Journal of Computer Engineering and Technology (IJCET), ISSN (Print), International Journal of Computer Engineering

Size: px
Start display at page:

Download "Journal of Computer Engineering and Technology (IJCET), ISSN (Print), International Journal of Computer Engineering"

Transcription

1 Journal of Computer Engineering and Technology (IJCET), ISSN (Print), International Journal of Computer Engineering and Technology (IJCET), ISSN (Print) ISSN (Online) Volume 1 Number 2, Sept - Oct (2010), pp IAEME, IJCET I A E M E EFFICIENT TEXT COMPRESSION USING SPECIAL CHARACTER REPLACEMENT AND SPACE REMOVAL ABSTRACT Debashis Chakraborty Department of Computer Science & Engineering St. Thomas College of Engineering. & Technology Kolkata-23, West Bengal sunnydeba@gmail.com Sutirtha Ghosh Department of Information Technology St. Thomas College of Engineering. & Technology Kolkata-23, West Bengal sutirtha84@yahoo.co.in Joydeep Mukherjee Department of Information Technology St. Thomas College of Engineering. & Technology Kolkata-23, West Bengal In this paper, we have proposed a new concept of text compression/decompression algorithm using special character replacement technique. Moreover after the initial compression after replacement of special characters, we remove the spaces between the words in the intermediary compressed file in specific situations to get the final compressed text file. Experimental results show that the proposed algorithm is very simple in implementation, fast in encoding time and high in compression ratio and even gives better compression than existing algorithms like LZW, WINZIP 10.0 and WINRAR Keywords: Lossless compresssion; Lossy compression; Non-printable ASCII value; Special character, Index, Symbols. 38

2 INTRODUCTION As evident from the name itself data compression is concerned with the compression of a given set of data [5,6,8]. The primary reason behind doing so is to reduce the storage space required to save the data, or the bandwidth required to transmit it. Although storage technology has developed significantly over the past decade, the same cannot be said for transmission capacity. As a result the concept of compressing data becomes very important. Data compression or source coding is the process of encoding information using fewer bits (or other information bearing units) than an unencoded representation would use through specific use of encoding schemes. It follows that the receiver must be aware of the encoding scheme in order to decode the data to its original form. The compression schemes that are designed are basically trade- offs among the degree of data compression, the amount of distortion introduced and the resources (software and hardware) required to compress and decompress data [5,9]. Data compression schemes may broadly be classified into 1.Lossless compression and 2.Lossy compression. Lossless compression algorithms usually exploit statistical redundancy in such a way as to represent the sender s data more concisely without error. Lossless compression is possible because most real world data has statistical redundancy. Another kind of compression, called lossy data compression is possible if some loss of fidelity is acceptable. It is important to consider that in case of lossy compression, the original data cannot be reconstructed from the compressed data due to rounding off or removal of some parts of data as a result of redundancies. These types of compression are also widely used in Image compression [10, 11, 12, 13]. The theoretical background of compression is provided by information theory and by rate distortion theory. There is a close connection between machine learning and compression: a system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution), while an optimal compressor can be used for prediction (by finding the symbol that compresses best, given the previous history). This equivalence has been used as justification for data compression as a benchmark for "general intelligence". We hereby focus on the compression of text. Various algorithms have been proposed for text compression 39

3 [1,2,3,4,7]. We proposed an efficient text compression algorithm that should yield better compression than existing algorithm like Lempel-Zip-Welch and existing software like Winzip10.0 and Winrar3.93, while ensuring the compression is a lossless compression process. Our proposed algorithm is based on a systematic special character replacement technique. The rest of this paper is organized as follows:- Section II, the concepts of special character replacement is provided. Section III describes the creation and maintenance of dynamic dictionary. Section IV describes the process of removal of spaces between special symbols in the intermediary compressed file. Section V gives the proposed algorithm and section VI described the experimental results and Section VII concludes the paper. 1. SPECIAL CHARACTER REPLACEMENT In the proposed algorithm we replaced every word in a text with an ASCII character. In the extended ASCII set of characters there are two hundred and fifty-four (254) characters. Among these some of them hold NULL, Space, Linefeed or English alphabets as their special symbols. Neglecting them there are one hundred and eightyfour(184) ASCII characters that have been used in this proposed algorithm. In this proposed algorithm, one letter or two letter English words in the text file are not replaced with an ASCII character. A non-printable ASCII character replaces words having more than two letters. For an example, the word of remains the same, whereas a non-printable ASCII character 1 replaces the word name. Whenever a new word is found we maintained an index (integer) and the corresponding special ASCII character is replaced for the word in the compressed text file. When the word is repeated in the file, it is replaced by the same ASCII value assigned to it previously. In this algorithm, we used one hundred and eighty-four symbols for the first one hundred and eighty-four words. Once the number of words exceeds the above value, we combined the ASCII characters to generate new symbols for the new words in the text file. When a space is encountered between two words, it is replaced with an integer 0. To determine the end of a statement symbol 9 is used, so the termination of a sentence 40

