Introduction. Linking, which combines two or more separate object programs and supplies the information needed to allow references between them.

Size: px
Start display at page:

Download "Introduction. Linking, which combines two or more separate object programs and supplies the information needed to allow references between them."

Transcription

1 Index 1. Introduction 2. Functions of Loader 3. Translation & Linking of Program 4. Loading And Linking Scheme -Link-And-Go -Link-Load-And-Go 5. Difference Between Link-And-Go & Link-Load-And-Go 1

2 Introduction To execute an object program, we needs Relocation, which modifies the object program so that it can be loaded at an address different from the location originally specified. Linking, which combines two or more separate object programs and supplies the information needed to allow references between them. Loading and Allocation, which allocates memory location and brings the object program into memory for execution. 2

3 Introduction» Loader It is software processor which perform some low level processing of the program that form input to it in order to produce ready to execute program in the machine language.» Linking Loader performs some processing to put the various program forms together to make single program is known as linking.» Object Program It accept output of translator program & uses certain other similar program called object program. 3

4 Functions of Loader 1] Locate a program in appropriate area :- The Basic function of loading is to locate a program in appropriate area of the main memory of computer every area of the main memory of computer every time it is to be executed. In addition to loading loader performs 2 important functions:- 2] Loading of program to assigned area :- accept output of translator program form and uses certain other similar program called object program, it produce 1 ready to execute machine language program. 4

5 Functions of Loader 3] Linking of programs with each other :- e.g. Loader performs some processing to put the various programs forms together to make 1 single program. This is known as linking. Linking is necessary because program written by programmer, generally does not execute on its own without the presence of other object program in the computer storage. A program written in HLL may contain calls in certain standard functions like sin, cos, tan etc. which are not coded by programmer himself. Linking function makes address of program known to each other, so that such transfer can take place during execution. 5

6 Functions of Loader 4] Relocation of a program to execute properly :- Another Function commonly performed by a Loader is that of program relocation i.e. Simply moving a program from 1 storage area to another and modify the location sensitive code (address sensitive instructions). So that it can execute correctly in a new set of location; so that call to program by another program can execute efficiently. 6

7 Translation & Linking of Program. Source program Obj.Program Ready to run machine lang. program Translator Loader Computer System Result Other Obj.Program Data A program translator binds a program to translation time address. A loader modifies binding to bind program to load time address. 7

8 Loading And Linking Scheme Loading And Linking Scheme :- As loader perform loading of a program into assigned area, linkage editor perform linking of a program with each other, while relocation performs relocation of a program to execute property. There are two type of loading scheme :- 1] Link-And-Go. 2] Link-Load-And-Go. 8

9 1. Link-And-Go In the Link-And-Go scheme the linkage editor actually situated a program its load address perform all other linking function and passes control to the purpose of execution. Drawbacks of the scheme :- 1) Linkage editor co-exist with the program while perform the linkage task. 2) Linking has to be repeated for execution of program. 9 9

10 Link-And-Go Object Module Linkage Editor Ready To Execute Program 10

11 2.Link-Load-And Go:- The Link-Load-And-Go scheme require less storage because its construct a ready to execute form of a program and push it s the secondary storage. its necessary to load this program into the main storage without any relocation. such loader is called as absolute loader. This loader presents :- 1)Text of program which has been link for desired area. 2)The load address origin. 3)Length of the program

12 Link-Load- And-Go-Scheme Object Module Phase Library Linkage Editor Ready to Execute Program Absolute Loader 12 12

13 Difference Between Link-And-Go & Link-Load-And-Go Link-And-Go Link-Load-And-Go 1) In link and go scheme loader load the program into main storage perform necessary linking with other object module and transfer the control for cpu execution. 1) In link and go scheme loader load the program into main storage perform necessary linking with other object module and generate ready to run machine language program and store Secondary storage. 2) Linking is necessary every time when the program execute. 2) Linking is not necessary every time. 3) Memory requirement is more. 3) Memory requirement is less. 4) Linkage editor co-exits with user program every time. 4) Linkage editor is not needed co-exit user program every time. 5) Absolute loader is not present. 5) Absolute loader is present

Chapter 3 Loaders and Linkers -- Loader Design Options

Chapter 3 Loaders and Linkers -- Loader Design Options Chapter 3 Loaders and Linkers -- Loader Design Options Loaders Linkage editor Linking before loading Dynamic linking Linking at the execution time Bootstrap loader Linkage editors Difference between a

