Virtual Machine (Part II)

Size: px
Start display at page:

Download "Virtual Machine (Part II)"

Transcription

1 IDC Herzliya Shimon Schocken Virtual Machine (Part II) Shimon Schocken Spring 2005 Elements of Computing Systems 1 Virtual Machine II (Ch. 8) Lecture plan 2 x = ( b + b 4 a c) / 2a if if ~(a = 0) 0) x = (-b + sqrt(power(b,2) 4 * a * c)) / (2 (2 * a) a) else x = - c / b In order to execute this code we have to know how to handle: Arithmetic operations (last lecture) Boolean operations (last lecture) Program flow (this lecture, easy) Subroutine calling (this lecture, requires some work...) Big point: All these abstractions can delivered at the VM level. Elements of Computing Systems 2 Virtual Machine II (Ch. 8)

2 Program flow commands label c goto c if-goto c Elements of Computing Systems 3 Virtual Machine II (Ch. 8) Program flow Elements of Computing Systems 4 Virtual Machine II (Ch. 8)

3 Subroutine calling: high level if if ~(a = 0) 0) x = (-b + sqrt(power(b,2) 4 * a * c)) / (2 (2 * a) a) else x = - c / b The most important abstraction delivered by high level s: The basic can be extended at will by user-defined commands ( = subroutines / functions / methods...) The primitive commands and the user-defined commands have the same look-and-feel A well-deigned system consists of a collection of black box modules, each executing its effect like magic (Steven Pinker, How The Mind Works) Elements of Computing Systems 5 Virtual Machine II (Ch. 8) Opening up the black box if if ~(a = 0) 0) x = (-b + sqrt(power(b,2) 4 * a * c)) / (2 (2 * a) a) else x = - c / b To handle the sqrt(power(b,2) 4*a*c)) abstraction, someone has to: Pass arguments from sqrt to power Save the state of sqrt before switching to execute power Allocate space for the local variables of power Jump to execute power When power terminates: Return a value from power to sqrt Recycle the memory space occupied by power Reinstate the state of sqrt Jump to execute the code of sqrt immediately after the spot where we left it. Elements of Computing Systems 6 Virtual Machine II (Ch. 8)

4 Passing arguments and returning values Call-and-return convention (same for primitive commands and subroutines) The caller pushes arguments and calls the callee Before the callee terminates, it must push a return value Net effect The arguments are replaced by the return value Delivered by the VM implementation The VM implementation manages everything away from the programmer s view, using the stack One of the most elegant gems in CS Elements of Computing Systems 7 Virtual Machine II (Ch. 8) The calling protocol (blue = unfinished magic business) The caller function view: function function f nvars nvars call call f nargs nargs return return Before Before calling calling the the function, function, I I must must push push as as many many arguments arguments as as necessary necessary onto onto the the stack stack Next, Next, I I invoke invoke the the function function using using the the call callcommand command After After the the called called function function returns, returns, the the arguments arguments that that I I pushed pushed before before the the call call have have disappeared disappeared from from the the stack, stack, and and a return return value value (that (that always alwaysexists) appears appears at at the the top top of of the the stack stack After After the the called called function function returns, returns, my my argument, argument, local, local, static, static, this, this, that, that, and and pointer pointermemory segments segments are are the the same same as as before before the the call. call. The called function view: When When I I start start executing, executing, my my argument argument segment segment has has been been initialized initialized with with actual actual argument argument values values passed passed by by the the caller caller My My local local variables variables segment segment has has been been allocated allocated and and initialized initialized to to zero zero The The static static segment segment that that I I see see has has been been set set to to the the static static segment segment of of the the VM VM file file to to which which I I belong, belong, and and the the working working stack stack that that I I see see is is empty empty Before Before returning, returning, I I must must push push a value value onto onto the the stack. stack. Elements of Computing Systems 8 Virtual Machine II (Ch. 8)

5 VM program structure A VM program is a collection of one or more.vm Files (classes) Each.vm file is a collection of one or more functions (methods) Each function is a collection of VM commands Each VM command appears in a separate line Has 0, 1, or 2 arguments May have in-line // comments. Elements of Computing Systems 9 Virtual Machine II (Ch. 8) Program structure and memory segments Plus: Stack Heap Elements of Computing Systems 10 Virtual Machine II (Ch. 8)