4 can be identified during the process of decompression of the text file from the compressed file. For an example, suppose there is a line of text: My name is Debashis Chakraborty. Assuming this is the first sentence in the file and following the proposed algorithm the words My and is, are kept unchanged in the compressed file. Name being the first word to be compressed we assigned the index 1 to it and replace the word with the ASCII character of 1. Similar process is repeated for the other words whose length is greater than two. We also replaced the space between words with 0 and the. with 9. Therefore the corresponding compressed sentence for the above example is: My0$0is#0&9 where $, #,& are non printable ASCII characters for integers 1 for name, 2 for Debashis and 3 for Chakraborty respectively, each occupying one byte of memory space in the memory. The original line of text had 32 bytes, whereas the compressed line has 12 bytes. Thus the above proposed method enables us to obtain comprehensive compression of text, resulting in better transmission bandwidth management and requires less storage. 2. CREATION OF DYNAMIC DICTIONARY Text Compression Algorithms should always be lossless compression algorithms, preventing any loss of information. The text file regenerated from the compressed file must be identical to the original file. All text compression algorithms maintain a dictionary containing the words that appear in the text file. The text file is regenerated from the original file with the help of this dictionary. Dictionaries maintained can either be static or dynamic. In this proposed algorithm, dynamic dictionary is used. We maintained a table containing the fields, named Index, Symbol and Word to form the dictionary. Initially the table is empty. When a word to be compressed in the text file is encountered, check whether the word exists in the table. Every time a new word is found in the text file, assign an integer value to it and tabulate its special symbol using single nonprintable ASCII characters or combination of such character symbols. It stored the assigned integer under index field, the special symbol under symbol field and the 41

5 corresponding word under the word field. Every time a new word is found in the text the dictionary is updated using the same procedure. When a word is repeated, the already assigned symbol for the word is used. During the process of decompression, the special symbol in the compressed file is searched to obtain its corresponding integer value or index and the corresponding word. Finally the symbols are replaced with their corresponding words to regenerate the original file. 3. REMOVAL OF SPACES FROM THE INTRMEDIARY COMPRESSED FILE Every file contains spaces between the words to identify different words. The words are separated from each other with spaces. Here we propose a method to remove these spaces without loosing any information to obtain better compression. The usage of special symbols for every word in the original file compresses the size of the file and an intermediary compressed file is obtained. We do not remove the spaces from the intermediary file. Instead it contains 0 to specify the location of spaces between words. Every word in the original file is replaced by either one special symbol or a combination of two special symbols. In the intermediary compressed file when we obtain 0 after one special symbol, the contents are not modified. Whereas when a word is replaced by a combination of two symbols or the word is a one or two lettered word( no replacement in the intermediary compressed file), we remove the 0 after them i.e. the space between the present word and next word is removed. For example, suppose the there is a line of text: My name is Debashis Chakraborty. Assuming the special symbol for name is $, Debashis is ## and Chakraborty then after the final compression the output of the above sentence is: My$0is##@9 4. PROPOSED ALGORITHM We proposed an algorithm that takes a text file as input. The proposed algorithm can compress text files to comparable size of Lempel-Ziv Welch Algorithm, Winzip10.0 and Winrar3.93. The proposed algorithm is: 42

6 Algorithm for Compression Step 1: Read the contents of Text file on word at a time. Step 2: Create a dictionary containing the fields Index, Symbol and Word. The dictionary is initially empty. Step 3: Length Calculation Calculate the length of the word read from the text file. Write the original word into the intermediary file if the length of the word is less than or equal to two. If the read word is single character and represents. replace with 9 in the compressed file and if the read character is a space between two words replace with 0 in the compressed file. For word of length greater than two it is replaced with special symbol (nonprintable ASCII character or combination of ASCII characters). Step 4: Special Character replacement Check whether the word exists in the dictionary. For a new word assign an integer which acts as the index and a special symbol for the corresponding word. For the index of the word being less than one hundred and eighty-four, assign index s respective single character ASCII symbol as their special symbol. If a word has an index more than one hundred and eighty-three, combine ASCII characters to form the new symbol. Update the dictionary by inserting the new word along with its index value and assigned symbol, which can be used for future reference. For repetition of an existing word replace the pre-assigned symbol for the word as obtained from the dictionary. Step 5: Continue the above process of compression and updation of the dynamic dictionary till the end of the original file is reached. Step 6: Removal of Spaces from the intermediary file Read the contents of the intermediary file, one special symbol at a time. 43

7 Check whether the word in the original file is replaced by one special character as symbol or a combination of two. If there is 0 after symbol containing one special character as a replacement of a word, retain the zero. If there is a combination of special characters to represent a word or the word itself (one or two letter words) remove the 0 (representing space between words) to obtain the final compressed file. Step 7: Continue the above process of compression till the end of the intermediary file is reached. Algorithm for Decompression Step 1: Read the symbol form the compressed file. Step 2: If the read symbol is 0 replace with a space or tab. For the symbol 9 replace with a. to indicate end of sentence. Step 3: Decoding of Special Characters If the read symbol from compressed file is an English alphabet, write the same into the decompressed file. Write space or tab after the word in the decompressed file. For a special symbol, find a match for it in the dictionary and write the corresponding word in the decompressed file. If the special symbols are a combination of two special characters, write space or tab after the corresponding word in the decompressed file. Step 4: Continue the above process till the end of the compressed file is reached. 5. EXPERIMENTAL RESULTS The algorithm developed has been simulated using TURBO C. The input text files are considered to be.txt,. rtf,.cpp and.c files. All the text files that we have tested are of different sizes. The compression ratios obtained are tabulated in Table 1. The compression ratio is better than that of Lempel-Ziv Welch Algorithm,Winzip10.0 and Winrar3.93 for majority of the text files. All the text files reconstructed from the compressed file are of the same size as that of original file. Therefore the proposed algorithm follows lossless compression. 44

