18 (b) Suggest a key, if

More information

Topics. bool and string types input/output library functions comments memory allocation templates classes

Topics. bool and string types input/output library functions comments memory allocation templates classes C++ Primer C++ is a major extension of c. It is similar to Java. The lectures in this course use pseudo-code (not C++). The textbook contains C++. The labs involve C++ programming. This lecture covers

More information

CSCE 121 ENGR 112 List of Topics for Exam 1

CSCE 121 ENGR 112 List of Topics for Exam 1 List of Topics for Exam 1 If statements o How is an if statement constructed? o Does every if need an else? Looping o While loop! What does a while loop look like?! How do you ensure you will not have

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 21, 2015 9:30 a.m. 12:00 p.m. (150 minutes) Examiners: J. Anderson, B. Li, J. Rose

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Linked Lists CS 16: Solving Problems with Computers I Lecture #16

Linked Lists CS 16: Solving Problems with Computers I Lecture #16 Linked Lists CS 16: Solving Problems with Computers I Lecture #16 Ziad Matni Dept. of Computer Science, UCSB Material: Everything we ve done Homework, Labs, Lectures, Textbook Tuesday, 12/12 in this classroom

More information

Exam 2. CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson. Question Points Score Total: 80

Exam 2. CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson. Question Points Score Total: 80 Exam 2 CSI 201: Computer Science 1 Fall 2016 Professors: Shaun Ramsey and Kyle Wilson Question Points Score 1 18 2 29 3 18 4 15 Total: 80 I understand that this exam is closed book and closed note and

More information

Test #2. Login: 2 PROBLEM 1 : (Balance (6points)) Insert the following elements into an AVL tree. Make sure you show the tree before and after each ro

Test #2. Login: 2 PROBLEM 1 : (Balance (6points)) Insert the following elements into an AVL tree. Make sure you show the tree before and after each ro DUKE UNIVERSITY Department of Computer Science CPS 100 Fall 2003 J. Forbes Test #2 Name: Login: Honor code acknowledgment (signature) Name Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem

More information

Trees: examples (Family trees)

Trees: examples (Family trees) Ch 4: Trees it s a jungle out there... I think that I will never see a linked list useful as a tree; Linked lists are used by everybody, but it takes real smarts to do a tree Trees: examples (Family trees)

More information

CS 106X Sample Final Exam #2

CS 106X Sample Final Exam #2 CS 106X Sample Final Exam #2 This sample exam is intended to demonstrate an example of some of the kinds of problems that will be asked on the actual final exam. We do not guarantee that the number of

More information

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7. CS 5301 Spring 2018

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7. CS 5301 Spring 2018 Week 3 Functions & Arrays Gaddis: Chapters 6 and 7 CS 5301 Spring 2018 Jill Seaman 1 Function Definitions l Function definition pattern: datatype identifier (parameter1, parameter2,...) { statements...

More information

CSE 143. Linked Lists. Linked Lists. Manipulating Nodes (1) Creating Nodes. Manipulating Nodes (3) Manipulating Nodes (2) CSE 143 1

CSE 143. Linked Lists. Linked Lists. Manipulating Nodes (1) Creating Nodes. Manipulating Nodes (3) Manipulating Nodes (2) CSE 143 1 CSE 143 Linked Lists [Chapter 4; Chapter 6, pp. 265-271] Linked Lists A linked list is a collection of dynamically allocated nodes Each node contains at least one member (field) that points to another

More information

Review Questions I Spring 2010

Review Questions I Spring 2010 Review Questions I Spring 2010 The following review questions are similar to the kinds of questions you will be expected to answer on Exam I (tentatively scheduled for Mar. 4), which will cover LCR, chs.

More information

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Binary Search Trees Lecture 23 October 29, 2018 Prof. Zadia Codabux 1 Agenda Ternary Operator Binary Search Tree Node based implementation Complexity 2 Administrative

More information

Binary Tree Node Relationships. Binary Trees. Quick Application: Expression Trees. Traversals

Binary Tree Node Relationships. Binary Trees. Quick Application: Expression Trees. Traversals Binary Trees 1 Binary Tree Node Relationships 2 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the

More information

Binary Trees. For example: Jargon: General Binary Trees. root node. level: internal node. edge. leaf node. Data Structures & File Management

Binary Trees. For example: Jargon: General Binary Trees. root node. level: internal node. edge. leaf node. Data Structures & File Management Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Computer Department. Question (1): State whether each of the following is true or false. Question (2): Select the correct answer from the following:

Computer Department. Question (1): State whether each of the following is true or false. Question (2): Select the correct answer from the following: Computer Department Program: Computer Midterm Exam Date : 19/11/2016 Major: Information & communication technology 1 st Semester Time : 1 hr (10:00 11:00) Course: Introduction to Programming 2016/2017