6 Implementation Elements of Computing Systems 11 Virtual Machine II (Ch. 8) Implementation view of the calling protocol When function g calls function f, I must: function function f nvars nvars call call f nargs nargs return return Save the return address and the segment pointers of g Allocate, and initialize to 0, as many local variables as needed by f Set the local and argument segment pointers of f Transfer control to f. When f terminates and control should return to g, I must: Clear the arguments and other junk from the stack Restore the segments of g Transfer control back to g (jump to the saved return address). Elements of Computing Systems 12 Virtual Machine II (Ch. 8)

7 The global stack the VM implementation s housekeeping memory frames of all the functions up the calling chain argument 0 At any point of time, only one function is running argument 1 arguments pushed for the current function Shaded areas: not seen by the current function argument n-1 return address saved saved saved THIS saved THAT saved state of the calling function, used to return to and restore the segments of, the calling function upon returning from the current function The current function sees only the tip of the stack The rest of the stack holds the frozen states of all the functions up the calling hierarchy local variables of the current function The storage details depend on the VM implementation. local k-1 working stack of the current function Elements of Computing Systems 13 Virtual Machine II (Ch. 8) Example: a typical calling scenario function p(...) { fact(4)... function fact(n) { vars result,j; result=1; j=1; while j<=n { result=mult(result,j); return result; function mult(x,y) { vars sum,j; sum=0; j=y; while j>0 { sum=sum+x; return sum; p call fact(4) waiting time call mult(1,2) call mult(2,3) call mult(6,4) 24 fact waiting waiting waiting return mult return mult return mult return Elements of Computing Systems 14 Virtual Machine II (Ch. 8)

8 Behind the scene: just before "call mult" just after mult is entered just after mult returns argument 0 argument 0 argument 0 return addr return addr return addr function p(...) { fact(4)... THIS THAT THIS THAT THIS THAT function fact(n) { vars result,j; result=1; j=1; while j<=n { result=mult(result,j); return result; working stack argument 0 argument 1 (mult) (mult) working stack argument 0 (mult) argument 1 (mult) return addr working stack return value function mult(x,y) { vars sum,j; sum=0; j=y; while j>0 { sum=sum+x; return sum; THIS THAT (mult) (mult) Elements of Computing Systems 15 Virtual Machine II (Ch. 8) Implementing the call f n command frames of all the functions up the calling chain argument 0 argument 1 argument n-1 return address saved saved saved THIS saved THAT local k-1 Elements of Computing Systems 16 Virtual Machine II (Ch. 8)

9 Implementing the function f k command frames of all the functions up the calling chain argument 0 argument 1 argument n-1 return address saved saved saved THIS saved THAT local k-1 Elements of Computing Systems 17 Virtual Machine II (Ch. 8) Implementing the return command frames of all the functions up the calling chain argument 0 argument 1 argument n-1 return address saved saved saved THIS saved THAT local k-1 Elements of Computing Systems 18 Virtual Machine II (Ch. 8)

10 Bootstrap code = 256 Call Sys.init // // initialize the the stack pointer to to 0x0100 // // an an initialization function Sys.init should call f and then enter an infinite loop In the Hack/Jack platform: Sys.init is part of the OS f is Main.main Elements of Computing Systems 19 Virtual Machine II (Ch. 8) VM implementation over the Hack platform: special symbols Elements of Computing Systems 20 Virtual Machine II (Ch. 8)

11 Proposed API Elements of Computing Systems 21 Virtual Machine II (Ch. 8) Perspective Pros Code transportability: compiling for different platforms require replacing only the VM implementation Language inter-operability: code of multiple s can be shared using the same VM Common software libraries Modularity: Improvements in the VM implementation are shared by all compilers above it Every new digital device with a VM implementation gains immediate access to an existing software base Simple compilers Managed code: Security Monitoring (BI, BPM) CISC machine CISC machine VM implementation over CISC platforms Some Elements of Computing Systems 22 Virtual Machine II (Ch. 8) RISC machine RISC machine Some compiler VM imp. over RISC platforms Some Other Some Other compiler Intermediate code VM emulator other digital platforms, each equipped with its VM implementation Cons Performance History P-code Java.Net Jack Jack compiler VM imp. over the Hack platform written in a high-level Any computer Hack machine Hack computer

Virtual Machine (Part II)

Virtual Machine (Part II) Harvard University CS 101 Fall 2005, Shimon Schocken Virtual Machine (Part II) Elements of Computing Systems 1 Virtual Machine II (Ch. 8) Where we are at: Human Thought Abstract design Chapters 9, 12 H.L.