8 Original Original Compression Compression Compression Compression File File Size by by by by Proposed LZW WINRAR WINZIP Algorithm sgjm1.txt 5046bytes 3292 bytes 2056bytes 2468 bytes 1537 bytes (35%) (59%) (51%) (69%) sgjm2.txt bytes 2565 bytes 2547 bytes 2129 bytes bytes (38%) (63%) (64%) (70%) sgjm3.rtf bytes 1303 bytes 1269 bytes 896 bytes bytes (36%) (55%) (56%) (69%) sgjm4.txt 431 bytes 388 bytes 260 bytes 231 bytes 158 bytes (9%) (39%) (46%) (63%) sgjm5.rtf bytes 859 bytes 828 bytes 635 bytes bytes (35%) (58%) (59%) (63%) sgjm6.txt bytes 1545 bytes 1504 bytes 1110 bytes bytes (35%) (54%) (55%) (67%) sgjm7.txt bytes 3933 bytes 3923 bytes 3492 bytes bytes (47%) (63%) (63%) (66%) sgjm8.txt bytes 3067 bytes 3048 bytes 2389 bytes bytes (44%) (59%) (60%) (68%) sgjm9.rtf bytes 2351 bytes 2324 bytes 1793 bytes bytes (41%) (57%) (58%) (67%) sgjm10.rtf bytes 1869 bytes 1831 bytes 1428 bytes bytes (36%) (55%) (56%) (66%) sgjm11.cpp 458 bytes 421 bytes 259 bytes 239 bytes 134 bytes (8%) (43%) (48%) (70%) Table 1 Compression of text files for different algorithms 6. CONCLUSIONS In this paper, a new text compression algorithm used to compress different type of text files has been introduced. The main advantage of this compression scheme is that the algorithm gives better compression than existing algorithms for different text file sizes. This compression scheme is comparable to the Lempel-Zip Welch Algorithm, Winzip10.0 and Winrar3.93 in terms of compression ratio. REFERENCES [1] J.Ziv and A. Lempel, Compression of individual sequences via variable length coding, IEEE Transaction on Information Theory, Vol 24: pp , [2] J.Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Transaction on Information Theory, Vol 23: pp , May

9 [3] Gonzalo Navarro and Mathieu A Raffinot, General Practical Approach to Pattern Matchingover Ziv-Lempel Compressed Text, Proc. CPM 99, LNCS 1645, Pages [4] S. Bhattacharjee, J. Bhattacharya, U. Raghavendra, D.Saha, P. Pal Chaudhuri, A VLSI architecture for cellular automata based parallel data compression, IEEE- 2006,Bangalore, India, Jan [5] Khalid Sayood, An Introduction to Data Compression, Academic Press, [6] David Solomon, Data Compression: The Complete Reference, Springer Publication, [7] M. Atallah and Y. Genin, Pattern matching text compression: Algorithmic and empirical results, International Conference on Data Compression, vol II: pp , Lausanne, [8] Mark Nelson and Jean-Loup Gaily, The Data Compression Book, Second Edition, M&T Books. [9] Timothy C. Bell, Text Compression, Prentice Hall Publishers, [10] Ranjan Parekh, Principles of Multimedia, Tata McGraw-Hill Companies, 2006 [11] Amiya Halder, Sourav Dey, Soumyodeep Mukherjee and Ayan Banerjee, An Efficient Image Compression Algorithm Based on Block Optimization and Byte Compression, ICISA-2010, Chennai, Tamilnadu, India, pp.14-18, Feb 6, [12] Ayan Banerjee and Amiya Halder, An Efficient Image Compression Algorithm Based on Block Optimization, Byte Compression and Run-Length Encoding along Y- axis, IEEE ICCSIT 2010, Chengdu, China, IEEE Computer Society Press, July 9-11, [13] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing. [14] Debashis Chakraborty, Sutirtha Ghosh and Joydeep Mukherjee, An Efficient Data Compression Algorithm Using Differential Feature Extraction, NCETCS August 26-28,

A New Compression Method Strictly for English Textual Data

A New Compression Method Strictly for English Textual Data A New Compression Method Strictly for English Textual Data Sabina Priyadarshini Department of Computer Science and Engineering Birla Institute of Technology Abstract - Data compression is a requirement

More information

Keywords image compression, lossless compression, run length coding, comparison technique, entropy coding

Keywords image compression, lossless compression, run length coding, comparison technique, entropy coding Volume 4, Issue 2, February 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue:

More information

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc.

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc. Volume 6, Issue 2, February 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Comparative

More information

A Compression Technique Based On Optimality Of LZW Code (OLZW)

A Compression Technique Based On Optimality Of LZW Code (OLZW) 2012 Third International Conference on Computer and Communication Technology A Compression Technique Based On Optimality Of LZW (OLZW) Utpal Nandi Dept. of Comp. Sc. & Engg. Academy Of Technology Hooghly-712121,West

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Enhanced LZW (Lempel-Ziv-Welch) Algorithm by Binary Search with

More information

OPTIMIZATION OF LZW (LEMPEL-ZIV-WELCH) ALGORITHM TO REDUCE TIME COMPLEXITY FOR DICTIONARY CREATION IN ENCODING AND DECODING

OPTIMIZATION OF LZW (LEMPEL-ZIV-WELCH) ALGORITHM TO REDUCE TIME COMPLEXITY FOR DICTIONARY CREATION IN ENCODING AND DECODING Asian Journal Of Computer Science And Information Technology 2: 5 (2012) 114 118. Contents lists available at www.innovativejournal.in Asian Journal of Computer Science and Information Technology Journal