More information

Computer Science 302 Spring 2017 (Practice for) Final Examination, May 10, 2017

Computer Science 302 Spring 2017 (Practice for) Final Examination, May 10, 2017 Computer Science 302 Spring 2017 (Practice for) Final Examination, May 10, 2017 Name: The entire practice examination is 1005 points. 1. True or False. [5 points each] The time to heapsort an array of

More information

Programming in C/C Lecture 2

Programming in C/C Lecture 2 Programming in C/C++ 2005-2006 Lecture 2 http://few.vu.nl/~nsilvis/c++/2006 Natalia Silvis-Cividjian e-mail: nsilvis@few.vu.nl vrije Universiteit amsterdam News Check announcements on the C/C++ website

More information

Local and Global Variables

Local and Global Variables Lecture 10 Local and Global Variables Nearly every programming language has a concept of local variable. As long as two functions mind their own data, as it were, they won t interfere with each other.

More information

Tutorial AVL TREES. arra[5] = {1,2,3,4,5} arrb[8] = {20,30,80,40,10,60,50,70} FIGURE 1 Equivalent Binary Search and AVL Trees. arra = {1, 2, 3, 4, 5}

Tutorial AVL TREES. arra[5] = {1,2,3,4,5} arrb[8] = {20,30,80,40,10,60,50,70} FIGURE 1 Equivalent Binary Search and AVL Trees. arra = {1, 2, 3, 4, 5} 1 Tutorial AVL TREES Binary search trees are designed for efficient access to data. In some cases, however, a binary search tree is degenerate or "almost degenerate" with most of the n elements descending

More information

Chapter 9: Pointers. Copyright 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 9: Pointers. Copyright 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Chapter 9: Pointers 9.1 Getting the Address of a Variable Getting the Address of a Variable Each variable in program is stored at a unique address Use address operator & to get address of a variable: int

More information

Chapter 9: Getting the Address of a Variable. Something Like Pointers: Arrays. Pointer Variables 8/23/2014. Getting the Address of a Variable

Chapter 9: Getting the Address of a Variable. Something Like Pointers: Arrays. Pointer Variables 8/23/2014. Getting the Address of a Variable Chapter 9: Pointers 9.1 Getting the Address of a Variable Getting the Address of a Variable Each variable in program is stored at a unique address Use address operator & to get address of a variable: int

More information

Why Is Repetition Needed?

Why Is Repetition Needed? Why Is Repetition Needed? Repetition allows efficient use of variables. It lets you process many values using a small number of variables. For example, to add five numbers: Inefficient way: Declare a variable

More information

Linked List using a Sentinel

Linked List using a Sentinel Linked List using a Sentinel Linked List.h / Linked List.h Using a sentinel for search Created by Enoch Hwang on 2/1/10. Copyright 2010 La Sierra University. All rights reserved. / #include

More information

Multiple Choice (Questions 1 14) 28 Points Select all correct answers (multiple correct answers are possible)

Multiple Choice (Questions 1 14) 28 Points Select all correct answers (multiple correct answers are possible) Name Closed notes, book and neighbor. If you have any questions ask them. Notes: Segment of code necessary C++ statements to perform the action described not a complete program Program a complete C++ program

More information

Introduction to C++ (Extensions to C)

Introduction to C++ (Extensions to C) Introduction to C++ (Extensions to C) C is purely procedural, with no objects, classes or inheritance. C++ is a hybrid of C with OOP! The most significant extensions to C are: much stronger type checking.

More information

Chapter 5: Control Structures II (Repetition) Objectives (cont d.) Objectives. while Looping (Repetition) Structure. Why Is Repetition Needed?

Chapter 5: Control Structures II (Repetition) Objectives (cont d.) Objectives. while Looping (Repetition) Structure. Why Is Repetition Needed? Chapter 5: Control Structures II (Repetition) Objectives In this chapter, you will: Learn about repetition (looping) control structures Explore how to construct and use countercontrolled, sentinel-controlled,

More information

Design Patterns for Data Structures. Chapter 10. Balanced Trees

Design Patterns for Data Structures. Chapter 10. Balanced Trees Capter 10 Balanced Trees Capter 10 Four eigt-balanced trees: Red-Black binary tree Faster tan AVL for insertion and removal Adelsen-Velskii Landis (AVL) binary tree Faster tan red-black for lookup B-tree

More information

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 8, February 25) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Trees Definitions Yet another data structure -- trees. Just like a linked

More information

Example Final Questions Instructions

Example Final Questions Instructions Example Final Questions Instructions This exam paper contains a set of sample final exam questions. It is for practice purposes only. You ll most likely need longer than three hours to answer all the questions.