More information

Chapter 8: Virtual Machine II: Program Control

Chapter 8: Virtual Machine II: Program Control Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 Chapter 8: Virtual Machine II: Program Control www.idc.ac.il/tecs Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken

More information

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles.

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. Virtual Machine Part II: Program Control Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 8:

More information

Motivation. Compiler. Our ultimate goal: Hack code. Jack code (example) Translate high-level programs into executable code. return; } } return

Motivation. Compiler. Our ultimate goal: Hack code. Jack code (example) Translate high-level programs into executable code. return; } } return Motivation Jack code (example) class class Main Main { { static static int int x; x; function function void void main() main() { { Inputs Inputs and and multiplies multiplies two two numbers numbers var

More information

7. The Virtual Machine II: Flow Control 1

7. The Virtual Machine II: Flow Control 1 Chapter 7: The Virtual Machine 1 7. The Virtual Machine II: Flow Control 1 It s like building something where you don t have to order the cement. You can create a world of your own, your own environment,

More information

7. The Virtual Machine

7. The Virtual Machine Chapter 7: The Virtual Machine 1 7. The Virtual Machine The programmer is a creator of universes for which he alone is responsible. Universes of virtually unlimited complexity can be created in the form

More information

Virtual Machine. Part I: Stack Arithmetic. Building a Modern Computer From First Principles.

Virtual Machine. Part I: Stack Arithmetic. Building a Modern Computer From First Principles. Virtual Machine Part I: Stack Arithmetic Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 7:

More information

Virtual Machine Where we are at: Part I: Stack Arithmetic. Motivation. Compilation models. direct compilation:... 2-tier compilation:

Virtual Machine Where we are at: Part I: Stack Arithmetic. Motivation. Compilation models. direct compilation:... 2-tier compilation: Where we are at: Virtual Machine Part I: Stack Arithmetic Human Thought Abstract design Chapters 9, 12 H.L. Language & Operating Sys. Compiler Chapters 10-11 Virtual Machine Software hierarchy Translator

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Introduction: Hello, World Below

Introduction: Hello, World Below Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 www.idc.ac.il/tecs Introduction: Hello, World Below Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken This presentation

More information

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;}

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} Subroutines Also called procedures or functions Example C code: int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} // subroutine converts Celsius to kelvin int celtokel(int i) { return (i

More information

Chapter 10: Compiler I: Syntax Analysis

Chapter 10: Compiler I: Syntax Analysis Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 Chapter 10: Compiler I: Syntax Analysis www.idc.ac.il/tecs Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken This

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

2/12/2018. Recall Why ISAs Define Calling Conventions. ECE 220: Computer Systems & Programming. Recall the Structure of the LC-3 Stack Frame

2/12/2018. Recall Why ISAs Define Calling Conventions. ECE 220: Computer Systems & Programming. Recall the Structure of the LC-3 Stack Frame University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 220: Computer Systems & Programming Stack Frames Revisited Recall Why ISAs Define Calling Conventions A compiler

More information

Compiler I: Sytnax Analysis

Compiler I: Sytnax Analysis Elements of Computing Systems, Nisan & Schocken, MIT Press www.idc.ac.il/tecs Compiler I: Sytnax Analysis Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken This presentation contains

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

Compiler II: Code Generation Human Thought

Compiler II: Code Generation Human Thought Course map Compiler II: Code Generation Human Thought Abstract design Chapters 9, 12 abstract interface H.L. Language & Operating Sys. Compiler Chapters 1-11 abstract interface Virtual Machine Software

More information

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture COMP 303 Computer Architecture Lecture 3 Comp 303 Computer Architecture 1 Supporting procedures in computer hardware The execution of a procedure Place parameters in a place where the procedure can access

More information

Chapter 11: Compiler II: Code Generation

Chapter 11: Compiler II: Code Generation Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 Chapter 11: Compiler II: Code Generation www.idc.ac.il/tecs Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken This