More information

Encoding. A thesis submitted to the Graduate School of University of Cincinnati in

Encoding. A thesis submitted to the Graduate School of University of Cincinnati in Lossless Data Compression for Security Purposes Using Huffman Encoding A thesis submitted to the Graduate School of University of Cincinnati in a partial fulfillment of requirements for the degree of Master

More information

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM Parekar P. M. 1, Thakare S. S. 2 1,2 Department of Electronics and Telecommunication Engineering, Amravati University Government College

More information

THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS

THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS Yair Wiseman 1* * 1 Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel Email: wiseman@cs.huji.ac.il, http://www.cs.biu.ac.il/~wiseman

More information

Comparative Study of Dictionary based Compression Algorithms on Text Data

Comparative Study of Dictionary based Compression Algorithms on Text Data 88 Comparative Study of Dictionary based Compression Algorithms on Text Data Amit Jain Kamaljit I. Lakhtaria Sir Padampat Singhania University, Udaipur (Raj.) 323601 India Abstract: With increasing amount

More information

So, what is data compression, and why do we need it?

So, what is data compression, and why do we need it? In the last decade we have been witnessing a revolution in the way we communicate 2 The major contributors in this revolution are: Internet; The explosive development of mobile communications; and The

More information

A Comparative Study of Lossless Compression Algorithm on Text Data

A Comparative Study of Lossless Compression Algorithm on Text Data Proc. of Int. Conf. on Advances in Computer Science, AETACS A Comparative Study of Lossless Compression Algorithm on Text Data Amit Jain a * Kamaljit I. Lakhtaria b, Prateek Srivastava c a, b, c Department

More information

A Novel Image Compression Technique using Simple Arithmetic Addition

A Novel Image Compression Technique using Simple Arithmetic Addition Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC A Novel Image Compression Technique using Simple Arithmetic Addition Nadeem Akhtar, Gufran Siddiqui and Salman

More information

EE-575 INFORMATION THEORY - SEM 092

EE-575 INFORMATION THEORY - SEM 092 EE-575 INFORMATION THEORY - SEM 092 Project Report on Lempel Ziv compression technique. Department of Electrical Engineering Prepared By: Mohammed Akber Ali Student ID # g200806120. ------------------------------------------------------------------------------------------------------------------------------------------

More information

Three Dimensional Motion Vectorless Compression

Three Dimensional Motion Vectorless Compression 384 IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 9 Three Dimensional Motion Vectorless Compression Rohini Nagapadma and Narasimha Kaulgud* Department of E &

More information

Study of LZ77 and LZ78 Data Compression Techniques

Study of LZ77 and LZ78 Data Compression Techniques Study of LZ77 and LZ78 Data Compression Techniques Suman M. Choudhary, Anjali S. Patel, Sonal J. Parmar Abstract Data Compression is defined as the science and art of the representation of information

More information

Optimization of Bit Rate in Medical Image Compression

Optimization of Bit Rate in Medical Image Compression Optimization of Bit Rate in Medical Image Compression Dr.J.Subash Chandra Bose 1, Mrs.Yamini.J 2, P.Pushparaj 3, P.Naveenkumar 4, Arunkumar.M 5, J.Vinothkumar 6 Professor and Head, Department of CSE, Professional

More information

IMAGE COMPRESSION TECHNIQUES

IMAGE COMPRESSION TECHNIQUES IMAGE COMPRESSION TECHNIQUES A.VASANTHAKUMARI, M.Sc., M.Phil., ASSISTANT PROFESSOR OF COMPUTER SCIENCE, JOSEPH ARTS AND SCIENCE COLLEGE, TIRUNAVALUR, VILLUPURAM (DT), TAMIL NADU, INDIA ABSTRACT A picture

More information

IMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG

IMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG IMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG MANGESH JADHAV a, SNEHA GHANEKAR b, JIGAR JAIN c a 13/A Krishi Housing Society, Gokhale Nagar, Pune 411016,Maharashtra, India. (mail2mangeshjadhav@gmail.com)

More information

HYBRID TRANSFORMATION TECHNIQUE FOR IMAGE COMPRESSION

HYBRID TRANSFORMATION TECHNIQUE FOR IMAGE COMPRESSION 31 st July 01. Vol. 41 No. 005-01 JATIT & LLS. All rights reserved. ISSN: 199-8645 www.jatit.org E-ISSN: 1817-3195 HYBRID TRANSFORMATION TECHNIQUE FOR IMAGE COMPRESSION 1 SRIRAM.B, THIYAGARAJAN.S 1, Student,

More information

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression An overview of Compression Multimedia Systems and Applications Data Compression Compression becomes necessary in multimedia because it requires large amounts of storage space and bandwidth Types of Compression

More information

EE67I Multimedia Communication Systems Lecture 4

EE67I Multimedia Communication Systems Lecture 4 EE67I Multimedia Communication Systems Lecture 4 Lossless Compression Basics of Information Theory Compression is either lossless, in which no information is lost, or lossy in which information is lost.

