Reference Textbooks: " # " H7 R3 H8. Network 4 (point-to-point) Network 1 (Ethernet) H4 Network 3 (FDDI) n H1 TCP TCP ETH ETH

Size: px
Start display at page:

Download "Reference Textbooks: " # " H7 R3 H8. Network 4 (point-to-point) Network 1 (Ethernet) H4 Network 3 (FDDI) n H1 TCP TCP ETH ETH"

Transcription

1 Referece Textbooks:! # $%%$& ' ) H1 H2 H3 Network 2 (Etheret) R1 Network 1 (Etheret) H7 R3 H8 Network 4 (poit-to-poit) R2 H4 Network 3 (FDDI) H1 H5 H6 H8 TCP R1 R2 R3 TCP IP IP IP IP IP ETH ETH FDDI FDDI PPP PPP ETH ETH ( 1

2 + ),'%.%, & & && & &' /'' Versio HLe TOS Legth Idet Flags Offset Checksum TTL Protocol SourceAddr DestiatioAddr Optios (variable) Data Pad (variable) * 1'' $'+2 ',+23/'- % '& '%' )%/,-2+ ' '' &'4& $7'& Start of header Idet= x 0 Offset= 0 Rest of header 1400 data bytes Start of header H1 R1 R2 R3 H8 Idet= x 1 Offset= 0 Rest of header 512 data bytes ETH IP (1400) FDDI IP (1400) PPP IP (512) PPP IP (512) PPP IP (376) ETH IP (512) ETH IP (512) ETH IP (376) Start of header Idet= x 1 Offset= 512 Rest of header 512 data bytes Start of header Idet= x 0 Offset= 1024 Rest of header 376 data bytes 6 2

3 )+,)+-1)89 & 2&: & ); $,&-, ' ' /,&<&< 22#7,' = )' ' 8 &? ;@ / A(* >96((> A: 0 Network Host B: 1 0 Network Host 21 8 C: Network Host 28 D: Group Multicast > /'1 '= < < ' '&'7& ' $7'&, - ' 7B& ( ( * A 9 3

4 2 +&& 7& 2? && % &? '&& A /?1' B2&;& &,<$ 2&;& &,< B#$C#$; &&!&;?& D2%D '0' & & & 1' Hardware type = 1 ProtocolT ype = 0x0800 HLe = 48 PLe = 32 Operatio SourceHardwareAddr (bytes 0 3) SourceHardwareAddr (bytes 4 5) SourceProtocolAddr (bytes 0 1) SourceProtocolAddr (bytes 2 3) TargetHardwareAddr (bytes 0 1) TargetHardwareAddr (bytes 2 5) TargetProtocolAddr (bytes 0 3) 4

5 /'B),/B) ',$- ) %&& ;E '/B) ; /B);/B)/)!F$??,-/B) /B)&3BG//<//<% H (! 1 ;&& ;& & A E B D ';1& 1 ;& '; C F * /F $' & (Destiatio, Cost, NextHop) $7& &,,&- $& &;,Destiatio, Cost) & 45 ' ''7%& 7I ' 0 5

6 $7'& B A F E C G D Table for ode B / )7B& ) ) / ) $ 1 ( 6 ',.'%1=' /<&0 A /%& ; ;?&!&&;&!?&;?'&,':A-'& &&, :6- &; (A&D,- 2&;' '&' 8 #,J- ', #,# #?',$K!- '%%,22#-& > 6

7 '#' # # #& '$K! $K!A '22# # 22#:A 9 ) M = {s} for each i N - {s} C() = l(s, ) while (N!= M) M = M uio {w} such that C(w) is the miimum for all w i (N - M) for each i (N - M) C() = MIN(C(), C (w) + l(w, )) A!&1 &,/-<,? '<- ;& 2,-D,# $7& $'& '&' 1 2'&'&,<& & <- ',!1- #, /J= &' # &,<J-%,-,<J + & ),- &' 7

8 & ; ' 7 %' &%!1;!&1 ' %' && && &;D?DD ( >' B+ 1B B& ), D06:A8>L.00, 00D600(6:A(9L - 2+ &&& ( D; ' & & Network umber Host umber Class B address Subet mask ( ) Network umber Subet ID Host ID Subetted address * 8