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

Digital Forensics Lecture 3 - Reverse Engineering

Digital Forensics Lecture 3 - Reverse Engineering Digital Forensics Lecture 3 - Reverse Engineering Low-Level Software Akbar S. Namin Texas Tech University Spring 2017 Reverse Engineering High-Level Software Low-level aspects of software are often the

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

CSC 8400: Computer Systems. Using the Stack for Function Calls

CSC 8400: Computer Systems. Using the Stack for Function Calls CSC 84: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #9: MIPS Procedures 2006-07-11 CS 61C L09 MIPS Procedures (1) Andy Carle C functions main() { int i,j,k,m;... i = mult(j,k);... m =

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent instructions and conventions 2 Function Call Problems (1) Calling and returning

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-17/cc/ Generation of Intermediate Code Outline of Lecture 15 Generation

More information

10. The Compiler II: Code Generation 1

10. The Compiler II: Code Generation 1 Chapter 10: The Compiler II: Code Generation 1 10. The Compiler II: Code Generation 1 This document describes the usage and input syntax of the Unix Vax-11 assembler As. As is designed for assembling code

More information

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken (

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken ( Course overview Introduction to Computer Yung-Yu Chuang with slides by Nisan & Schocken (www.nand2tetris.org) Logistics Meeting time: 2:20pm-5:20pm, Tuesday Instructor: 莊永裕 Yung-Yu Chuang Webpage: http://www.csie.ntu.edu.tw/~cyy/introcs

More information

CSCE 5610: Computer Architecture

CSCE 5610: Computer Architecture HW #1 1.3, 1.5, 1.9, 1.12 Due: Sept 12, 2018 Review: Execution time of a program Arithmetic Average, Weighted Arithmetic Average Geometric Mean Benchmarks, kernels and synthetic benchmarks Computing CPI

More information

Memory Usage 0x7fffffff. stack. dynamic data. static data 0x Code Reserved 0x x A software convention

Memory Usage 0x7fffffff. stack. dynamic data. static data 0x Code Reserved 0x x A software convention Subroutines Why we use subroutines more modular program (small routines, outside data passed in) more readable, easier to debug code reuse i.e. smaller code space Memory Usage A software convention stack

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls Princeton University Computer Science 217: Introduction to Programming Systems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-17/cc/ Generation of Intermediate Code Conceptual Structure of

More information

Lecture 5. Announcements: Today: Finish up functions in MIPS

Lecture 5. Announcements: Today: Finish up functions in MIPS Lecture 5 Announcements: Today: Finish up functions in MIPS 1 Control flow in C Invoking a function changes the control flow of a program twice. 1. Calling the function 2. Returning from the function In

More information

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS Lectures 5 Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS 1 OOPS - What does this C code do? int foo(char *s) { int L = 0; while (*s++) { ++L; } return L; } 2

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

MIPS Procedure Calls. Lecture 6 CS301

MIPS Procedure Calls. Lecture 6 CS301 MIPS Procedure Calls Lecture 6 CS301 Function Call Steps Place parameters in accessible location Transfer control to function Acquire storage for procedure variables Perform calculations in function Place

More information

Register Allocation. CS 502 Lecture 14 11/25/08

Register Allocation. CS 502 Lecture 14 11/25/08 Register Allocation CS 502 Lecture 14 11/25/08 Where we are... Reasonably low-level intermediate representation: sequence of simple instructions followed by a transfer of control. a representation of static

More information

Compiler I: Syntax Analysis

Compiler I: Syntax Analysis Compiler I: Syntax Analysis Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 10: Compiler I:

More information

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12 Calling Conventions Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H 2.8 and 2.12 Goals for Today Calling Convention for Procedure Calls Enable code to be reused by allowing

More information

Module 27 Switch-case statements and Run-time storage management

Module 27 Switch-case statements and Run-time storage management Module 27 Switch-case statements and Run-time storage management In this module we will discuss the pending constructs in generating three-address code namely switch-case statements. We will also discuss

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #8: MIPS Procedures 2005-06-30 CS 61C L08 MIPS Procedures (1) Andy Carle Topic Outline Functions More Logical Operations CS 61C L08