More information

A Comprehensive Review of Data Compression Techniques

A Comprehensive Review of Data Compression Techniques Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 684-688 A Comprehensive Review of Data Compression Techniques Palwinder Singh 1, Amarbir Singh

More information

Improving LZW Image Compression

Improving LZW Image Compression European Journal of Scientific Research ISSN 1450-216X Vol.44 No.3 (2010), pp.502-509 EuroJournals Publishing, Inc. 2010 http://www.eurojournals.com/ejsr.htm Improving LZW Image Compression Sawsan A. Abu

More information

A Research Paper on Lossless Data Compression Techniques

A Research Paper on Lossless Data Compression Techniques IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 1 June 2017 ISSN (online): 2349-6010 A Research Paper on Lossless Data Compression Techniques Prof. Dipti Mathpal

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw

More information

Noise Reduction in Data Communication Using Compression Technique

Noise Reduction in Data Communication Using Compression Technique Digital Technologies, 2016, Vol. 2, No. 1, 9-13 Available online at http://pubs.sciepub.com/dt/2/1/2 Science and Education Publishing DOI:10.12691/dt-2-1-2 Noise Reduction in Data Communication Using Compression

More information

The Effect of Non-Greedy Parsing in Ziv-Lempel Compression Methods

The Effect of Non-Greedy Parsing in Ziv-Lempel Compression Methods The Effect of Non-Greedy Parsing in Ziv-Lempel Compression Methods R. Nigel Horspool Dept. of Computer Science, University of Victoria P. O. Box 3055, Victoria, B.C., Canada V8W 3P6 E-mail address: nigelh@csr.uvic.ca

More information

Multimedia Communications ECE 728 (Data Compression)

Multimedia Communications ECE 728 (Data Compression) Multimedia Communications ECE 728 (Data Compression) Multimedia Communications Course number: ECE 728 Instructor: Dr. S. Shirani E-mail: shirani@mcmaster.ca Office: ITB-A320 Web page of the course: http://www.ece.mcmaster.ca/~shirani/multi08/multi08.htm

More information

Ch. 2: Compression Basics Multimedia Systems

Ch. 2: Compression Basics Multimedia Systems Ch. 2: Compression Basics Multimedia Systems Prof. Ben Lee School of Electrical Engineering and Computer Science Oregon State University Outline Why compression? Classification Entropy and Information

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol., Issue, ISSN (online): - Modified Golomb Code for Integer Representation Nelson Raja Joseph Jaganathan P Domnic Sandanam Department

More information

Image Compression for Mobile Devices using Prediction and Direct Coding Approach

Image Compression for Mobile Devices using Prediction and Direct Coding Approach Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract

More information

Highly Secure Invertible Data Embedding Scheme Using Histogram Shifting Method

Highly Secure Invertible Data Embedding Scheme Using Histogram Shifting Method www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 8 August, 2014 Page No. 7932-7937 Highly Secure Invertible Data Embedding Scheme Using Histogram Shifting

More information

Image Compression - An Overview Jagroop Singh 1

Image Compression - An Overview Jagroop Singh 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issues 8 Aug 2016, Page No. 17535-17539 Image Compression - An Overview Jagroop Singh 1 1 Faculty DAV Institute

More information

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation Volume 114 No. 12 2017, 145-154 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu An Effective Approach to Improve Storage Efficiency Using Variable

More information

Topic 5 Image Compression

Topic 5 Image Compression Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of

More information

Overview. Last Lecture. This Lecture. Next Lecture. Data Transmission. Data Compression Source: Lecture notes

Overview. Last Lecture. This Lecture. Next Lecture. Data Transmission. Data Compression Source: Lecture notes Overview Last Lecture Data Transmission This Lecture Data Compression Source: Lecture notes Next Lecture Data Integrity 1 Source : Sections 10.1, 10.3 Lecture 4 Data Compression 1 Data Compression Decreases

More information

MODELING DELTA ENCODING OF COMPRESSED FILES. and. and

MODELING DELTA ENCODING OF COMPRESSED FILES. and. and International Journal of Foundations of Computer Science c World Scientific Publishing Company MODELING DELTA ENCODING OF COMPRESSED FILES SHMUEL T. KLEIN Department of Computer Science, Bar-Ilan University

More information

Comparative data compression techniques and multi-compression results

Comparative data compression techniques and multi-compression results IOP Conference Series: Materials Science and Engineering OPEN ACCESS Comparative data compression techniques and multi-compression results To cite this article: M R Hasan et al 2013 IOP Conf. Ser.: Mater.

More information

Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey

Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey Data Compression Media Signal Processing, Presentation 2 Presented By: Jahanzeb Farooq Michael Osadebey What is Data Compression? Definition -Reducing the amount of data required to represent a source

More information

AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES

AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES Dr.S.Narayanan Computer Centre, Alagappa University, Karaikudi-South (India) ABSTRACT The programs using complex

More information

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOSSLESS METHOD OF IMAGE COMPRESSION USING HUFFMAN CODING TECHNIQUES Trupti S Bobade *, Anushri S. sastikar 1 Department of electronics

More information

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression P. RATNA TEJASWI 1 P. DEEPTHI 2 V.PALLAVI 3 D. GOLDIE VAL DIVYA 4 Abstract: Data compression is the art of reducing

More information

Information Technology Department, PCCOE-Pimpri Chinchwad, College of Engineering, Pune, Maharashtra, India 2

Information Technology Department, PCCOE-Pimpri Chinchwad, College of Engineering, Pune, Maharashtra, India 2 Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Adaptive Huffman

More information

IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE

IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE Volume 4, No. 1, January 2013 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE Nikita Bansal *1, Sanjay

More information

Multimedia Systems. Part 20. Mahdi Vasighi

Multimedia Systems. Part 20. Mahdi Vasighi Multimedia Systems Part 2 Mahdi Vasighi www.iasbs.ac.ir/~vasighi Department of Computer Science and Information Technology, Institute for dvanced Studies in asic Sciences, Zanjan, Iran rithmetic Coding