9 $7'& Subet mask: Subet umber: H3 H R R2 Subet mask: Subet umber: Subet mask: Subet umber: H '+ 7B& >96(*A > A >96(* > > >96((A A 0 1' D = destiatio IP address for each etry (SubetNum, SubetMask, NextHop) D1 = SubetMask & D if D1 = SubetNum if NextHop is a iterface deliver datagram directly to D else deliver datagram to NextHop ' ' )&'&& ' 6 &; ' ))/;)%/' && (first_etwork_address, cout) E& $<9 *6M 9 *(;DA ',)/'- E ')/ 8 9

10 Staford NSFNET backboe ISU BARRNET regioal Berkeley PARC NCAR Westet regioal UNM MidNet regioal UNL KU UA > N Peerig poit Cosumer ISP Large corporatio Backboe service provider Cosumer ISP Peerig poit Small corporatio Large corporatio Cosumer ISP 9 & O' ' '', &'' 7'&;<'&< 6%' 2%&& &, 7&,%- (A 10

11 $;$7 (.%*;.! % <&' '?;? &I&7 ' ;& I7B$##!D)O'I %% % &;&&7,%- 2& ; '';' ;' $; '.&;, & ' (.$7'& & K >96<9 *0(<9 *( <9 *(< ' Customer P (AS 4) Regioal provider A (AS 2) Customer Q (AS 5) Backboe etwork (AS 1) Customer R (AS 6) Regioal provider B (AS 3) Customer S (AS 7) & >96<9 *0(<9 *( <9 *( &,< - &&& (( 11

12 $/2!$/!2!)!# (* $%%$ ;%%&&%%& '' % &' %' '''E ' && ' )''%% ' '' '& ' &&' &&E &&'&&&& (0 2& $%%$ '&'&7,</ %',<2)?&,<)- (6 12

13 '&/'&7,/ ' '&7 $& & % &,</;&0(<;08- /etc/services 7 SrcPort DstPort B' Checksum Legth Data!&' &@/@ :&'<<< / (8 2)! )%.%' && 2)' && Applicatio process 1&7 1;& ' );& ' Applicatio process Write bytes Read bytes TCP Sed buffer TCP Receive buffer Segmet Segmet Segmet Trasmit segmets (> /#F2& ' 7&'' 22 &''' && & & '' & & && (9 13

14 '1' SrcPort DstPort SequeceNum Ackowledgmet HdrLe 0 Flags Checksum AdvertisedWidow UrgPtr Optios (variable) Data *A '1', $ *%&; (SrcPort, SrcIPAddr, DsrPort, ackowledgmet, SequeceNum, AdvertisedWidow Data (SequeceNum) Seder Receiver Ackowledgmet + AdvertisedWidow 1 SYN, FIN, RESET, PUSH, URG, ACK )' &@2)@ * 2/' CLOSED Passive ope Close LISTEN Close Active ope/syn SYN/SYN + ACK Sed/SYN SYN/SYN + ACK SYN_RCVD ACK SYN + ACK/ACK SYN_SENT Close/FIN ESTABLISHED Close/FIN FIN_WAIT_1 FIN/ACK ACK ACK + FIN/ACK FIN/ACK CLOSE_WAIT Close/FIN FIN_WAIT_2 FIN/ACK CLOSING ACK TIME_WAIT Timeout after two segmet lifetimes LAST_ACK ACK CLOSED * 14

15 G2) &;,K $,?'- $ %,G - *( + ** ' B chelteham.cs.priceto.edu :23:A8:33:5B:9F 1 /usr/llp/tmp/foo Larry Peterso (server, fileid) llp@cs.priceto.edu *0 15

16 $7'&, +7 User 1 2 cs.priceto.edu cs.priceto.edu Name server Mail program TCP earby ps priter with short queue ad 2MB IP *6 /''' B edu com gov mil org et uk fr priceto mit cisco yahooasa sf arpa avy acm ieee cs ee physics ux01 ux04 ' chistrap.cs.priceto.edu *8 ' E edu com gov mil org et uk fr priceto mit cisco yahooasa sf arpa avy acm ieee cs ee physics ux01 ux04 $E '&' '' CS ame server Priceto ame server Root ame server EE ame server Cisco ame server *> 16