More information

Functions in MIPS. Functions in MIPS 1

Functions in MIPS. Functions in MIPS 1 Functions in MIPS We ll talk about the 3 steps in handling function calls: 1. The program s flow of control must be changed. 2. Arguments and return values are passed back and forth. 3. Local variables

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Lecture 7: Procedures

Lecture 7: Procedures Lecture 7: Procedures CSE 30: Computer Organization and Systems Programming Winter 2010 Rajesh Gupta / Ryan Kastner Dept. of Computer Science and Engineering University of California, San Diego Outline

More information

CS153: Compilers Lecture 8: Compiling Calls

CS153: Compilers Lecture 8: Compiling Calls CS153: Compilers Lecture 8: Compiling Calls Stephen Chong https://www.seas.harvard.edu/courses/cs153 Announcements Project 2 out Due Thu Oct 4 (7 days) Project 3 out Due Tuesday Oct 9 (12 days) Reminder:

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 4 LAST TIME Enhanced our processor design in several ways Added branching support Allows programs where work is proportional to the input values

More information

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken (www.nand2tetris.org)

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken (www.nand2tetris.org) Course overview Introduction to Computer Yung-Yu Chuang with slides by Nisan & Schocken (www.nand2tetris.org) Logistics Meeting time: 2:20pm-5:20pm, Tuesday Classroom: CSIE Room 104 Instructor: 莊永裕 Yung-Yu

More information

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken (

Course overview. Introduction to Computer Yung-Yu Chuang. with slides by Nisan & Schocken ( Course overview Introduction to Computer Yung-Yu Chuang with slides by Nisan & Schocken (www.nand2tetris.org) Logistics Meeting time: 2:20pm-5:20pm, Tuesday Classroom: CSIE Room 101 Instructor: 莊永裕 Yung-Yu

More information

Topic 7: Activation Records

Topic 7: Activation Records Topic 7: Activation Records Compiler Design Prof. Hanjun Kim CoreLab (Compiler Research Lab) POSTECH 1 Storage Organization Stack Free Memory Heap Static Code 2 ELF file format example Executable Object

More information

High-Level Language VMs

High-Level Language VMs High-Level Language VMs Outline Motivation What is the need for HLL VMs? How are these different from System or Process VMs? Approach to HLL VMs Evolutionary history Pascal P-code Object oriented HLL VMs

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Compilers and computer architecture: A realistic compiler to MIPS

Compilers and computer architecture: A realistic compiler to MIPS 1 / 1 Compilers and computer architecture: A realistic compiler to MIPS Martin Berger November 2017 Recall the function of compilers 2 / 1 3 / 1 Recall the structure of compilers Source program Lexical

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Subroutines and Stack Usage on the MicroBlaze. ECE 3534 Microprocessor System Design

Subroutines and Stack Usage on the MicroBlaze. ECE 3534 Microprocessor System Design Subroutines and Stack Usage on the MicroBlaze ECE 3534 Microprocessor System Design 1 MicroBlaze Subroutines Same idea as a C/C++ function There s no call instruction Instead, branch and link Example:

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 6: Procedures Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Procedures have different names in different languages Java:

More information

2/6/2018. Let s Act Like Compilers! ECE 220: Computer Systems & Programming. Decompose Finding Absolute Value

2/6/2018. Let s Act Like Compilers! ECE 220: Computer Systems & Programming. Decompose Finding Absolute Value University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 220: Computer Systems & Programming Let s Act Like Compilers! Let s have some fun! Let s pretend to be a C compiler!

More information

Today. Putting it all together

Today. Putting it all together Today! One complete example To put together the snippets of assembly code we have seen! Functions in MIPS Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang Putting it all together! Count

More information

Lecture 4 CIS 341: COMPILERS

Lecture 4 CIS 341: COMPILERS Lecture 4 CIS 341: COMPILERS CIS 341 Announcements HW2: X86lite Available on the course web pages. Due: Weds. Feb. 7 th at midnight Pair-programming project Zdancewic CIS 341: Compilers 2 X86 Schematic

More information

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han s and Frames Demystified CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han Announcements Homework Set #2 due Friday at 11 am - extension Program Assignment #1 due Tuesday Feb. 15 at 11 am - note extension