More information

Compression and Decompression of Virtual Disk Using Deduplication

Compression and Decompression of Virtual Disk Using Deduplication Compression and Decompression of Virtual Disk Using Deduplication Bharati Ainapure 1, Siddhant Agarwal 2, Rukmi Patel 3, Ankita Shingvi 4, Abhishek Somani 5 1 Professor, Department of Computer Engineering,

More information

DEFLATE COMPRESSION ALGORITHM

DEFLATE COMPRESSION ALGORITHM DEFLATE COMPRESSION ALGORITHM Savan Oswal 1, Anjali Singh 2, Kirthi Kumari 3 B.E Student, Department of Information Technology, KJ'S Trinity College Of Engineering and Research, Pune, India 1,2.3 Abstract

More information

Analysis of Parallelization Effects on Textual Data Compression

Analysis of Parallelization Effects on Textual Data Compression Analysis of Parallelization Effects on Textual Data GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2b, 31000

More information

Modeling Delta Encoding of Compressed Files

Modeling Delta Encoding of Compressed Files Modeling Delta Encoding of Compressed Files EXTENDED ABSTRACT S.T. Klein, T.C. Serebro, and D. Shapira 1 Dept of CS Bar Ilan University Ramat Gan, Israel tomi@cs.biu.ac.il 2 Dept of CS Bar Ilan University

More information

Optimized Compression and Decompression Software

Optimized Compression and Decompression Software 2015 IJSRSET Volume 1 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Optimized Compression and Decompression Software Mohd Shafaat Hussain, Manoj Yadav

More information

Sparse Transform Matrix at Low Complexity for Color Image Compression

Sparse Transform Matrix at Low Complexity for Color Image Compression Sparse Transform Matrix at Low Complexity for Color Image Compression Dr. K. Kuppusamy, M.Sc.,M.Phil.,M.C.A.,B.Ed.,Ph.D #1, R.Mehala, (M.Phil, Research Scholar) *2. # Department of Computer science and

More information

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression Design and Implementation of FPGA- based Systolic Array for LZ Data Compression Mohamed A. Abd El ghany Electronics Dept. German University in Cairo Cairo, Egypt E-mail: mohamed.abdel-ghany@guc.edu.eg

More information

Using data reduction to improve the transmission and rendering. performance of SVG maps over the Internet

Using data reduction to improve the transmission and rendering. performance of SVG maps over the Internet Using data reduction to improve the transmission and rendering performance of SVG maps over the Internet Haosheng Huang 1 and Yan Li 2 1 Institute of Geoinformation and Cartography, Vienna University of

More information

Enhancing Text Compression Method Using Information Source Indexing

Enhancing Text Compression Method Using Information Source Indexing Enhancing Text Compression Method Using Information Source Indexing Abstract Ahmed Musa 1* and Ayman Al-Dmour 1. Department of Computer Engineering, Taif University, Taif-KSA. Sabbatical Leave: Al-Hussein

More information

A QUAD-TREE DECOMPOSITION APPROACH TO CARTOON IMAGE COMPRESSION. Yi-Chen Tsai, Ming-Sui Lee, Meiyin Shen and C.-C. Jay Kuo

A QUAD-TREE DECOMPOSITION APPROACH TO CARTOON IMAGE COMPRESSION. Yi-Chen Tsai, Ming-Sui Lee, Meiyin Shen and C.-C. Jay Kuo A QUAD-TREE DECOMPOSITION APPROACH TO CARTOON IMAGE COMPRESSION Yi-Chen Tsai, Ming-Sui Lee, Meiyin Shen and C.-C. Jay Kuo Integrated Media Systems Center and Department of Electrical Engineering University

More information

AUDIO COMPRESSION USING WAVELET TRANSFORM

AUDIO COMPRESSION USING WAVELET TRANSFORM AUDIO COMPRESSION USING WAVELET TRANSFORM Swapnil T. Dumbre Department of electronics, Amrutvahini College of Engineering,Sangamner,India Sheetal S. Gundal Department of electronics, Amrutvahini College

More information

An On-line Variable Length Binary. Institute for Systems Research and. Institute for Advanced Computer Studies. University of Maryland

An On-line Variable Length Binary. Institute for Systems Research and. Institute for Advanced Computer Studies. University of Maryland An On-line Variable Length inary Encoding Tinku Acharya Joseph F. Ja Ja Institute for Systems Research and Institute for Advanced Computer Studies University of Maryland College Park, MD 242 facharya,

More information

Comparison of Text Data Compression Using Run Length Encoding, Arithmetic Encoding, Punctured Elias Code and Goldbach Code

Comparison of Text Data Compression Using Run Length Encoding, Arithmetic Encoding, Punctured Elias Code and Goldbach Code Comparison of Text Data Compression Using Run Length Encoding, Arithmetic Encoding, Punctured Elias Code and Goldbach Code Kenang Eko Prasetyo 1, Tito Waluyo Purboyo 2, Randy Erfa Saputra 3 Computer Engineering,

More information

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding Fundamentals of Multimedia Lecture 5 Lossless Data Compression Variable Length Coding Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Fundamentals of Multimedia 1 Data Compression Compression

More information

An Implementation of Efficient Text Data Compression

An Implementation of Efficient Text Data Compression Virendra Kumar Swarnkar, Prof. K. J. Satao Abstract: The size of data related to a wide range of applications is growing rapidly. Typically a character requires 1 Byte for storing. of the data is very