More information

Course: Operating Systems Instructor: M Umair. M Umair

Course: Operating Systems Instructor: M Umair. M Umair Course: Operating Systems Instructor: M Umair Memory Management Introduction { Ref: Operating System Concepts 8th Edition Abraham Silberschatz, Greg Gagne, Peter B. Galvin } Address Binding Addresses in

More information

Compile: compiler. Load: loader. compiler linker loader memory. source object load code module module 2

Compile: compiler. Load: loader. compiler linker loader memory. source object load code module module 2 Part III Storage Management Chapter 8: Memory Management Fall 2010 1 Address Generation Address generation has three stages: Compile: compiler Link: linker or linkage editor Load: loader compiler linker

More information

CSE 421/521 - Operating Systems Fall Lecture - XII Main Memory Management. Tevfik Koşar. University at Buffalo. October 18 th, 2012.

CSE 421/521 - Operating Systems Fall Lecture - XII Main Memory Management. Tevfik Koşar. University at Buffalo. October 18 th, 2012. CSE 421/521 - Operating Systems Fall 2012 Lecture - XII Main Memory Management Tevfik Koşar University at Buffalo October 18 th, 2012 1 Roadmap Main Memory Management Fixed and Dynamic Memory Allocation

More information

Memory Management (1) Memory Management. CPU vs. memory. No.8. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

Memory Management (1) Memory Management. CPU vs. memory. No.8. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University EECS 3221 Operating System Fundamentals No.8 Memory Management (1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Memory Management A program usually resides on a

More information

Memory Management (1) Memory Management

Memory Management (1) Memory Management EECS 3221 Operating System Fundamentals No.8 Memory Management (1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Memory Management A program usually resides on a

More information

Memory Management. Frédéric Haziza Spring Department of Computer Systems Uppsala University

Memory Management. Frédéric Haziza Spring Department of Computer Systems Uppsala University Memory Management Frédéric Haziza Department of Computer Systems Uppsala University Spring 2008 Operating Systems Process Management Memory Management Storage Management Compilers Compiling

More information

MODULE 5 LINKERS AND LOADERS

MODULE 5 LINKERS AND LOADERS MODULE 5 LINKERS AND LOADERS Execution phases The execution of a program involves 4 steps:- 1) Translation Converting source program to object modules. The assemblers and compilers fall under the category

More information

3. Memory Management

3. Memory Management Principles of Operating Systems CS 446/646 3. Memory Management René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Principles of Operating Systems CS 446/646

More information

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance Administrivia Project discussion? Last time Wrapped up deadlock Today: Start memory management SUNY-BINGHAMTON CS35 SPRING 8 LEC. #13 1 Handling Deadlock Deadlock Prevention Techniques Prevent hold and

More information

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science Memory Management CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture are based on those from Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,

More information

Memory Management 9th Week

Memory Management 9th Week Department of Electrical Engineering and Information Technology Faculty of Engineering Universitas Gadjah Mada, Indonesia Operating System - TIF 206 Memory Management 9th Week Sunu Wibirama Copyright 2011

More information

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition Chapter 8: Memory Management 8.1 Silberschatz, Galvin and Gagne 2009 Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

CSE325 Principles of Operating Systems. Memory. David P. Duggan. March 6, 2010

CSE325 Principles of Operating Systems. Memory. David P. Duggan. March 6, 2010 CSE325 Principles of Operating Systems Memory David P. Duggan dduggan@sandia.gov March 6, 2010 Where is Memory? Characteristics? Issues/challenges? 3/6/12 CSE325 - Main Memory 2 Outline Memory management

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

CS420: Operating Systems

CS420: Operating Systems Main Memory James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Program must

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Outline 3.1 Basic Loader Functions 3.2 Machine-Dependent Loader Features 3.3 Machine-Independent Loader Features 3.4 Loader Design Options 3.5 Implementation Examples Introduction

More information

12: Memory Management

12: Memory Management 12: Memory Management Mark Handley Address Binding Program goes through multiple steps from compilation to execution. At some stage, addresses in the program must be bound to physical memory addresses:

More information

Operating Systems (2INC0) 2017/18

Operating Systems (2INC0) 2017/18 Operating Systems (2INC0) 2017/18 Memory Management (09) Dr. Courtesy of Dr. I. Radovanovic, Dr. R. Mak (figures from Bic & Shaw) System Architecture and Networking Group Agenda Reminder: OS & resources

More information

Chapter 3: Loaders and Linkers

Chapter 3: Loaders and Linkers Department of Electr rical Eng ineering, Chapter 3: Loaders and Linkers 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu 3.1 Basic Loader Functions 3.1.1 Design of an Absolute Loader 3.1.2 A Simple

More information

Hardware Address Binding Memory Allocation References. Physical Memory. Daniel Bosk 1

Hardware Address Binding Memory Allocation References. Physical Memory. Daniel Bosk 1 Physical Memory Daniel Bosk 1 Department of Information and Communication Systems (ICS), Mid Sweden University, Sundsvall. physmem.tex 233 2018-02-18 21:20:05Z jimahl 1 1 This work is licensed under the

More information

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University Main Memory CISC3595, Spring 2015 X. Zhang Fordham University 1 Memory Management! Background!! Contiguous Memory Allocation!! Paging!! Structure of the Page Table!! Segmentation!! Example: The Intel Pentium

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles Chapter 7 Memory Management Ninth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Outline 3.1 Basic Loader Functions 3.2 Machine-Dependent Loader Features 3.3 Machine-Independent Loader Features 3.4 Loader Design Options 3.5 Implementation Examples Introduction

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 3 Operating Systems Structures (Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls, System Programs,

More information

CSE 4/521 Introduction to Operating Systems. Lecture 12 Main Memory I (Background, Swapping) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 12 Main Memory I (Background, Swapping) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 12 Main Memory I (Background, Swapping) Summer 2018 Overview Objective: 1. To provide a detailed description of various ways of organizing memory hardware.

More information

Operating Systems Lecture 5: Memory Management I

Operating Systems Lecture 5: Memory Management I CSCI-GA.2250-001 Operating Systems Lecture 5: Memory Management I Hubertus Franke frankeh@cims.nyu.edu Programmer s dream Memory Private Infinitely large Infinitely fast Non-volatile Inexpensive Programmer

More information

Prepared By : Ms. Sanchari Saha ( Asst. Professor) Department : Computer Science & Engineering

Prepared By : Ms. Sanchari Saha ( Asst. Professor) Department : Computer Science & Engineering Subject Name: System Software Subject Code: 10CS52 Prepared By : Ms. Sanchari Saha ( Asst. Professor) Department : Computer Science & Engineering Date : 20-10-2014 UNIT-4 LOADERS & LINKERS Engineered for

More information

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France Operating Systems Memory Management Mathieu Delalandre University of Tours, Tours city, France mathieu.delalandre@univ-tours.fr 1 Operating Systems Memory Management 1. Introduction 2. Contiguous memory

More information

SESSION M12-S12 INTERNAL ASSIGNMENT

SESSION M12-S12 INTERNAL ASSIGNMENT MASTER OF COMPUTER APPLICATIONS RELATIONAL DATABASE MENAGEMENT SYSTEM PAPER CODE: MCA-401 SECTION-A Answer the following questions in around 100 words. 1. What are the differences between simple and composite

More information

Goals of Memory Management

Goals of Memory Management Memory Management Goals of Memory Management Allocate available memory efficiently to multiple processes Main functions Allocate memory to processes when needed Keep track of what memory is used and what

More information

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358 Memory Management Reading: Silberschatz chapter 9 Reading: Stallings chapter 7 1 Outline Background Issues in Memory Management Logical Vs Physical address, MMU Dynamic Loading Memory Partitioning Placement

More information

Memory Management II

Memory Management II Memory Management II an OS view Dr Alun Moon Computing, Engineering and Information Sciences 1st November 2011 Dr Alun Moon (ceis:nu) Memory Management II 1st November 2011 1 / 16 Processes in memory Memory

More information

Part-A QUESTION BANK UNIT-III 1. Define Dynamic Loading. To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All routines

More information

Chapter 8 Main Memory

Chapter 8 Main Memory COP 4610: Introduction to Operating Systems (Spring 2014) Chapter 8 Main Memory Zhi Wang Florida State University Contents Background Swapping Contiguous memory allocation Paging Segmentation OS examples

More information

Main Memory (Part I)

Main Memory (Part I) Main Memory (Part I) Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/5 1 / 47 Motivation and Background Amir