More information

Data Structures Lab II. Binary Search Tree implementation

Data Structures Lab II. Binary Search Tree implementation Data Structures Lab II Binary Search Tree implementation Objectives: Making students able to understand basic concepts relating to Binary Search Tree (BST). Making students able to implement Binary Search

More information

Recursion. Contents. Steven Zeil. November 25, Recursion 2. 2 Example: Compressing a Picture 4. 3 Example: Calculator 5

Recursion. Contents. Steven Zeil. November 25, Recursion 2. 2 Example: Compressing a Picture 4. 3 Example: Calculator 5 Steven Zeil November 25, 2013 Contents 1 Recursion 2 2 Example: Compressing a Picture 4 3 Example: Calculator 5 1 1 Recursion Recursion A function is recursive if it calls itself or calls some other function

More information

Expert Systems artificial intelligence

Expert Systems artificial intelligence Expert Systems The game of animal is an old children s game. There are two participants in the game the player and the guesser. The player is asked to think of an animal, which the guesser will try to

More information

Data Structures And Algorithms

Data Structures And Algorithms Data Structures And Algorithms Binary Trees Eng. Anis Nazer First Semester 2017-2018 Definitions Linked lists, arrays, queues, stacks are linear structures not suitable to represent hierarchical data,

More information

8 Binary Search Trees

8 Binary Search Trees 8 Binary Search Trees Jake s Pizza Shop Owner Jake Manager Brad Chef Carol Waitress Waiter Cook Helper Joyce Chris Max Len 2 A Tree Has a Root Node ROOT NODE Owner Jake Manager Brad Chef Carol Waitress

More information

9/18/11. Type casting, logical operators and if/else statement. Explicit Type Conversion. Example of Type Casting

9/18/11. Type casting, logical operators and if/else statement. Explicit Type Conversion. Example of Type Casting Type casting, logical operators and if/ statement 1 Explicit Type Conversion A type cast expression let s you manually change the data type of a value The syntax for type casting is static_cast(value)

More information

1) Holiday Lights 30 Points

1) Holiday Lights 30 Points 1) Holiday Lights 30 Points It's the holiday season, which means one thing; holiday lights! You have unboxed your string of lights to hang, but have one problem; though they are multicolored, they are

More information

Unit 7. 'while' Loops

Unit 7. 'while' Loops 1 Unit 7 'while' Loops 2 Control Structures We need ways of making decisions in our program To repeat code until we want it to stop To only execute certain code if a condition is true To execute one segment

More information

Sol. Sol. a. void remove_items_less_than(int arr[], int size, int value) #include <iostream> #include <ctime> using namespace std;

Sol. Sol. a. void remove_items_less_than(int arr[], int size, int value) #include <iostream> #include <ctime> using namespace std; r6.14 For the operations on partially filled arrays below, provide the header of a func tion. d. Remove all elements that are less than a given value. Sol a. void remove_items_less_than(int arr[], int

More information

// Pointer to the first thing in the list

// Pointer to the first thing in the list Linked Lists Dynamic variables combined with structs or classes can be linked together to form dynamic lists or other structures. We define a record (called a node) that has at least two members: next

More information

Abstract Data Types (ADTs) 1. Legal Values. Client Code for Rational ADT. ADT Design. CS 247: Software Engineering Principles

Abstract Data Types (ADTs) 1. Legal Values. Client Code for Rational ADT. ADT Design. CS 247: Software Engineering Principles Abstract Data Types (ADTs) CS 247: Software Engineering Principles ADT Design An abstract data type (ADT) is a user-defined type that bundles together: the range of values that variables of that type can

More information

Chapter 14 Sequential Access Files

Chapter 14 Sequential Access Files Chapter 14 Sequential Access Files Objectives Create file objects Open a sequential access file Determine whether a sequential access file was opened successfully Write data to a sequential access file

More information

[key, Left subtree, Right subtree]

[key, Left subtree, Right subtree] Project: Binary Search Trees A binary search tree is a method to organize data, together with operations on these data (i.e., it is a data structure). In particular, the operation that this organization

More information

CPE 112 Spring 2015 Exam II (100 pts) March 4, Definition Matching (8 Points)

CPE 112 Spring 2015 Exam II (100 pts) March 4, Definition Matching (8 Points) Name Definition Matching (8 Points) 1. (8 pts) Match the words with their definitions. Choose the best definition for each word. Relational Expression Iteration Counter Count-controlled loop Loop Flow

More information

An Introduction to Trees

An Introduction to Trees An Introduction to Trees Alice E. Fischer Spring 2017 Alice E. Fischer An Introduction to Trees... 1/34 Spring 2017 1 / 34 Outline 1 Trees the Abstraction Definitions 2 Expression Trees 3 Binary Search

More information

CMSC 341 Lecture 10 Binary Search Trees

CMSC 341 Lecture 10 Binary Search Trees CMSC 341 Lecture 10 Binary Search Trees John Park Based on slides from previous iterations of this course Review: Tree Traversals 2 Traversal Preorder, Inorder, Postorder H X M A K B E N Y L G W UMBC CMSC