17 $'' (Name, Value, Type, Class, TTL) 'DF;' 2& ;F ;F''' '& ' )+$;F'&I +P;F''' &'& ' ); & ;+ 22#; *9 (priceto.edu, cit.priceto.edu, NS, IN) (cit.priceto.edu, , A, IN) (cisco.com, thumper.cisco.com, NS, IN) (thumper.cisco.com, , A, IN) 0A (cs.priceto.edu, optima.cs.priceto.edu, NS, IN) (optima.cs.priceto.edu, , A, IN) (ee.priceto.edu, helios.ee.priceto.edu, NS, IN) (helios.ee.priceto.edu, , A, IN) (jupiter.physics.priceto.edu, , A, IN) (satur.physics.priceto.edu, , A, IN) (mars.physics.priceto.edu, , A, IN) (veus.physics.priceto.edu, , A, IN) 0 17

18 ) (cs.priceto.edu, optima.cs.priceto.edu, MX, IN) (chelteham.cs.priceto.edu, , A, IN) (che.cs.priceto.edu, chelteham.cs.priceto.edu, CNAME, IN) (optima.cs.priceto.edu, , A, IN) (opt.cs.priceto.edu, optima.cs.priceto.edu, CNAME, IN) (baskerville.cs.priceto.edu, , A, IN) (bas.cs.priceto.edu, baskerville.cs.priceto.edu, CNAME, IN) 0 ' Cliet 1 cicada.cs.priceto.edu Local ame server cicada.cs.priceto.edu priceto.edu, cicada.cs.priceto.edu cs.priceto.edu, Root ame server Priceto ame server # &,- % cicada.cs.priceto.edu cicada.cs.priceto.edu, CS ame server 0( '' +% &; ##;,$$$>A (-<1//<2+<,$$$>A #;,-& &;<!1<.%* 2&#;/<2) ';/ 0* 18

The Internet. Overview. Network building blocks

The Internet. Overview. Network building blocks The Internet Lecture 24 Based in part on material from Computer Networks: A Systems Approach by Larry Peterson & Bruce Davie CS 638 Web Programming Overview Network building blocks Nodes: PC, special-purpose

More information

TCP Overview. Connection-oriented Byte-stream

TCP Overview. Connection-oriented Byte-stream TCP Overview Connection-oriented Byte-stream app writes bytes TCP sends segments app reads bytes Full duplex Flow control: keep sender from overrunning receiver Congestion control: keep sender from overrunning

More information

CSCI-1680 Transport Layer I Rodrigo Fonseca

CSCI-1680 Transport Layer I Rodrigo Fonseca CSCI-1680 Transport Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Today Transport Layer UDP TCP Intro Connection Establishment Transport Layer "#$ -##$

More information

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network Connections Focus How do we connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Flow control Application Presentation Session Transport Network Data Link

More information

CSCI-1680 Transport Layer I Rodrigo Fonseca

CSCI-1680 Transport Layer I Rodrigo Fonseca CSCI-1680 Transport Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today Transport Layer UDP TCP Intro Connection Establishment From Lec 2: OSI Reference

More information

Reliable Byte-Stream (TCP)

Reliable Byte-Stream (TCP) Reliable Byte-Stream () Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout Simple Demultiplexer (UDP) Header format Note 16 bit port number (so only 64K

More information

Miscellaneous. Name Service. Examples. Outline Domain Name System Peer-to-Peer Networks

Miscellaneous. Name Service. Examples. Outline Domain Name System Peer-to-Peer Networks Miscellaneous Outline Domain Name System Peer-to-Peer Networks Spring 2009 CS30264 1 Name Service Names versus addresses Location transparent versus location-dependent Flat versus hierarchical Resolution

More information

Application Service Models

Application Service Models SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 3 Are these needed by all applications? Guarantee message delivery Guarantee ordered delivery No duplicates Arbitrary size messages How about things like

More information

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably?