More information

Loaders. Systems Programming. Outline. Basic Loader Functions

Loaders. Systems Programming. Outline. Basic Loader Functions Loaders Systems Programming Chapter 3 Linkers and Loaders A loader is a system program that performs the loading function. many also support relocation & linking others have a separate linker and loader

More information

Assembly Language Fundamentals

Assembly Language Fundamentals Topics (Chapters 2 and 4) Mnemonics, OP codes Assembler Assembler Directives Assembly Process Object program Linker Loader Debugger 1 Turning C into Assembly C Program Compiler Assembly File Program in

More information

Often, more information is required when designing system call Information varies according to OS and types of system call

Often, more information is required when designing system call Information varies according to OS and types of system call System Call Parameter Passing Often, more information is required when designing system call Information varies according to OS and types of system call Three general methods used to pass parameters to

More information

LOADERS AND LINKERS 1. BASIC LOADER FUNCTIONS 2. DESIGN OF AN ABSOLUTE LOADER 3. A SIMPLE BOOTSTRAP LOADER 4. MACHINE DEPENDENT LOADER FEATURES

LOADERS AND LINKERS 1. BASIC LOADER FUNCTIONS 2. DESIGN OF AN ABSOLUTE LOADER 3. A SIMPLE BOOTSTRAP LOADER 4. MACHINE DEPENDENT LOADER FEATURES UIT III LOADERS AD LIKERS 1. BASIC LOADER FUCTIOS 2. DESIG OF A ABSOLUTE LOADER 3. A SIMPLE BOOTSTRAP LOADER 4. MACHIE DEPEDET LOADER FEATURES 5. RELOCATIO 6. PROGRAM LIKIG 7. ALGORITHM AD DATA STRUCTURES

More information

COSC Operating Systems Design, Fall 2001, Byunggu Yu. Chapter 9 Memory Management (Lecture Note #8) 1. Background

COSC Operating Systems Design, Fall 2001, Byunggu Yu. Chapter 9 Memory Management (Lecture Note #8) 1. Background COSC4740 01 Operating Systems Design, Fall 2001, Byunggu Yu Chapter 9 Memory Management (Lecture Note #8) 1. Background The computer programs, together with the data they access, must be in main memory

More information

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium Main Memory Outlook Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2 Backgound Background So far we considered how to share

More information

The Memory Management Unit. Operating Systems. Autumn CS4023

The Memory Management Unit. Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline The Memory Management Unit 1 The Memory Management Unit Logical vs. Physical Address Space The concept of a logical address space that is bound to a separate

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L17 Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Was Great Dijkstra a magician?

More information

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015 Operating Systems 09. Memory Management Part 1 Paul Krzyzanowski Rutgers University Spring 2015 March 9, 2015 2014-2015 Paul Krzyzanowski 1 CPU Access to Memory The CPU reads instructions and reads/write

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Silberschatz, Galvin and Gagne 2005 Background Program/Code

More information

3.3 Machine-Independent Loader Features

3.3 Machine-Independent Loader Features 3.3 Machine-Independent Loader Features Loading and linking are often thought of as operating system service functions. Machine independent loader features: 3.3.1 Automatic Library Search 3.3.2 Loader

More information

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure.

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure. File Systems I/O Management Hard Drive Management Virtual Memory Swap Memory Management Storage and I/O Introduction CSI3131 Topics Process Management Computing Systems Memory CPU Peripherals Processes

More information

Compiler, Assembler, and Linker

Compiler, Assembler, and Linker Compiler, Assembler, and Linker Minsoo Ryu Department of Computer Science and Engineering Hanyang University msryu@hanyang.ac.kr What is a Compilation? Preprocessor Compiler Assembler Linker Loader Contents

More information

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on Chapter 2: Operating-System Structures Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To describe the services an operating system provides to users, processes, and

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

Process Manager Overview

Process Manager Overview Process Management Process Manager Overview Program Process Abstract Computing Environment Device Manager File Manager Memory Manager Deadlock Protection Synchronization Scheduler Process Description Resource

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

CS5460/6460: Operating Systems. Lecture 21: Shared libraries. Anton Burtsev March, 2014

CS5460/6460: Operating Systems. Lecture 21: Shared libraries. Anton Burtsev March, 2014 CS5460/6460: Operating Systems Lecture 21: Shared libraries Anton Burtsev March, 2014 Recap from last time We know what linkers and loaders do Types of object files Relocatable object files (.o) Static