More information

int x = 5; double y = 3; // Integer division rounds the result down to the nearest whole number. cout << "1a: " << x / 3 << endl; //1

int x = 5; double y = 3; // Integer division rounds the result down to the nearest whole number. cout << 1a:  << x / 3 << endl; //1 PART 1 - From Professor Kent Chin - div_casting.cpp /* Literals are FIXED values (e.g. 0, 5, -2, 3.14) Whole-number literals (e.g. 0, 1, -3) are integer types Literals with decimal points (e.g. 3.14, 2.718)

More information

Developed By : Ms. K. M. Sanghavi

Developed By : Ms. K. M. Sanghavi Developed By : Ms. K. M. Sanghavi Designing Our Own Manipulators We can design our own manipulators for certain special purpose.the general form for creating a manipulator without any arguments is: ostream

More information

do { statements } while (condition);

do { statements } while (condition); Topic 4 1. The while loop 2. Problem solving: hand-tracing 3. The for loop 4. The do loop 5. Processing input 6. Problem solving: storyboards 7. Common loop algorithms 8. Nested loops 9. Problem solving:

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 15, 2017 Outline Outline 1 C++ Supplement: 1.2 Outline C++ Supplement: 1.2 1 C++ Supplement: 1.2 The Binary Search

More information

CS 247: Software Engineering Principles. ADT Design

CS 247: Software Engineering Principles. ADT Design CS 247: Software Engineering Principles ADT Design Readings: Eckel, Vol. 1 Ch. 7 Function Overloading & Default Arguments Ch. 12 Operator Overloading U Waterloo CS247 (Spring 2017) p.1/17 Abstract Data

More information

CISC 2200 Data Structure Fall, C++ Review:3/3. 1 From last lecture:

CISC 2200 Data Structure Fall, C++ Review:3/3. 1 From last lecture: CISC 2200 Data Structure Fall, 2016 C++ Review:3/3 1 From last lecture: pointer type and pointer variable (stores memory addresses of a variable (of any type, local or global, automatic/static/dynamic)

More information

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking Review for Test 2 (Chapter 6-10) Chapter 6: Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B.

More information

Multiple Choice (Questions 1 13) 26 Points Select all correct answers (multiple correct answers are possible)

Multiple Choice (Questions 1 13) 26 Points Select all correct answers (multiple correct answers are possible) Name Closed notes, book and neighbor. If you have any questions ask them. Notes: Segment of code necessary C++ statements to perform the action described not a complete program Program a complete C++ program

More information

Overloading Operators in C++

Overloading Operators in C++ Overloading Operators in C++ C++ allows the programmer to redefine the function of most built-in operators on a class-by-class basis the operator keyword is used to declare a function that specifies what

More information

Part I: Short Answer (12 questions, 65 points total)

Part I: Short Answer (12 questions, 65 points total) CSE 143 Sp01 Final Exam Sample Solution page 1 of 14 Part I: Short Answer (12 questions, 65 points total) Answer all of the following questions. READ EACH QUESTION CAREFULLY. Answer each question in the

More information

Design Patterns for Data Structures. Chapter 10. Balanced Trees

Design Patterns for Data Structures. Chapter 10. Balanced Trees Capter 10 Balanced Trees Capter 10 Four eigt-balanced trees: Red-Black binary tree Faster tan AVL for insertion and removal Adelsen-Velskii Landis (AVL) binary tree Faster tan red-black for lookup B-tree

More information

Object oriented programming

Object oriented programming Exercises 12 Version 1.0, 9 May, 2017 Table of Contents 1. Virtual destructor and example problems...................................... 1 1.1. Virtual destructor.......................................................

More information

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable Basic C++ Overview C++ is a version of the older C programming language. This is a language that is used for a wide variety of applications and which has a mature base of compilers and libraries. C++ is

More information

1 Deletion in singly linked lists (cont d) 1 Other Functions. 1 Doubly Linked Lists. 1 Circular lists. 1 Linked lists vs. arrays

1 Deletion in singly linked lists (cont d) 1 Other Functions. 1 Doubly Linked Lists. 1 Circular lists. 1 Linked lists vs. arrays Unit 3: Linked Lists Part 2: More on Linked Lists 1 Deletion in singly linked lists (cont d) 1 Other Functions Engineering 4892: Data Structures 1 Doubly Linked Lists Faculty of Engineering & Applied Science

More information

COMP 250 Midterm #2 March 11 th 2013

COMP 250 Midterm #2 March 11 th 2013 NAME: STUDENT ID: COMP 250 Midterm #2 March 11 th 2013 - This exam has 6 pages - This is an open book and open notes exam. No electronic equipment is allowed. 1) Questions with short answers (28 points;

More information