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably? CSE/EE 461 Lecture 14 Connections Last Time We began on the Transport layer Focus How do we send information reliably? Topics ARQ and sliding windows Application Presentation Session Transport Network

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16 CIS 551 / TCOM 401 Computer and Network Security Spring 2006 Lecture 16 Announcements Midterm II March 21st (One week from today) In class Same format as last time Will cover all material since Midterm

More information

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581)

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) : Computer Networks Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) TCP as seen from above the socket The TCP socket interface consists of: Commands to start

More information

Introduc)on to Computer Networks

Introduc)on to Computer Networks Introduc)on to Computer Networks COSC 4377 Lecture 7 Spring 2012 February 8, 2012 Announcements HW3 due today Start working on HW4 HW5 posted In- class student presenta)ons No TA office hours this week

More information

Some slides courtesy David Wetherall. Communications Software. Lecture 4: Connections and Flow Control. CSE 123b. Spring 2003.

Some slides courtesy David Wetherall. Communications Software. Lecture 4: Connections and Flow Control. CSE 123b. Spring 2003. CSE 123b Communications Software Spring 2003 Lecture 4: Connections and Flow Control Stefan Savage Some slides courtesy David Wetherall Administrativa Computer accounts have been setup You can use the

More information

CSE 461 Module 11. Connections

CSE 461 Module 11. Connections CSE 461 Module 11 Connections This Time More on the Transport Layer Focus How do we connect processes? Topics Naming processes Connection setup / teardown Flow control Application Presentation Session

More information

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery 1 TCP Data Stream Consists of bytes Delivered using a virtual connection between sockets Each socket has the port number and IP address

More information

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms Chapter 15&16 Internetworking Internetwork Structure & Terms Internetworking Architecture Features Connection/Connectionless Architecture Fragmentation & Reassembly Internet Protocol & Services Addressing

More information

Internet transport protocols

Internet transport protocols Internet transport protocols 188lecture7.ppt Pirkko Kuusela 1 Problem IP can be used to connect together heterogenous networks IP network offers only best effort packet delivery (with no guarantees) Applications

More information

Chapter 5 End-to-End Protocols

Chapter 5 End-to-End Protocols Chapter 5 End-to-End Protocols Transport layer turns the host-to-host packet delivery service of the underlying network into a process-to-process communication channel Common properties that application

More information

Internet Protocols Fall Outline

Internet Protocols Fall Outline Internet Protocols Fall 2004 Lecture 12 TCP Andreas Terzis Outline TCP Connection Management Sliding Window ACK Strategy Nagle s algorithm Timeout estimation Flow Control CS 449/Fall 04 2 1 TCP Connection

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 12 2/28/08 CIS/TCOM 551 1 Announcements Reminder: Project 2 is due Friday, March 7th at 11:59 pm 2/28/08 CIS/TCOM 551 2 Internet Protocol

More information

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management CSE/EE 461 Lecture 13 Connections and Fragmentation Tom Anderson tom@cs.washington.edu Peterson, Chapter 5.2 TCP Connection Management Setup assymetric 3-way handshake Transfer sliding window; data and

More information

Internet Protocol (IP)

Internet Protocol (IP) (IP) Guevara Noubir Textbook: Chapter 4. Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann Lecture Outline Addressing IP over LAN Rou;ng IPv6 IP Internet Concatena;on of Networks

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

Most important (cont d) What s most important in Project 1. Important for individuals. From from Most Important

Most important (cont d) What s most important in Project 1. Important for individuals. From from Most Important What s most important in Project 1 Most important (cont d) gain some experience with the techniques of protocol implementation Learn to design timeouts and resending Peer to peer interface and protocol

More information

End-to-End Protocols. End-to-End Protocols

End-to-End Protocols. End-to-End Protocols End-to-End Protocols UDP (User Datagram Protocol) (Transport Control Protocol) Connection Establishment/Termination Sliding Window Revisit Flow Control Adaptive Retransmission End-to-End Protocols Limitations

More information

Recall from crypto lecture We basically assume bad guys control the network Now we will make this more precise

Recall from crypto lecture We basically assume bad guys control the network Now we will make this more precise p. 1/5 Recall from crypto lecture We basically assume bad guys control the network Now we will make this more precise p. 2/5 The medium-term plan Today: How Internet works & how to attack it - How attackers

More information

Introduc)on to Computer Networks

Introduc)on to Computer Networks Introduc)on to Computer Networks COSC 4377 Lecture 8 Spring 2012 February 13, 2012 Announcements HW4 due this week Start working on HW5 In- class student presenta)ons TA office hours this week TR 1030a

More information

Recap. Recap. Internetworking. First mile problem. Internet. End Users. Last mile problem. Direct link networks Packet switching.