More information

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention Runtime Environment The Procedure Abstraction and Separate Compilation Topics we will cover The procedure abstraction and linkage conventions Runtime storage convention Non-local data access (brief) These

More information

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition Chapter 7: Main Memory Operating System Concepts Essentials 8 th Edition Silberschatz, Galvin and Gagne 2011 Chapter 7: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure

More information

OPERATING SYSTEMS. Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne

OPERATING SYSTEMS. Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne OPERATING SYSTEMS Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne OVERVIEW An operating system is a program that manages the

More information

UNIT-III VIRTUAL MEMORY

UNIT-III VIRTUAL MEMORY MEMORY MANAGEMENT: The main purpose of a computer system is to execute programs. These programs, together with the data they access, must be at least partially in main memory during execution. To improve

More information

Module 3. DEADLOCK AND STARVATION

Module 3. DEADLOCK AND STARVATION This document can be downloaded from www.chetanahegde.in with most recent updates. 1 Module 3. DEADLOCK AND STARVATION 3.1 PRINCIPLES OF DEADLOCK Deadlock can be defined as the permanent blocking of a

More information

Deadlock Detection. Several Instances of a Resource Type. Single Instance of Each Resource Type

Deadlock Detection. Several Instances of a Resource Type. Single Instance of Each Resource Type CS341: Operating System Lect26: 08 th Oct 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Deadlock Conditions Mutex, Hold & Wait, No Preemption and Circular wait Deadlock

More information

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9: Memory Management Background Swapping Contiguous Memory Allocation Segmentation

More information

Administrivia. Midterm Exam - You get to bring. What you don t need to bring. Conflicts? DSP accomodations? Head TA

Administrivia. Midterm Exam - You get to bring. What you don t need to bring. Conflicts? DSP accomodations?  Head TA inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 16 Running a Program (Compiling, Assembling, Linking, Loading) Sr Lecturer SOE Dan Garcia Research shows laptops and tablets in class

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 Objectives ICT106 Fundamentals of Computer Systems Topic 8 Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 To understand how HLL procedures/functions are actually implemented

More information

Chapter 9 Real Memory Organization and Management

Chapter 9 Real Memory Organization and Management Chapter 9 Real Memory Organization and Management Outline 9.1 Introduction 9.2 Memory Organization 9.3 Memory Management 9.4 Memory Hierarchy 9.5 Memory Management Strategies 9.6 Contiguous vs. Noncontiguous

More information

Chapter 9 Real Memory Organization and Management

Chapter 9 Real Memory Organization and Management Chapter 9 Real Memory Organization and Management Outline 9.1 Introduction 9.2 Memory Organization 9.3 Memory Management 9.4 Memory Hierarchy 9.5 Memory Management Strategies 9.6 Contiguous vs. Noncontiguous

More information

Implementing Subroutines. Outline [1]

Implementing Subroutines. Outline [1] Implementing Subroutines In Text: Chapter 9 Outline [1] General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

This contains the following three processes, and they are,

This contains the following three processes, and they are, Chapter 3 Loaders and Linkers This Chapter gives you Basic Loader Functions Machine-Dependent Loader Features Machine-Independent Loader Features Loader Design Options Implementation Examples 30 Introduction

More information

Lecture 2 - Fundamental Concepts

Lecture 2 - Fundamental Concepts Lecture 2 - Fundamental Concepts Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in) Autumn Semester, 2015 Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 43 Lecture Outline Operating

More information

Chapter 2: System Structures. Operating System Concepts 9 th Edition

Chapter 2: System Structures. Operating System Concepts 9 th Edition Chapter 2: System Structures Silberschatz, Galvin and Gagne 2013 Chapter 2: System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Three fundamental processes: Loading brings the object program into memory for execution. Relocation modifies the object program so that it can be loaded at an address different

More information

Chapter 2 Operating-System Structures

Chapter 2 Operating-System Structures This chapter will discuss the following concepts: 2.1 Operating System Services 2.2 User Operating System Interface 2.3 System Calls 2.4 System Programs 2.5 Operating System Design and Implementation 2.6

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit Memory Management All data in memory before and after processing All instructions in memory in order to execute Memory management determines what is to be in memory Memory management activities Keeping

More information

UNIT I. Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1

UNIT I. Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1 Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1 UNIT I Introduction: Components of System Software: Text editors, Loaders, Assemblers, Macro processors, Compilers, Debuggers. Machine Structure,

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1

More information

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program!