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

Instruction Set Architecture

Instruction Set Architecture Computer Architecture Instruction Set Architecture Lynn Choi Korea University Machine Language Programming language High-level programming languages Procedural languages: C, PASCAL, FORTRAN Object-oriented

More information

Assembler Human Thought

Assembler Human Thought Where we are at: Assembler Human Thought Abstract design Chapters 9, 12 H.L. Language & Operating Sys. Compiler Chapters 10-11 Virtual Machine Software hierarchy VM Translator Chapters 7-8 Assembly Language

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS Procedures I Sr Lecturer SOE Dan Garcia 2014-02-14 If cars broadcast their speeds to other vehicles (and the

More information

Code generation scheme for RCMA

Code generation scheme for RCMA Code generation scheme for RCMA Axel Simon July 5th, 2010 1 Revised Specification of the R-CMa We detail what constitutes the Register C-Machine (R-CMa ) and its operations in turn We then detail how the

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 24: Compilation: Implementing Function Calls o Function Definitions in Mini-C o The Run-Time

More information

Assembler. Building a Modern Computer From First Principles.

Assembler. Building a Modern Computer From First Principles. Assembler Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 6: Assembler slide 1 Where we are

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 6: Recursive Functions. C Pre-processor. Cristina Nita-Rotaru Lecture 6/ Fall 2013 1 Functions: extern and static Functions can be used before they are declared static for

More information

EP1200 Introduktion till datorsystemteknik Tentamen tisdagen den 3 juni 2014, till 18.00

EP1200 Introduktion till datorsystemteknik Tentamen tisdagen den 3 juni 2014, till 18.00 EP1200 Introduktion till datorsystemteknik Tentamen tisdagen den 3 juni 2014, 14.00 till 18.00 Inga hjälpmedel är tillåtna utom de som följer med tentamenstexten Skriv kurskod, namn och personnummer på

More information

Scope, Functions, and Storage Management

Scope, Functions, and Storage Management Scope, Functions, and Storage Management Implementing Functions and Blocks cs3723 1 Simplified Machine Model (Compare To List Abstract Machine) Registers Code Data Program Counter (current instruction)

More information

1/30/2018. Conventions Provide Implicit Information. ECE 220: Computer Systems & Programming. Arithmetic with Trees is Unambiguous

1/30/2018. Conventions Provide Implicit Information. ECE 220: Computer Systems & Programming. Arithmetic with Trees is Unambiguous University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 220: Computer Systems & Programming The Stack Abstraction Conventions Provide Implicit Information What does

More information

Run-Time Data Structures

Run-Time Data Structures Run-Time Data Structures Static Structures For static structures, a fixed address is used throughout execution. This is the oldest and simplest memory organization. In current compilers, it is used for:

More information

CS64 Week 5 Lecture 1. Kyle Dewey

CS64 Week 5 Lecture 1. Kyle Dewey CS64 Week 5 Lecture 1 Kyle Dewey Overview More branches in MIPS Memory in MIPS MIPS Calling Convention More Branches in MIPS else_if.asm nested_if.asm nested_else_if.asm Memory in MIPS Accessing Memory

More information

Lecture 4: Memory Management & The Programming Interface

Lecture 4: Memory Management & The Programming Interface CS 422/522 Design & Implementation of Operating Systems Lecture 4: Memory Management & The Programming Interface Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken

More information

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. See P&H 2.8 and 2.12, and A.

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. See P&H 2.8 and 2.12, and A. Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5 6 compute jump/branch targets memory PC +4 new pc Instruction Fetch

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Procedure calls and register saving conventions 1 Example Convert to assembly: while (save[i] == k) i += 1; i and k are in $s3 and $s5 and base of array save[]

More information

LECTURE 19. Subroutines and Parameter Passing

LECTURE 19. Subroutines and Parameter Passing LECTURE 19 Subroutines and Parameter Passing ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments behind a simple name. Data abstraction: hide data

More information

Chapter 6: Assembler

Chapter 6: Assembler Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 www.idc.ac.il/tecs Chapter 6: Assembler Usage and Copyright Notice: Copyright 2005 Noam Nisan and Shimon Schocken This presentation contains

More information

MIPS Datapath. MIPS Registers (and the conventions associated with them) MIPS Instruction Types