Recap. Recap. Internetworking. First mile problem. Internet. End Users.   Last mile problem. Direct link networks Packet switching. Recap First mile problem Internet www.yahoo.com Comcast Sprint End Users SBC UUNET www.cnn.com Last mile problem Recap Direct link networks Packet switching Internetworking 1 IP Internet Concatenation

More information

COMPUTER NETWORKS CS CS 55201

COMPUTER NETWORKS CS CS 55201 Contents COMPUTER NETWORKS CS 45201 CS 55201 Global Internet Route Propagation Next Generation IP (IPv6) Internet Multicasting Host Names (DNS) CHAPTER 4 H. Peyravi and P. Farrell Department of Computer

More information

Overview 4.2: Routing

Overview 4.2: Routing Overview 4.2: Routing Forwarding vs Routing forwarding: to select an output port based on destination address and routing table routing: process by which routing table is built Network as a Graph A 6 1

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 7 Announcements First project: Due: TOMORROW at 11:59 p.m. http://www.cis.upenn.edu/~cis551/project1.html Plan for Today: Networks:

More information

TCP Internals. Spring 2018 CS 438 Staff, University of Illinois 1

TCP Internals. Spring 2018 CS 438 Staff, University of Illinois 1 TCP Iterals Sprig 2018 CS 438 Staff, Uiversity of Illiois 1 TCP Usage Model Coectio setup 3-way hadshake Data trasport Seder writes data TCP Breaks data ito segmets Seds each segmet over IP Retrasmits,

More information

CS 356: Computer Network Architectures. Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2. Xiaowei Yang CS 356: Computer Network Architectures Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2 Xiaowei Yang xwy@cs.duke.edu Transport protocols Before: How to deliver packet from one host to another

More information

End-to-End Protocols: UDP and TCP. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

End-to-End Protocols: UDP and TCP. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 End-to-End Protocols: UDP and TCP Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 11/14/2016 CSCI 445 Fall 2016 1 Acknowledgements Some pictures used

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

SWITCHING, FORWARDING, AND ROUTING

SWITCHING, FORWARDING, AND ROUTING SWITCHING, FORWARDING, AND ROUTING George Porter Oct 4 and 9, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license

More information

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1 Version 1 1. (20 Points) Given the class A network address 121.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 8,100 subnets? b. (5 Points) What is

More information

Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.)

Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.) Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.) Goal is to use this opportunity (and not to find the lowest common denominator

More information

UCI University of California, Irvine

UCI University of California, Irvine IP Class-based Addressing All IPv4 addresses have 4 bytes. The first 1, 2, or 3 bytes correspond to the "network", and the remaining bytes correspond to the "host number", with the location of the partition

More information

COMPUTER NETWORKS CS CS 55201

COMPUTER NETWORKS CS CS 55201 COMPUTER NETWORKS CS 45201 CS 55201 CHAPTER 5 End-to-End protocols Paul A. Farrell and H. Peyravi Department of Computer Science Kent State University Kent, Ohio 44242 farrell@mcs.kent.edu http://www.cs.kent.edu/

More information

COMPUTER NETWORKS CS CS 55201

COMPUTER NETWORKS CS CS 55201 Contents COMPUTER NETWORKS CS 45201 CS 55201 End-to-End (Transport) Protocols Simple Demultiplexer (UDP) CHAPTER 5 End-to-End protocols Paul A. Farrell and H. Peyravi Department of Computer Science Kent

More information

CSE/EE 461 Lecture 12 TCP. A brief Internet history...