More information

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - ABSTRACT: REVIEW M.JEYAPRATHA 1, B.POORNA VENNILA 2 Department of Computer Application, Nadar Saraswathi College of Arts and Science, Theni, Tamil

More information

Image and Video Coding I: Fundamentals

Image and Video Coding I: Fundamentals Image and Video Coding I: Fundamentals Thomas Wiegand Technische Universität Berlin T. Wiegand (TU Berlin) Image and Video Coding Organization Vorlesung: Donnerstag 10:15-11:45 Raum EN-368 Material: http://www.ic.tu-berlin.de/menue/studium_und_lehre/

More information

University of Mustansiriyah, Baghdad, Iraq

University of Mustansiriyah, Baghdad, Iraq Volume 5, Issue 9, September 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Audio Compression

More information

Text Data Compression and Decompression Using Modified Deflate Algorithm

Text Data Compression and Decompression Using Modified Deflate Algorithm Text Data Compression and Decompression Using Modified Deflate Algorithm R. Karthik, V. Ramesh, M. Siva B.E. Department of Computer Science and Engineering, SBM COLLEGE OF ENGINEERING AND TECHNOLOGY, Dindigul-624005.

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

LOSSLESS DATA COMPRESSION AND DECOMPRESSION ALGORITHM AND ITS HARDWARE ARCHITECTURE

LOSSLESS DATA COMPRESSION AND DECOMPRESSION ALGORITHM AND ITS HARDWARE ARCHITECTURE LOSSLESS DATA COMPRESSION AND DECOMPRESSION ALGORITHM AND ITS HARDWARE ARCHITECTURE V V V SAGAR 1 1JTO MPLS NOC BSNL BANGALORE ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Dictionary Based Compression for Images

Dictionary Based Compression for Images Dictionary Based Compression for Images Bruno Carpentieri Abstract Lempel-Ziv methods were original introduced to compress one-dimensional data (text, object codes, etc.) but recently they have been successfully

More information

LIPT-Derived Transform Methods Used in Lossless Compression of Text Files

LIPT-Derived Transform Methods Used in Lossless Compression of Text Files ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 2, 2011, 149 158 LIPT-Derived Transform Methods Used in Lossless Compression of Text Files Radu RĂDESCU Politehnica University of

More information

Rate Distortion Optimization in Video Compression

Rate Distortion Optimization in Video Compression Rate Distortion Optimization in Video Compression Xue Tu Dept. of Electrical and Computer Engineering State University of New York at Stony Brook 1. Introduction From Shannon s classic rate distortion

More information

ISSN (ONLINE): , VOLUME-3, ISSUE-1,

ISSN (ONLINE): , VOLUME-3, ISSUE-1, PERFORMANCE ANALYSIS OF LOSSLESS COMPRESSION TECHNIQUES TO INVESTIGATE THE OPTIMUM IMAGE COMPRESSION TECHNIQUE Dr. S. Swapna Rani Associate Professor, ECE Department M.V.S.R Engineering College, Nadergul,

More information

Engineering Mathematics II Lecture 16 Compression

Engineering Mathematics II Lecture 16 Compression 010.141 Engineering Mathematics II Lecture 16 Compression Bob McKay School of Computer Science and Engineering College of Engineering Seoul National University 1 Lossless Compression Outline Huffman &

More information

Chapter 2 Studies and Implementation of Subband Coder and Decoder of Speech Signal Using Rayleigh Distribution

Chapter 2 Studies and Implementation of Subband Coder and Decoder of Speech Signal Using Rayleigh Distribution Chapter 2 Studies and Implementation of Subband Coder and Decoder of Speech Signal Using Rayleigh Distribution Sangita Roy, Dola B. Gupta, Sheli Sinha Chaudhuri and P. K. Banerjee Abstract In the last

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Compression Caution: The PDF version of this presentation will appear to have errors due to heavy use of animations Material in this presentation is largely based on/derived

More information

Fundamentals of Video Compression. Video Compression

Fundamentals of Video Compression. Video Compression Fundamentals of Video Compression Introduction to Digital Video Basic Compression Techniques Still Image Compression Techniques - JPEG Video Compression Introduction to Digital Video Video is a stream

More information

Histogram Based Block Classification Scheme of Compound Images: A Hybrid Extension

Histogram Based Block Classification Scheme of Compound Images: A Hybrid Extension Histogram Based Block Classification Scheme of Compound Images: A Hybrid Extension Professor S Kumar Department of Computer Science and Engineering JIS College of Engineering, Kolkata, India Abstract The

More information

Lempel-Ziv-Welch (LZW) Compression Algorithm

Lempel-Ziv-Welch (LZW) Compression Algorithm Lempel-Ziv-Welch (LZW) Compression lgorithm Introduction to the LZW lgorithm Example 1: Encoding using LZW Example 2: Decoding using LZW LZW: Concluding Notes Introduction to LZW s mentioned earlier, static

More information

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University ECE 499/599 Data Compression & Information Theory Thinh Nguyen Oregon State University Adminstrivia Office Hours TTh: 2-3 PM Kelley Engineering Center 3115 Class homepage http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

More information

Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm

Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm Pratibha Warkade 1, Agya Mishra 2 M.E. Scholar, Dept. of Electronics and Telecommunication Engineering, Jabalpur

More information

ADVANCED LOSSLESS TEXT COMPRESSION ALGORITHM BASED ON SPLAY TREE ADAPTIVE METHODS

ADVANCED LOSSLESS TEXT COMPRESSION ALGORITHM BASED ON SPLAY TREE ADAPTIVE METHODS ADVANCED LOSSLESS TEXT COMPRESSION ALGORITHM BASED ON SPLAY TREE ADAPTIVE METHODS RADU RĂDESCU, ANDREEA HONCIUC *1 Key words: Data compression, Splay Tree, Prefix, ratio. This paper presents an original