MIPS Datapath. MIPS Registers (and the conventions associated with them) MIPS Instruction Types 1 Lecture 08 Introduction to the MIPS ISA + Procedure Calls in MIPS Longer instructions = more bits to address registers MIPS Datapath 6 bit opcodes... 2 MIPS Instructions are 32 bits More ways to address

More information

Compiler Construction Lecture 05 A Simple Stack Machine. Lent Term, Lecturer: Timothy G. Griffin. Computer Laboratory University of Cambridge

Compiler Construction Lecture 05 A Simple Stack Machine. Lent Term, Lecturer: Timothy G. Griffin. Computer Laboratory University of Cambridge Compiler Construction Lecture 05 A Simple Stack Machine Lent Term, 2015 Lecturer: Timothy G. Griffin Computer Laboratory University of Cambridge 1 Where are we going? When we derived the stack machine

More information

Functions and Procedures

Functions and Procedures Functions and Procedures Function or Procedure A separate piece of code Possibly separately compiled Located at some address in the memory used for code, away from main and other functions (main is itself

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Implementing Subroutines. Outline [1]

Implementing Subroutines. Outline [1] Implementing Subroutines In Text: Chapter 9 Outline [1] General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 4 Robert Grimm, New York University 1 Review Last week Control Structures Selection Loops 2 Outline Subprograms Calling Sequences Parameter Passing

More information

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 Objectives ICT106 Fundamentals of Computer Systems Topic 8 Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 To understand how HLL procedures/functions are actually implemented

More information

CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions

CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Machine Interpretation Levels of Representation/Interpretation

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 7: MIPs Decision-Making Instructions Working with Procedures Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Computers

More information

The plot thickens. Some MIPS instructions you can write cannot be translated to a 32-bit number

The plot thickens. Some MIPS instructions you can write cannot be translated to a 32-bit number The plot thickens Some MIPS instructions you can write cannot be translated to a 32-bit number some reasons why 1) constants are too big 2) relative addresses are too big 3) absolute addresses are outside

More information

Functions in C. Memory Allocation in C. C to LC3 Code generation. Next.. Complete and submit C to LC3 code generation. How to handle function calls?

Functions in C. Memory Allocation in C. C to LC3 Code generation. Next.. Complete and submit C to LC3 code generation. How to handle function calls? Memory Allocation in C Functions in C Global data pointer: R4 Global and static variables Specify positive offsets Frame pointer: Points to current code block Negative offset Stack Pointer: Top of stack

More information

Announcements. Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly. Agenda. SRC Procedure Calls. SRC Memory Layout. High Level Program

Announcements. Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly. Agenda. SRC Procedure Calls. SRC Memory Layout. High Level Program Fall 2006 CS333: Computer Architecture University of Virginia Computer Science Michele Co Announcements Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly Homework #2 Due next Wednesday, Sept.

More information

ECS 142 Project: Code generation hints

ECS 142 Project: Code generation hints ECS 142 Project: Code generation hints Winter 2011 1 Overview This document provides hints for the code generation phase of the project. I have written this in a rather informal way. However, you should

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

Lecture 4: Instruction Set Design/Pipelining

Lecture 4: Instruction Set Design/Pipelining Lecture 4: Instruction Set Design/Pipelining Instruction set design (Sections 2.9-2.12) control instructions instruction encoding Basic pipelining implementation (Section A.1) 1 Control Transfer Instructions

More information

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call Call without Parameter Value Transfer What are involved? ESP Stack Pointer Register Grows by 4 for EIP (return address) storage Stack -- Memory which holds register contents Will keep the EIP of the next

More information

register allocation saves energy register allocation reduces memory accesses.

register allocation saves energy register allocation reduces memory accesses. Lesson 10 Register Allocation Full Compiler Structure Embedded systems need highly optimized code. This part of the course will focus on Back end code generation. Back end: generation of assembly instructions

More information

The plot thickens. Some MIPS instructions you can write cannot be translated to a 32-bit number

The plot thickens. Some MIPS instructions you can write cannot be translated to a 32-bit number The plot thickens Some MIPS instructions you can write cannot be translated to a 32-bit number some reasons why 1) constants are too big 2) relative addresses are too big 3) absolute addresses are outside

More information