CSE/EE 461 Lecture 12 TCP. A brief Internet history... CSE/EE 461 Lecture 12 TCP Tom Anderson tom@cs.washington.edu Peterson, Chapter 5.2, 6 A brief Internet history... 1991 WWW/HTTP 1969 ARPANET created 1972 TELNET RFC 318 1973 FTP RFC 454 1977 MAIL RFC 733

More information

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1 Version 1 1. (20 Points) Given the class A network address 117.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 4,000 subnets? b. (5 Points) What is

More information

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1 Version 1 Instructions 1. Write your name and version number on the top of the yellow paper and the routing tables sheet. 2. Answer Question 2 on the routing tables sheet. 3. Answer Questions 1, 3, 4,

More information

UNIT V. Computer Networks [10MCA32] 1

UNIT V. Computer Networks [10MCA32] 1 Computer Networks [10MCA32] 1 UNIT V 1. Explain the format of UDP header and UDP message queue. The User Datagram Protocol (UDP) is a end-to-end transport protocol. The issue in UDP is to identify the

More information

Review of Internet Architecture and Protocols

Review of Internet Architecture and Protocols Review of Internet Architecture and Protocols Professor Guevara Noubir Northeastern University noubir@ccs.neu.edu Lecture Reference Textbook: (source of some diagrams) Computer Networks: A Systems Approach,

More information

Lecture 22: TCP & NAT. CSE 123: Computer Networks Alex C. Snoeren

Lecture 22: TCP & NAT. CSE 123: Computer Networks Alex C. Snoeren Lecture 22: TCP & NAT CSE 123: Computer Networks Alex C. Snoeren Lecture 22 Overview TCP Connection Management TCP Slow Start Allow TCP to adjust to links of any speed Fast Retransmit & Recovery Avoid

More information

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall TCP Kai Shen 10/19/2009 CSC 257/457 - Fall 2009 1 TCP: Overview connection-oriented: handshaking (exchange of control msgs) to initialize sender, receiver state before data exchange pipelined: multiple

More information

Miscellaneous. Name Service. Examples (cont) Examples. Name Servers Partition hierarchy into zones. Domain Naming System

Miscellaneous. Name Service. Examples (cont) Examples. Name Servers Partition hierarchy into zones. Domain Naming System Name Service Miscellaneous Outline Domain Name System Peer-to-Peer Networks Names versus addresses Location transparent versus location-dependent Flat versus hierarchical Resolution mechanism Name server

More information

Transport Layer Marcos Vieira

Transport Layer Marcos Vieira Transport Layer 2014 Marcos Vieira Transport Layer Transport protocols sit on top of network layer and provide Application-level multiplexing ( ports ) Error detection, reliability, etc. UDP User Datagram

More information

Overview General network terminology. Chapter 9.1: DNS

Overview General network terminology. Chapter 9.1: DNS Overview General network terminology Chapter 9.1: DNS Jan-29-04 4/598N: Computer Networks 1 Connection mechanisms Connectionless or packet switching Each packet carries with it the source and destination

More information

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] Frequently asked questions from the previous class surveys

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] Frequently asked questions from the previous class surveys CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] The Receiver's Buffer Small it may be But throttle the mightiest sender It can Not just the how much But also the when Or if at all Shrideep Pallickara

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER UNIT IV TRANSPORT LAYER UDP - SIMPLE DEMULTIPLEXER (UDP) The simplest transport protocol is one that extends the host-to-host delivery service of the underlying network into a process-to-process communication

More information

CSE 461 The Transport Layer

CSE 461 The Transport Layer CSE 461 The Transport Layer The Transport Layer Focus How do we (reliably) connect processes? This is the transport layer Topics Naming end points UDP: unreliable transport TCP: reliable transport Connection

More information

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University Computer Network Programming The Transport Layer Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University The Transport Layer The Big Picture Overview of TCP/IP protocols TCP Packet Exchanges

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

TCP: Transmission Control Protocol RFC 793,1122,1223. Prof. Lin Weiguo Copyleft 2009~2017, School of Computing, CUC

TCP: Transmission Control Protocol RFC 793,1122,1223. Prof. Lin Weiguo Copyleft 2009~2017, School of Computing, CUC TCP: Transmission Control Protocol RFC 793,1122,1223 Prof. Lin Weiguo Copyleft 2009~2017, School of Computing, CUC Nov. 2017 TCP/IP Protocol Stack Application Layer FTP, Telnet, HTTP, Transport Layer TCP,

More information

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

Last Class. CSE 123b Communications Software. Today. Naming Processes/Services. Transmission Control Protocol (TCP) Picking Port Numbers.