More information

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

An Adaptive Video Compression Technique for Resource Constraint Systems

An Adaptive Video Compression Technique for Resource Constraint Systems An Adaptive Video Compression Technique for Resource Constraint Systems Shreelekshmi R, Sruthi S Abstract As display devices become more and more vivid, and people demand more perfection in video quality,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Rashmi Gadbail,, 2013; Volume 1(8): 783-791 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFECTIVE XML DATABASE COMPRESSION

More information

Review of Image Compression Techniques

Review of Image Compression Techniques Review of Image Compression Techniques Annu 1, Sunaina 2 1 M. Tech Student, Indus Institute of Engineering & Technology, Kinana (Jind) 2 Assistant Professor, Indus Institute of Engineering & Technology,

More information

Implementation of Robust Compression Technique using LZ77 Algorithm on Tensilica s Xtensa Processor

Implementation of Robust Compression Technique using LZ77 Algorithm on Tensilica s Xtensa Processor 2016 International Conference on Information Technology Implementation of Robust Compression Technique using LZ77 Algorithm on Tensilica s Xtensa Processor Vasanthi D R and Anusha R M.Tech (VLSI Design

More information

COMPARATIVE STUDY AND ANALYSIS OF ADAPTIVE REGION BASED HUFFMAN COMPRESSION TECHNIQUES

COMPARATIVE STUDY AND ANALYSIS OF ADAPTIVE REGION BASED HUFFMAN COMPRESSION TECHNIQUES COMPARATIVE STUDY AND ANALYSIS OF ADAPTIVE REGION BASED HUFFMAN COMPRESSION TECHNIQUES Utpal Nandi 1 and Jyotsna Kumar Mandal 2 1 Dept. of Comp. Sc. & Engg., Academy Of Technology, West Bengal, India nandi.3utpal@gmail.com

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY INFORMATION TECHNOLOGY DATA COMPRESSION AND DATA RETRIVAL SUBJECT CODE: 2161603 B.E. 6 th SEMESTER Type of course: Core Prerequisite: None Rationale: Data compression refers

More information

On Data Latency and Compression

On Data Latency and Compression On Data Latency and Compression Joseph M. Steim, Edelvays N. Spassov, Kinemetrics, Inc. Abstract Because of interest in the capability of digital seismic data systems to provide low-latency data for Early

More information

JOINT VIDEO COMPRESSION AND ENCRYPTION USING SECURE WAVELET TRANSFORM AND ENTROPY CODING

JOINT VIDEO COMPRESSION AND ENCRYPTION USING SECURE WAVELET TRANSFORM AND ENTROPY CODING Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 3, Issue.

More information

FPGA based Data Compression using Dictionary based LZW Algorithm

FPGA based Data Compression using Dictionary based LZW Algorithm FPGA based Data Compression using Dictionary based LZW Algorithm Samish Kamble PG Student, E & TC Department, D.Y. Patil College of Engineering, Kolhapur, India Prof. S B Patil Asso.Professor, E & TC Department,

More information

Research Article Does an Arithmetic Coding Followed by Run-length Coding Enhance the Compression Ratio?

Research Article Does an Arithmetic Coding Followed by Run-length Coding Enhance the Compression Ratio? Research Journal of Applied Sciences, Engineering and Technology 10(7): 736-741, 2015 DOI:10.19026/rjaset.10.2425 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

Medical Image Compression using DCT and DWT Techniques

Medical Image Compression using DCT and DWT Techniques Medical Image Compression using DCT and DWT Techniques Gullanar M. Hadi College of Engineering-Software Engineering Dept. Salahaddin University-Erbil, Iraq gullanarm@yahoo.com ABSTRACT In this paper we

More information

Removing Spatial Redundancy from Image by Using Variable Vertex Chain Code

Removing Spatial Redundancy from Image by Using Variable Vertex Chain Code EUROPEAN ACADEMIC RESEARCH Vol. II, Issue 1/ April 2014 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.1 (UIF) DRJI Value: 5.9 (B+) Removing Spatial Redundancy from Image by Using Variable Vertex Chain

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 29 Source Coding (Part-4) We have already had 3 classes on source coding

More information

Error Resilient LZ 77 Data Compression

Error Resilient LZ 77 Data Compression Error Resilient LZ 77 Data Compression Stefano Lonardi Wojciech Szpankowski Mark Daniel Ward Presentation by Peter Macko Motivation Lempel-Ziv 77 lacks any form of error correction Introducing a single

More information

Textual Data Compression Speedup by Parallelization

Textual Data Compression Speedup by Parallelization Textual Data Compression Speedup by Parallelization GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2b, 31000

More information

Proposing A Symmetric Key Bit-Level Block Cipher

Proposing A Symmetric Key Bit-Level Block Cipher Proposing A Symmetric Key Bit-Level Block Cipher Sarbajit Manna, Saurabh Dutta Abstract A novel bit level block cipher based symmetric key cryptographic technique using G.C.D is proposed in this research

More information

Evolutionary Lossless Compression with GP-ZIP

Evolutionary Lossless Compression with GP-ZIP Evolutionary Lossless Compression with GP-ZIP Ahmad Kattan and Riccardo Poli Abstract In this paper we propose a new approach for applying Genetic Programming to lossless data compression based on combining

More information