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program! Memory Management in a Uniprogrammed System! A! gets a fixed segment of (usually highest )"! One process executes at a time in a single segment"! Process is always loaded at "! Compiler and linker generate

More information

UNIT III LOADERS AND LINKERS

UNIT III LOADERS AND LINKERS UNIT III LOADERS AND LINKERS INTRODUCTION Loader is a system program that performs the loading function. Many loaders also support relocation and linking. Some systems have a linker (linkage editor) to

More information

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION 1. Define System Software. System software consists of a variety of programs that supports the operations of a computer. Eg. Compiler,

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Chapter 8: Memory- Management Strategies

Chapter 8: Memory- Management Strategies Chapter 8: Memory Management Strategies Chapter 8: Memory- Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

Language Translation. Compilation vs. interpretation. Compilation diagram. Step 1: compile. Step 2: run. compiler. Compiled program. program.

Language Translation. Compilation vs. interpretation. Compilation diagram. Step 1: compile. Step 2: run. compiler. Compiled program. program. Language Translation Compilation vs. interpretation Compilation diagram Step 1: compile program compiler Compiled program Step 2: run input Compiled program output Language Translation compilation is translation

More information

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1 Main Memory Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 Main Memory Background Swapping Contiguous allocation Paging Segmentation Segmentation with paging

More information

What is programming? What are computer languages and how have they evolved? What is the basic process of programming, including the tools involved?

What is programming? What are computer languages and how have they evolved? What is the basic process of programming, including the tools involved? What is programming? What are computer languages and how have they evolved? What is the basic process of programming, including the tools involved? A step-by-step set of instructions to accomplish a task.

More information

Chapter 2: Operating-System Structures. Operating System Concepts Essentials 8 th Edition

Chapter 2: Operating-System Structures. Operating System Concepts Essentials 8 th Edition Chapter 2: Operating-System Structures Operating System Concepts Essentials 8 th Edition Silberschatz, Galvin and Gagne 2011 Chapter 2: Operating-System Structures Operating System Services User Operating

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer:

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer: 7 CHAPTER Main Memory Exercises 7.9 Explain the difference between internal and external fragmentation. a. Internal fragmentation is the area in a region or a page that is not used by the job occupying

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L16 Deadlocks, Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Where we are: Deadlocks

More information

Chapter 2: Operating-System

Chapter 2: Operating-System Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Operating System Services! User Operating System Interface! System Calls! Types of System Calls! System Programs! Operating

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and 64-bit Architectures Example:

More information

390 Chapter 8 Main Memory

390 Chapter 8 Main Memory 390 Chapter 8 Main Memory information (pages or segments) that can be shared. Sharing is a means of running many processes with a limited amount of memory, but shared programs and data must be designed

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

What is a Process? Processes, Execution and State. Program vs Process Address Space. What is state? Address Space: Data Segments

What is a Process? Processes, Execution and State. Program vs Process Address Space. What is state? Address Space: Data Segments Processes, Execution, and State 3A. What is a Process? 3B. Process Address Space 3Y. Libraries 3C. Process Operations 3D. Implementing Processes 3E. Asynchronous Exceptions 3U. User-mode Exceptions 3X.

More information

Background. Contiguous Memory Allocation

Background. Contiguous Memory Allocation Operating System Lecture 8 2017.5.9 Chapter 8 (Main Memory) Background Swapping Contiguous Memory Allocation Segmentation - Paging Memory Management Selection of a memory-management method for a specific

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Machine Code and Assemblers November 6

Machine Code and Assemblers November 6 Machine Code and Assemblers November 6 CSC201 Section 002 Fall, 2000 Definitions Assembly time vs. link time vs. load time vs. run time.c file.asm file.obj file.exe file compiler assembler linker Running

More information

CSCI341. Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory

CSCI341. Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory CSCI341 Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory REVIEW Assemblers understand special commands called directives Assemblers understand macro commands Assembly programs become

More information

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts Memory management Last modified: 26.04.2016 1 Contents Background Logical and physical address spaces; address binding Overlaying, swapping Contiguous Memory Allocation Segmentation Paging Structure of

More information