Last Class. CSE 123b Communications Software. Today. Naming Processes/Services. Transmission Control Protocol (TCP) Picking Port Numbers. CSE 123b Communications Software Spring 2002 Lecture 4: Connections and Flow Control Stefan Savage Last Class We talked about how to implement a reliable channel in the transport layer Approaches ARQ (Automatic

More information

Routing. Outline. Algorithms Scalability

Routing. Outline. Algorithms Scalability Routing Outline Algorithms Scalability 1 Internetworking What is internetwork An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service A simple internetwork

More information

CIS-331 Spring 2016 Exam 1 Name: Total of 109 Points Version 1

CIS-331 Spring 2016 Exam 1 Name: Total of 109 Points Version 1 Version 1 Instructions Write your name on the exam paper. Write your name and version number on the top of the yellow paper. Answer Question 1 on the exam paper. Answer Questions 2-4 on the yellow paper.

More information

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Runs on all hosts in the Internet and enables packets to be routed between systems

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia IP out today. Your job: Find partners and tell us Implement

More information

Lenuta Alboaie Computer Networks

Lenuta Alboaie Computer Networks Transport Level Lenuta Alboaie adria@info.uaic.ro 1 Content Transport Level Preliminary UDP (User Datagram Protocol) TCP (Transmission Control Protocol) TCP versus UDP 2 Transport Level Preliminary They

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

Network Model. Why a Layered Model? All People Seem To Need Data Processing

Network Model. Why a Layered Model? All People Seem To Need Data Processing Network Model Why a Layered Model? All People Seem To Need Data Processing Layers with Functions Packet Propagation Each router provides its services to support upper-layer functions. Headers (Encapsulation

More information

CSE 461 Connections. David Wetherall

CSE 461 Connections. David Wetherall CSE 461 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1 Version 1 1. (20 Points) Given the class A network address 119.0.0.0 will be divided into a maximum of 15,900 subnets. a. (5 Points) How many bits will be necessary to address the 15,900 subnets? b. (5

More information

Address Translation. Map IP addresses into physical addresses destination host next hop router

Address Translation. Map IP addresses into physical addresses destination host next hop router Address Translation Map IP addresses into physical addresses destination host next hop router Techniques encode physical address in host part of IP address table-based ARP table of IP to physical address

More information

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1 Version 1 1. (24 Points) Show the routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. NOTE: Router E should only be used for Internet traffic. Router A Router

More information

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 5 - Part 2

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 5 - Part 2 Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion Chapter 5 - Part 2 End to End Protocols Eng. Haneen El-Masry May, 2014 Transport Layer

More information

CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1

CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

6. The Transport Layer and protocols

6. The Transport Layer and protocols 6. The Transport Layer and protocols 1 Dr.Z.Sun Outline Transport layer services Transmission Control Protocol Connection set-up and tear-down Ports and Well-know-ports Flow control and Congestion control

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today Network layer: Internet Protocol (v4) Forwarding Next 2 classes:

More information

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) Transmission Control Protocol (TCP) Antonio Carzaniga Faculty of Informatics Università della Svizzera italiana November 10, 2017 Outline Introduction to TCP Sequence numbers and acknowledgment numbers

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Sliding

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

TCP: Transmission Control Protocol UDP: User Datagram Protocol TCP - 1

TCP: Transmission Control Protocol UDP: User Datagram Protocol   TCP - 1 TCP/IP Family of Protocols (cont.) TCP: Transmission Control Protocol UDP: User Datagram Protocol www.comnets.uni-bremen.de TCP - 1 Layer 4 Addressing: Port Numbers To talk to another port, a sender needs

More information

I TCP 1/2. Internet TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) TCP Connection-oriented

I TCP 1/2. Internet TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) TCP Connection-oriented I TCP 1/2 TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) Internet TCP Connection-oriented UDP Connectionless IP + TCP (connection-oriented) (byte

More information

S 3 : the Small Scheme Stack A Scheme TCP/IP Stack Targeting Small Embedded Applications

S 3 : the Small Scheme Stack A Scheme TCP/IP Stack Targeting Small Embedded Applications S 3 : the Small Scheme Stack A Scheme TCP/IP Stack Targeting Small Embedded Applications Vincent St-Amour Université de Montréal Joint work with Lysiane Bouchard and Marc Feeley Scheme and Functional Programming

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

CSCI-1680 Network Layer: IP & Forwarding John Jannotti

CSCI-1680 Network Layer: IP & Forwarding John Jannotti CSCI-1680 Network Layer: IP & Forwarding John Jannotti Based partly on lecture notes by David Mazières, Phil Levis, Rodrigo Fonseca Administrivia IP out today. Your job: Find partners, get setup with Github

More information

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services.

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services. Operating Systems and s Lecture 8: Transport Layer I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it Adrian Perrig Security Group ETH Zürich 2 Where we are in the

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich Operating Systems and Networks Network Lecture 8: Transport Layer Adrian Perrig Network Security Group ETH Zürich I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Administrivia IP out today. Your job:

More information

EE 122: Transport Protocols: UDP and TCP

EE 122: Transport Protocols: UDP and TCP EE 122: Transport Protocols: and provides a weak, but efficient service model (best-effort) - Packets can be delayed, dropped, reordered, duplicated - Packets have limited size (why?) packets are addressed

More information

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1 Version 1 1. (24 Points) Show the routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Router A Router B Router C Router D Network Next Hop Next Hop Next Hop Next

More information

TCP. - Transmission Control Protocol -

TCP. - Transmission Control Protocol - TCP - Transmission Control Protocol - 1 Functions of TCP Appropriate data transmission among nodes 1. Basic functions a. Error-free against bit-error b. Loss-free against packet loss by buffer overflow

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

Outline Computer Networking. Functionality Split. Transport Protocols

Outline Computer Networking. Functionality Split. Transport Protocols Outline 15-441 15 441 Computer Networking 15-641 Lecture 10: Transport Protocols Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15 441 F17 Transport introduction TCP connection establishment

More information

Information Network 1 TCP 1/2

Information Network 1 TCP 1/2 Functions provided by the transport layer Information Network 1 TCP 1/2 Youki Kadobayashi NAIST! Communication between processes " designation of process " identification of inter-process channel! Interface

More information

Process-to-Process Delivery:

Process-to-Process Delivery: CHAPTER 23 Process-to-Process Delivery: Solutions to Review Questions and Exercises Review Questions 1. Reliability is not of primary importance in applications such as echo, daytime, BOOTP, TFTP and SNMP.

More information

TCP Review. Carey Williamson Department of Computer Science University of Calgary Winter 2018

TCP Review. Carey Williamson Department of Computer Science University of Calgary Winter 2018 TCP Review Carey Williamson Department of Computer Science University of Calgary Winter 2018 Credit: Much of this content came courtesy of Erich Nahum (IBM Research) The TCP Protocol Connection-oriented,

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 8

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 8 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 8 Announcements Reminder: Project 1 is due on tonight by midnight. Midterm 1 will be held next Thursday, Feb. 8th. Example midterms

More information

A. Direct Link Networks

A. Direct Link Networks Notes for Networking Bruce Hajek and Steven L Lumetta The slides in this tutorial presentation have been excerpted and adapted from the slides prepared for EE/S 8 offered at Illinois by Bruce Hajek and

More information

Computer Networking Concept

Computer Networking Concept Copyright, 2011 MMLab, Dept. of ECE, UOS Computer Networking Concept Seong Jong Choi, PhD. Professor University of Seoul Dept. of Electrical and Computer Eng. Email: chois@uos.ac.kr Web: http://www.mmlab.net

More information

Motivation for this class

Motivation for this class CSE 535 : Lecture 1 Itroductio to Acceleratio of Networkig Algorithms i Hardware Washigto Uiversity Fall 2003 http://www.arl.wustl.edu/arl/projects/fpx/cse535/ Copyright 2003, Joh W Lockwood Lockwood@arl.wustl.edu

More information

3.5.6 TCP Connection Management

3.5.6 TCP Connection Management 02-068 C03 pp4 6/14/02 2:14 PM Page 248 248 CHAPTER 3 Transport Layer of unacknowledged data less than the value of RcvWindow, host A is assured that it is not overflowing the receive buffer at host B.

More information

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005 Transport Layer For a connection on a host (single IP address), there exist many entry points through which there may be many-to-many connections. These are called ports. A port is a 16-bit number used

More information